
Deep learning inference in GNU Radio with ONNX

Oscar Rodriguez OSCAR.RODRIGUEZZALONA@HEIG-VD.CH
Alberto Dassatti ALBERTO.DASSATTI@HEIG-VD.CH

School of Management and Engineering Vaud (HEIG-VD), University of Applied Science Western Switzerland (HES-SO),
Yverdon-les-Bains, Switzerland

Abstract
This paper introduces gr-dnn 1, an open source
GNU Radio Out Of Tree (OOT) block capable of
running deep learning inference inside GNU Ra-
dio flow graphs. This module integrates a deep
learning inference engine from the Open Neural
Network Exchange (ONNX) project. Thanks to
the interoperability with most of the major deep
learning frameworks, it does not impose any re-
striction on the tool used by the model designer.
As an example, we demonstrate here its function-
alities running a simple deep learning inference
model on raw radio samples acquired with a Plu-
toSDR.

1. Introduction
Deep Learning (DL) is a branch of Machine Learning (ML)
that has been used successfully to solve complex problems
in different domains like image processing (Krizhevsky
et al., 2012), natural language processing (Collobert & We-
ston, 2008), and speech recognition (rahman Mohamed
et al., 2012). In recent years, deep learning techniques have
been also applied to wireless communication and spectrum
sensing (Clancy et al., 2007; Hossain et al., 2014; Arjoune
& Kaabouch, 2019) showing that they can outperform clas-
sical approaches in tasks like automatic modulation classi-
fication (O’Shea et al., 2018). Integrating such technology
in a Software Defined Radio (SDR) framework seems very
promising and could lead to new ideas in the field, for in-
stance in cognitive radio and signal classification.

We think that the best way to integrate DL and SDR is in-
terfacing a ML framework inside GNU Radio. There are
many DL frameworks available nowadays that allow cre-
ating, training, and running deep learning models. Design
and train of DL models are normally executed in a spe-

1https://gitlab.com/librespacefoundation/
sdrmakerspace/gr-dnn

Proceedings of the 10 st GNU Radio Conference, Copyright 2020
by the author(s).

cific development environment and we only focus here on
running inference inside GNU Radio. Most ML frame-
works and inference engines are often incompatible with
each other and a model created and trained with one frame-
work can not be easily manipulated in a different one. The
same is the norm form inference engines: compatibility is
a real big issue. A second relevant aspect is performance.
Deep learning inference is a computationally heavy task
and the amount of data acquired in an SDR context can
be huge: It is important to have access to optimizations
and modern hardware. Different deep learning frameworks
provide different optimization techniques and support for
different hardware acceleration platforms.

In the next section 2, we discuss about the inference engine
selected and its capabilities. In section 3, we describe how
gr-dnn works and how to configure it. Then in section 4
we explain how to use our block in a real scenario using
a convolutional neural network (CNN) trained for modu-
lation classification (O’Shea & Hoydis, 2017). Finally, in
section 5 we present the results obtained.

2. ONNX Runtime inference engine
ONNX Runtime (Microsoft, b) is an inference engine that
supports models based on the ONNX format (Microsoft,
a). ONNX is an open format built to represent machine
learning models that focuses mainly on framework inter-
operability. It defines a common set of operators used to
create ML and DL models and a file format that enables
using these models in a different frameworks. In practice,
this means that each developer can use their preferred ML
framework without worrying about downstream future im-
plications. It also supports hardware acceleration for sev-
eral platforms including GPUs (and partially FPGAs 2).

ONNX format is supported by multiple frameworks either
natively by the framework or through third party converter
tools (ONNX, 2020).

In summary, ONNX Runtime provides an inference engine

2https://docs.microsoft.com/
en-us/azure/machine-learning/
how-to-deploy-fpga-web-service

https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service


Deep learning inference in GNU Radio with ONNX

with support for models trained with a variety of frame-
works and at the same time it takes advantage of specific
hardware accelerators when available. It seems a natural
choice considering the constraints presented in section 1.

3. gr-dnn
In order to integrate a deep learning solution in an SDR
context, we have developed a GNU Radio OOT module
(Radio) called gr-dnn that allows us to use ONNX Run-
time deep learning inference engine inside GNU Radio
flow graphs.

Our block consists of a synchronous block 3 (it consumes
and produces an equal number of items per port) developed
in Python. It makes use of the Python bindings of ONNX
Runtime to read the metadata of the loaded ONNX model
and configure the ONNX Runtime backend with the correct
parameters. Then, we adapt (reshape in row-major order
(Wikipedia contributors, 2020b)) the input of the block to
the expected format for the input of the model. Finally, we
take the output of the model, adapt it (flatten, more details
about this con be found in section 4) and write it to the
output port of our block.

3.1. Block configuration

The configuration of a gr-dnn block consists of the follow-
ing parameters:

Figure 1. gr-dnn configuration

• ONNX model file is the ML trained model file in
ONNX format.

• Batch size is the number of inputs that will be used for
inference at once. This is useful to alleviate some of
the overhead produced by moving data, for instance,
from the capturing device to the device where the in-
ference will be executed.

3https://wiki.gnuradio.org/index.php/
Types_of_Blocks

• Input size is used to define the size of the input port
of the block (for consistency with other blocks) and
it has to match with the size of a flatten input of the
loaded model.

• Output size is used to define the size of the of output
port of the block (for consistency with other blocks)
and it has to match with the size of a flatten output of
the loaded model.

• Device is the device that will be used for inference. If
selected device is not available, the default device will
be used (most of the cases that is CPU).

4. Experimental setup
We have prepared a flowgraph 4 that implements one possi-
ble use case for deep learning: signal classification. It pro-
cesses raw I/Q samples acquired by a PlutoSDR (figure 2).
In this scenario, we are going to use a CNN model for auto-
matic modulation classification (O’Shea & Hoydis, 2017)
(model layout and complexity can be found in the origi-
nal article ). The input of the model is a vector of 128 I/Q
pairs values as single-precision float-values and the output
is a vector with the probability of the samples being en-
coded in one of the ten different digital and analog single-
carrier modulation schemes used during model training 5

(8PSK, AM-DSB, BPSK, CPFSK, GFSK, PAM4, QAM16,
QAM64, QPSK and WBFM).

The input of the block has to be a flattened tensor. For
example, if the model expects a 3D tensor as input, like
an image, with dimensions (64, 64, 3) the first two corre-
sponds to the width and height of the image and the last
dimension is the number of channels (e.g. RGB) then, the
block would expect a vector with size 64 × 64 × 3 repre-
senting the flatten tensor. In our case, the model expects a
2D tensor with dimension (128, 2) where the first dimen-
sion is the number of samples and the second dimension
represents I and Q values, then the input port of the block
should have a size of 256 (128× 2).

For simplicity, in this demo, we have not applied any pre-
processing to the data. It is relevant to remember that
any pre-processing method used during training has to be
applied during inference as well. Notable examples are
normalization or standardization (Wikipedia contributors,
2020a)

The output of the model is a flattened tensor as well. It
will contain the probability of every of the possible modu-

4https://gitlab.com/librespacefoundation/
sdrmakerspace/gr-dnn/-/blob/master/
examples/pluto_onnx_vector.grc

5RNK2016.10b - https://www.deepsig.ai/
datasets

https://wiki.gnuradio.org/index.php/Types_of_Blocks
https://wiki.gnuradio.org/index.php/Types_of_Blocks
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn/-/blob/master/examples/pluto_onnx_vector.grc
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn/-/blob/master/examples/pluto_onnx_vector.grc
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn/-/blob/master/examples/pluto_onnx_vector.grc
https://www.deepsig.ai/datasets
https://www.deepsig.ai/datasets


Deep learning inference in GNU Radio with ONNX

Figure 2. Flowgraph for deep learning inference with PlutoSDR and data preparation.

lations for the input sequence. Then, we repurpose a plot-
ting tool from GNU Radio (time raster sink) to show the
output probabilities of the classification as an easy way to
visualize the classification results.

If we need a better representation of the results of the clas-
sification we have to use externals tools. In this case, for a
real time visualization of the classification, we propose to
send the output of our block (flattened tensor of the output
of the model) to a UDP Sink.

Then, we can use a simple python script to read the infor-
mation from the UDP socket and then plot the output of our
block. Because we are sending the result of a batch we plot
the average probability for each modulation in the batch in
a bar plot (figure 3)

5. Results
In order to demonstrate the deep learning classification us-
ing gr-dnn, we prepared some data visualization in the flow
graph (figure 4). We plot the raw data used as input in a
waterfall sink (top) and the output of the classification in
a time raster sink (bottom). The number of columns on
the time raster sink corresponds to the size of the output
of the model which, for classification, is the probability of
belonging to each of the possible classes. Each row in the
raster sink corresponds to one output of the model. This
is just an example that helps us to visualize the input and
output of the deep learning model in our block.

Figure 3. Representation of the output using an external tool

Throughput clearly depends on the model complexity:
More complex models require higher computation. We
have compared the performance running inference with dif-
ferent configurations (table 1): different sources, difference
hardware (an Intel i7-7700K CPU and an NVIDIA RTX
2080 Ti GPU) and different batch sizes.

In tablet 1, we can observe the effect of the batch size on
the performance. Using a batch size of 1 there is no differ-
ence with different hardware or source. If we increase the
batch size, we start to see how the CPU limits the inference
and perform worse than the GPU. For an even bigger batch
size, we find a more significant performance gap between
GPU and the CPU (more than x25 performance gain). If



Deep learning inference in GNU Radio with ONNX

Figure 4. Output of figure 2 flow graph.

we compare the GPU results for different sources at batch
size 100 we can observe a substantial difference that might
be a bottleneck due to the USB 2.0 used between the SDR
device and the computer. From these results, we can antic-
ipate that we can run real-time inference if we have hard-
ware acceleration but we will have a limited performance
without it.

6. Conclusion
We have developed an GNU Radio OOT that integrates a
deep learning inference engine: gr-dnn. It allows you to
use deep learning solutions seamlessly inside GNU Ra-
dio. It supports multiple deep learning frameworks and
hardware accelerations. To demonstrate the potential of
this OOT module, we have shown how easy is to develop
a fully functional example of deep learning inference for
automatic modulation classification using raw I/Q values
from an SDR device, and running it in real-time.

Similar solutions, like gr-wavelearner from Deepwave Dig-
ital 6, are less flexible because they require a specific hard-
ware or they are tied to a specific platform. Both ONNX

6https://github.com/deepwavedigital/
gr-wavelearner

Source Hardware Batch size Bandwidth
File CPU 1 3.5 MB/s
File CPU 10 6.4 MB/s
File CPU 100 7.1 MB/s
File GPU 1 3.3 MB/s
File GPU 10 30.1 MB/s
File GPU 100 196.1 MB/s
File GPU 1000 408.6 MB/s
SDR CPU 1 3.3 MB/s
SDR CPU 10 6.6 MB/s
SDR CPU 100 7.3 MB/s
SDR GPU 1 3.3 MB/s
SDR GPU 10 30.2 MB/s
SDR GPU 100 37.3 MB/s

Table 1. Block performance in different scenarios

and ONNX runtime are abstraction layers, first for ML
model declaration and second for ML inference.

All files (included examples and test models) are available
in the repository of the project 7. We also provide docker
images, with all required dependencies, for both CPU and
GPU inference 8 to facilitate testing. We hope to be able to
add FPGA support in the next future. For further informa-
tion, you can check the wiki of the project 9.

Acknowledgements
This work was partly funded by the European Space
Agency (ESA) as part of the initiative SDR Makerspace.
For more information you can visit the web page of the ini-
tiative 10.

References
Arjoune, Youness and Kaabouch, Naima. A Com-

prehensive Survey on Spectrum Sensing in Cogni-
tive Radio Networks: Recent Advances, New Chal-
lenges, and Future Research Directions. Sensors, 19
(1):126, jan 2019. ISSN 1424-8220. doi: 10.
3390/s19010126. URL https://www.mdpi.com/
1424-8220/19/1/126.

Clancy, T., Hecker, Joe, Stuntebeck, Erich, and O’Shea,
Tim. Applications of machine learning to cognitive radio

7https://gitlab.com/librespacefoundation/
sdrmakerspace/gr-dnn

8registry.gitlab.com/librespacefoundation/sdrmakerspace/gr-
dnn/gnuradio:[onnx‖onnx− cuda]

9https://gitlab.com/librespacefoundation/
sdrmakerspace/gr-dnn/wikis

10https://sdrmaker.space

https://github.com/deepwavedigital/gr-wavelearner
https://github.com/deepwavedigital/gr-wavelearner
https://www.mdpi.com/1424-8220/19/1/126
https://www.mdpi.com/1424-8220/19/1/126
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn/wikis
https://gitlab.com/librespacefoundation/sdrmakerspace/gr-dnn/wikis
https://sdrmaker.space


Deep learning inference in GNU Radio with ONNX

networks. Wireless Communications, IEEE, 14:47 – 52,
09 2007. doi: 10.1109/MWC.2007.4300983.

Collobert, Ronan and Weston, Jason. A unified architecture
for natural language processing: Deep neural networks
with multitask learning. In Proceedings of the 25th inter-
national conference on Machine learning, pp. 160–167,
2008.

Hossain, Peter, Komisarczuk, Adaulfo, Pawetczak, Garin,
Dijk, Sarah Van, and Axelsen, Isabella. Machine learn-
ing techniques in cognitive radio networks, 2014.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing
systems, pp. 1097–1105, 2012.

Microsoft. Onnx open neural network exchange. https:
//onnx.ai/, a.

Microsoft. Onnx runtime. https://microsoft.
github.io/onnxruntime/, b.

ONNX. Onnx converting tools. https:
//github.com/onnx/tutorials#
converting-to-onnx-format, 2020.

O’Shea, Timothy J. and Hoydis, Jakob. An Introduc-
tion to Deep Learning for the Physical Layer. CoRR,
abs/1702.0, feb 2017. URL http://arxiv.org/
abs/1702.00832.

O’Shea, Timothy James, Roy, Tamoghna, and Clancy,
T. Charles. Over-the-air deep learning based radio signal
classification. IEEE Journal of Selected Topics in Signal
Processing, 12(1):168–179, Feb 2018. ISSN 1941-0484.
doi: 10.1109/jstsp.2018.2797022.

Radio, GNU. Gnu radio out-of-tree module.
https://wiki.gnuradio.org/index.php/
OutOfTreeModules.

rahman Mohamed, Abdel, Dahl, G., and Hinton, Geof-
frey E. Acoustic modeling using deep belief networks.
IEEE Transactions on Audio, Speech, and Language
Processing, 20:14–22, 2012.

Wikipedia contributors. Normalization (statistics)
— Wikipedia, the free encyclopedia, 2020a.
URL https://en.wikipedia.org/wiki/
Normalization_(statistics).

Wikipedia contributors. Row- and column-major order
— Wikipedia, the free encyclopedia, 2020b. URL
https://en.wikipedia.org/wiki/Row-_
and_column-major_order.

https://onnx.ai/
https://onnx.ai/
https://microsoft.github.io/onnxruntime/
https://microsoft.github.io/onnxruntime/
https://github.com/onnx/tutorials#converting-to-onnx-format
https://github.com/onnx/tutorials#converting-to-onnx-format
https://github.com/onnx/tutorials#converting-to-onnx-format
http://arxiv.org/abs/1702.00832
http://arxiv.org/abs/1702.00832
https://wiki.gnuradio.org/index.php/OutOfTreeModules
https://wiki.gnuradio.org/index.php/OutOfTreeModules
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Normalization_(statistics)
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

