
Embedded GNU Radio running on Zynq/PlutoSDR

G. Goavec-Merou1, P.-Y. Bourgeois1, J.-M Friedt1

1 FEMTO-ST Time & Frequency, Besançon, France

Abstract

GNU Radio has been ported to the buildroot environment and hence can be run on any plat-
form supported by this development framework, including the Zynq. We extend the frozen version
of buildroot used by Analog Devices (2018.02) to the BR2 EXTERNAL mechanism allowing to use the
latest release of buildroot and hence the latest added packages, including GNU Radio and associated
packages to run on the Zynq as found on the PlutoSDR. We demonstrate running the demodulation
scheme on the PlutoSDR itself, and streaming the resulting audio file, as well as providing custom
FPGA bitstream for embedded RF frontend processing.

1 Introduction

Current embedded platforms and associated elec-
tronics frontends exhibit on the one hand increasing
flexibility and on the other hand increasing embed-
ded computational power, with a bandwidth bot-
tleneck at the data transfer from one processing
unit to another. A demonstration of this evolu-
tion is Analog Device’s (ADI) PlutoSDR combin-
ing on a same board an AD9363 radiofrequency
frontend streaming digital data to the Zynq 7010
System on Chip providing both FPGA (PL) and
general computational (PS) functionalities on the
same chip. The resulting complex I/Q data are
then streamed to a personal computer through a
USB connection for further processing. The archi-
tecture provided by ADI, in which the Zynq is only
used to collect the data and stream them to the
personal computer on the one hand restricts the
available bandwidth due to the USB bus, and pre-
vents using fully the PS capability of the Zynq. In
order to run GNU Radio on the PS and take ad-
vantage of the processing power as well as the huge
communication bandwidth between PL and PS, we
have ported the development framework provided
by ADI to the BR2 EXTERNAL framework providing a
homogeneous, fully consistent development frame-
work. Hence, the latest release of the buildroot

framework shall be used on the embedded software,
including the latest packages such as the necessary
extensions to GNU Radio needed to collect data
from the AD9363 and process such data on the
embedded board. Since the processing requiring
most bandwidth is run on the PS, the resulting dec-
imated stream becomes consistent with USB band-
width when streamed to the personal computer.
In addition to providing the Buildroot frame-

work to add custom software, including GNU Radio
blocks, to the PlutoSDR, we provide the ability to
tune the bitstream configuring the Zynq PL with
custom processing blocks, such as a sound output,
making the PlutoSDR a fully autonomous, embed-

Figure 1: Adding an audio interface to the Plu-
toSDR through EMIO driven by a PWM added to
the original bitstream. In this example, the PWM
datapath is independent of the data stream com-
ing from the AD9363 radiofrequency frontend pro-
viding the raw I/Q signals needed to demodulate
a broadcast FM station and playing sound on the
headphones.

ded radiofrequency transceiver.

2 Experimental setup

ADI’s development framework provided at
github.com/analogdevicesinc/plutosdr-fw

uses a Makefile configuration to run multiple
tools in order to generate all the files needed to
generate the embedded firmware. The kernel is
compiled out of the buildroot environment, which
is itself a version frozen at the time of the release.
While the generation of the image is functional, its
long term evolution is dependent on porting the
updates to the current kernel to the latest Linux
release. Furthermore, the version of buildroot is
frozen to a version not yet supporting GNU Radio.
Various efforts aimed at leveraging the pro-

cessing power of the Zynq [1] include running a
web server on the embedded target (github.com/
unixpunk/PlutoWeb) or updating the PL bitstream

1

github.com/analogdevicesinc/plutosdr-fw
github.com/unixpunk/PlutoWeb
github.com/unixpunk/PlutoWeb


github.com/timcardenuto/testPlutoSDR. All
these projects still rely on the official ADI frame-
work whose long term stability is questionable since
buildroot and the linux kernel will keep on evolv-
ing. In order to avoid freezing features of a given
buildroot release, we have extracted the mod-
ifications brought by ADI to buildroot and in-
cluded them in an external branch designed to be
merged with the latest buildroot release as provided
through the BR2 EXTERNAL mechanism.

Furthermore, thanks to the availability of
the PlutoSDR HDL firmware, a bitstream
can be generated to configure the PL with
custom functionalitites. We here promote
the compatibility with the OscimpDigital
PL/PS co-design framework as documented at
https://github.com/oscimp/oscimpDigital/

tree/master/doc/tutorials/plutosdr/.

3 Results

In order to demonstrate the embedded signal pro-
cessing using GNU Radio, we tune the AD9363
(whose configuration was updated [2] to match an
AD9364 to allow reaching the 100 MHz commer-
cial FM broadcast band) to a broadcast FM sta-
tion, stream the data to an embedded command-
line python script generated from GNU Radio Com-
panion, and transfer the resulting audio stream
to the personal computer through the ZeroMQ
framework. The personal computer then sends the
stream to the sound card to assess the demodula-
tion quality.

Figure 2: Flowgraphs running on the Zynq tar-
get (bottom right) and on the host PC (top-right),
streaming the FM signal demodulated on the PS of
the target (top-left) and using the host as a sound
card.

Fig. 2 exhibits the flowcharts running on the
embedded target and the host computer, as well as
the resulting oscilloscope output.

Beyond allowing for processing datastreams at
the PS side of the Zynq, accessing the bitstream
generated to configure the PL allows for including
basic preliminary processing steps at the FPGA
level. Fig. 3 exhibits the initial FPGA con-
figuration provided by ADI to fetch data from
the AD9363 and stream them to the PS memory
through the AXI DMA interface. While the basic
design only includes FIR decimator and interpola-
tor blocks between the AD936{1,3} block and the
AXI DMA, any additional processing block com-
plying with the interfaces might be included to pre-
process the data at the FPGA level, hence removing
the bandwidth limitation introduced by the PL to
PS communication.

Figure 3: FPGA processing chain, from AD9363
to PS memory through the Direct Memory Access
(DMA) AXI stream, and collecting the AXI stream
to feed the custom processing chain here made of
an NCO and a mixer to demonstrate an additional
frequency transposition.

4 Conclusion

A fully functionnal extension to buildroot support-
ing the PlutoSDR to run embedded processing soft-
ware is proposed. All development files are released
at github.com/oscimp/PlutoSDR. The demon-
stration of the operational framework is achieved
by streaming the sound demodulated from the in-
coming commercial broadcast FM radiofrequency
signal onboard the Zynq processor.

References

[1] PlutoSDR: enable 2nd CPU core for better

performance at www.reddit.com/r/RTLSDR/

comments/7h2hh2/plutosdr_enable_2nd_

cpu_core_for_better/

[2] Updating to the AD9364 at wiki.analog.

com/university/tools/pluto/users/

customizing

2

github.com/timcardenuto/testPlutoSDR
https://github.com/oscimp/oscimpDigital/tree/master/doc/tutorials/plutosdr/
https://github.com/oscimp/oscimpDigital/tree/master/doc/tutorials/plutosdr/
github.com/oscimp/PlutoSDR
www.reddit.com/r/RTLSDR/comments/7h2hh2/plutosdr_enable_2nd_cpu_core_for_better/
www.reddit.com/r/RTLSDR/comments/7h2hh2/plutosdr_enable_2nd_cpu_core_for_better/
www.reddit.com/r/RTLSDR/comments/7h2hh2/plutosdr_enable_2nd_cpu_core_for_better/
wiki.analog.com/university/tools/pluto/users/customizing
wiki.analog.com/university/tools/pluto/users/customizing
wiki.analog.com/university/tools/pluto/users/customizing

	Introduction
	Experimental setup
	Results
	Conclusion

