
Benchmarking and Profiling the GNU Radio Scheduler

Bastian Bloessl MAIL@BASTIBL.NET

Secure Mobile Networking Lab, TU Darmstadt, Mornewegstr. 32, 64293 Darmstadt, Germany

Marcus Müller MUELLER@KIT.EDU

Communications Engineering Lab, Karlsruhe Institute of Technology, Kreuzstr. 11, 76133 Karlsruhe, Germany

Matthias Hollick MHOLLICK@SEEMOO.TU-DARMSTADT.DE

Secure Mobile Networking Lab, TU Darmstadt, Mornewegstr. 32, 64293 Darmstadt, Germany

Abstract

From a technical perspective, GNU Radio
has two main assets: its comprehensive
block library of optimized, state-of-the-art
signal processing algorithms and its runtime
environment. The latter manages the data
flow and turns GNU Radio in a real-time
signal processing framework. In contrast
to the block library, where it is easy to re-
place blocks with more efficient implemen-
tations, the runtime grew organically, which
resulted in a complex system that is hard to
maintain. At the same time, there are con-
cerns about its performance. To understand
the current implementation and explore op-
portunities for future improvements, we pro-
vide benchmarking and profiling results. We,
furthermore, compare the performance of
GNU Radio’s default with a manually opti-
mized configuration to show the potential of
a more advanced scheduler.

1. Introduction

Many current and forthcoming wireless technologies
have high bandwidth demands and tough latency con-
straints. This is a challenge for Software Defined Ra-
dio (SDR), in particular for General Purpose Proces-
sor (GPP)-based platforms like GNU Radio (Rondeau,
2015), where signal processing is implemented on a

Proceedings of the 9 th GNU Radio Conference, Copyright 2019
by the author(s).

normal PC. To meet the demands of new technolo-
gies, GNU Radio focused on optimizing individual
transceiver components through more efficient algo-
rithms (e.g., poly-phase filters) and implementations
(e.g., vector-optimized math kernels (Rondeau et al.,
2013a)). The runtime environment, i.e., the central
component handling the data flow and managing paral-
lel signal processing, did not see similar improvements.
This is unfortunate, given the fact that it affects perfor-
mance critical factors like CPU cache efficiency and
overhead from thread synchronization.

The challenge of GPP-based SDRs is to provide a
generic runtime environment that offers reasonable per-
formance for any type of transceiver. The requirements
are high throughput, low latency, and high stability
to avoid occasional data loss. GNU Radio’s current
approach is to start each transceiver component (like
filters or synchronizers) in a separate thread and leave
scheduling to the operating system. While the success
of GNU Radio shows the practicability of the approach,
it also has inherent limitations:

• We cannot control the order in which blocks are
scheduled and, therefore, cannot exploit cache
coherency.

• We cannot control when and for how long threads
are scheduled. A thread might, therefore, be in-
terrupted while holding locks on data, which can
lead to suboptimal process sequences.

• We cannot assign multiple blocks to one thread
and, therefore, have to use synchronization primi-
tives (like mutexes and semaphores) for all shared
data structures.

Benchmarking and Profiling the GNU Radio Scheduler

With these limitations, the question arises whether (1)
GNU Radio can handle a large number of threads ef-
ficiently, i.e., if it scales well with a large number of
blocks, and (2) how much performance we lose com-
pared to a more advanced or application-specific sched-
uler. This paper sheds some light on these questions
by providing a performance analysis of the current
implementation and a comparison to a manually opti-
mized transceiver. We think that these results help to
understand the performance of the GNU Radio runtime
environment, thus acting as the base for a discussion
about its future development.

2. Related Work

Joseph Mitola’s idea of a software defined radio (Mi-
tola, 1995) was realized on GPPs with Vanu Bose’s
SPECtRA implementation (Bose, 1999), created in the
context of the SpectrumWare project at MIT. Bose was
motivated by the observation that real-time audio no
longer required dedicated hardware but became feasi-
ble on normal desktop operating systems. Considering
Moore’s Law, he assumed that a similar development
will take place for radios as well. Yet, if we com-
pare his implementation that was able to sustain a base
band sample rate of 33 MHz on a Intel Pentium II with
400 MHz with the performance of current processors
and state-of-the-art GPP frameworks, we do not see an
equivalent performance increase. This is only partly
surprising, since leveraging the potential of today’s
multi-core CPUs is still a great challenge.

More recent SDR frameworks like Pothosware1 and
Equinox2 approach this problem with more flexible
schedulers that decouple threads from blocks and allow
a dynamic assignment. Furthermore, they refrain from
using ring buffers3 but rely on message passing only.
While this architecture minimizes scheduling and syn-
chronization overhead, a thorough performance com-
parison between these frameworks and GNU Radio is
still missing.

The potential of a more advanced scheduler can be es-
timated from manually optimized, application-specific
implementations like srsLTE (Gomez-Miguelez et al.,

1http://www.pothosware.com/
2https://gitlab.com/equinox-sdr/equinox
3https://www.gnuradio.org/blog/

2017-01-05-buffers/

2016) for 4G cellular communications or Microsoft’s
software radio Sora (Tan et al., 2011), which was
released with a GPP-based implementation of IEEE
802.11a/b/g. The latter supports 22 MHz channels and
allows the transceiver to respond to an ACK in time.
This is impressive, particularly considering that this
was running on an Intel Core 2 Duo with 2.67 GHz.
Even with more capable PCs, this is still hardly possi-
ble with general purpose SDR frameworks.

Another approach to high-performance GPP implemen-
tations are Domain-Specific Languages (DSLs) like
Ziria (Stewart et al., 2015). The Ziria compiler creates
lookup tables automatically, uses vectorized instruction
if possible, and performs static scheduling optimiza-
tions. While this is a promising approach, its general
applicability has yet to be shown. Until now, it did not
find widespread adoption and its performance analysis
was conducted with a single example that used only
two CPU cores. Furthermore, static scheduling opti-
mizations have limitations, as the load per transceiver
component might change significantly with the load
of the channel, especially for frame-based communica-
tions (Bloessl, 2018).

To overcome current constraints of GPP-based
SDRs, more and more researchers switch to Field-
Programmable Gate Array (FPGA)-based platforms
(Khattab et al., 2008) or heterogeneous architectures
that combine GPPs with FPGAs (Braun et al., 2016) or
Graphics Processing Units (GPUs) (Hitefield & Clancy,
2016; Plishker et al., 2011). While these platforms are
more capable, they are still less accessible and have
slower development cycles (Sklivanitis et al., 2016).
Overall, the systematic performance evaluation of GPP-
based SDR platforms is largely unexplored and (repro-
ducible) benchmarks are missing.

3. GNU Radio Run Time Environment

In this paper, we take a first step towards understand-
ing the performance and scaling behavior of a state-
of-the-art GPP SDR framework. To this end, we
benchmark the scheduler of GNU Radio, a popular,
open source, real-time signal processing framework
(Rondeau, 2015). With GNU Radio, a transceiver is
implemented through a flowgraph, which defines the
data flow between signal processing blocks. These
blocks usually correspond to a logical step in the

http://www.pothosware.com/
https://gitlab.com/equinox-sdr/equinox
https://www.gnuradio.org/blog/2017-01-05-buffers/
https://www.gnuradio.org/blog/2017-01-05-buffers/

Benchmarking and Profiling the GNU Radio Scheduler

transceiver like a filter, a synchronizer, or a demod-
ulator. GNU Radio supports two types of data flows
between blocks: a stream-based interface, imple-
mented with ring buffers, and a message passing in-
terface. Using ring buffers, a block processes data in
its block::general_work function, which reads
data from input buffers, processes it, and writes the
result to the output buffers. Message passing, in turn,
is implemented through asynchronous callbacks.

The main advantage of GNU Radio over signal pro-
cessing libraries implemented for MATLAB or Python
is its ability to process a stream of data live while the
system is running. This is achieved through highly
parallelized data processing, which exploits modern
multi-core CPUs by starting each block in a separate
thread. Strictly speaking, GNU Radio does not include
a real scheduler that manages the threads but relies on
the operating system scheduler. The only parameter
that is actively controlled is the amount of data that
is processed in one step. Unfortunately, there is no
obvious optimal setting for this parameter. Generally,
data can be processed more efficiently in larger chunks.
However, larger chunks also imply that subsequent
blocks have to wait longer before they can continue to
work with the output. GNU Radio tries do balance this
trade-off by filling the output buffer to about 50 %.

4. Run Time Benchmarks

In a first set of experiments, we benchmark the through-
put of the GNU Radio scheduler by measuring the run
time of a flowgraph when processing a given work-
load.4 This is a simple and accurate measure, since it
does not require us to modify GNU Radio and intro-
duce measurement probes, which could impact run
time behavior and, therefore, the results. Our sys-
tem uses Ubuntu 19.04 and runs GNU Radio v3.8-rc2,
which was compiled with GCC 8.3 in release mode. To
conduct stable and reproducible measurements, we use
a setup that minimizes interference from the hardware,
the operating system, and other processes running on
the system. To this end, we create a dedicated CPU
set that is used exclusively for GNU Radio. The mea-
surements were conducted on a laptop with an Intel

4The code and the evaluation scripts for this and the fol-
lowing experiments are available at https://github.com/
bastibl/gr-sched.

Source

...

Stages

Pipes

Block Block Block...

Block Block Block...

Block Block Block...

Figure 1. Flowgraph topology, used it our measurements. It allows
us to scale the number of parallel streams (pipes) and the length of
the streams (stages).

100 200 300 400
Pipes × # Stages

0
2

4
6

8
10

Ti
m

e
(i

n
s)

Priority
Normal
Real-Time

Burst Size
500
1000

Figure 2. Wall clock time required to process a burst of messages
with GNU Radio’s message passing interface. Pipes and stages are
scaled jointly, i.e., 100 corresponds to 10 pipes and 10 stages.

i7-8565U processor with eight CPUs (four cores with
hyper threads). The CPU set for our performance mea-
surements comprised four CPUs (two cores with their
hyper threads). If possible, we also migrate kernel
threads and route interrupts to the system’s CPU set.
We, furthermore, set the CPU governor to performance
to minimize CPU frequency scaling.

The flowgraphs in our tests are created programmat-
ically with a C++ application to avoid any possible
impact from Python bindings. Our goal is to investi-
gate the scaling behavior when working with a large
number of blocks. We, therefore, consider a scenario
as shown in Figure 1, where we can configure the num-
ber of pipes (parallel streams) and stages (blocks per
stream).

Message Passing Performance

We start by investigating the message passing interface.
Here, we create messages in advance and measure the
time it takes to forward them through the flowgraph.

https://github.com/bastibl/gr-sched
https://github.com/bastibl/gr-sched

Benchmarking and Profiling the GNU Radio Scheduler

Since we want to focus on the performance of the
scheduler, we use a custom block, which just forwards
messages without any further processing. This custom
message forwarder was used for all blocks in Figure 1.

The results are depicted in Figure 2. In this experiment,
we scale the number of stages and pipes jointly, i.e.,
an x-axis value of 100 corresponds to 10 stages and
10 pipes. The y-axis shows the wall clock time,5 re-
quired to run the flowgraph’s top_block::run()
function, i.e., we measure system throughput rather
than delay or jitter of individual messages. The burst
size indicates the number of 500 Byte messages that
we enqueued in the source block before starting the
flowgraph. Since all messages are preallocated and
since the message passing interface uses pointers to
reference messages, the size of the message has limited
impact on the results. To shut down the flowgraph, we
also enqueue a shutdown message that is processed by
GNU Radio’s runtime environment. Each data point is
based on 50 runs with 10 repetitions per run, i.e., 500
individual measurements. The error bars in this and
the following figures indicate the confidence intervals
of the mean for a confidence level of 95 %.

As we can see from the plot, the performance scales
worse than linearly with the number of blocks in the
flowgraph. There is, however, is no severe performance
degradation as neither the number of parallel pipes nor
the number of stages per pipe cause a problem, even if
the number of threads largely exceeds the number of
CPU cores (in this case, up to 400 threads on 4 CPU
cores). In particular, we were not able to reproduce
the poor scaling behavior, presented at SDR Developer
Room at FOSDEM 2019,6 which we believe were con-
ducted with an earlier GNU Radio release, containing a
bug that caused blocks to busy-wait for messages. The
performance difference between real-time and normal
priority is, furthermore, only marginal.

Data-Stream Performance

Apart from message passing, we also benchmarked the
data-stream interface with a similar flowgraph topology.
Here, the Source from Figure 1 was a Null Source,

5With wall clock time, we refer to the time that it takes to
execute the function and contrast, for example, the (aggregated)
time that threads were scheduled by the operating system.

6https://fosdem.org/2019/schedule/event/
sdr_equinox/

0 100 200 300 400
Pipes × # Stages

0
10

20
30

40
50

Ti
m

e
(i

n
s)

∼50% improvement

Priority
Normal
Real-Time

Figure 3. Wall clock time required to process 100 × 106 samples
with GNU Radio streaming interface. Pipes and stages are scaled
jointly, i.e., 100 corresponds to 10 pipes and 10 stages.

followed by a Head block, which streamed 100 × 106

floating point numbers (4 Byte each) into the flowgraph.
To focus on the runtime and not the performance of
signal processing blocks, we used Copy blocks in the
pipes, which just copy data from their input to their
output buffer. Each pipe was, furthermore, terminated
by a Null Sink. Like in the previous experiment, we
scaled the number of pipes and stages jointly.

The results for real-time and normal priority are shown
in Figure 3. In this case, we noticed a considerable
difference between priority settings. A setup with 100
blocks, for example, runs approximately 50 % faster
with real-time priority than with normal priority. This
was an unexpected result, since we assumed that real-
time priority asserts that GNU Radio threads are sched-
uled before any other threads of the operating system.
However, given the fact that we use a CPU set exclu-
sively for GNU Radio, there are no priority issues.

5. Linux Task Scheduling

The deviating results can be explained by the fact that
Linux uses different schedulers for different thread
types. Figure 4 shows the scheduler hierarchy of a mod-
ern Linux system. It comprises three classes, which are
(in decreasing priority): the Deadline scheduler, the
Real-Time scheduler, and the normal scheduler. Sched-
ulers with a lower priority are generally only run when
higher priority schedulers have no active threads. Yet,
the normal Linux scheduler gets a guaranteed run time
(typically 50 ms per second) to avoid that defective

https://fosdem.org/2019/schedule/event/sdr_equinox/
https://fosdem.org/2019/schedule/event/sdr_equinox/

Benchmarking and Profiling the GNU Radio Scheduler

Deadline

Real-Time
FIFO and Round-Robin

Normal
Batch and CFSH

ig
he

rP
ri

or
ity

Figure 4. Linux process scheduling hierarchy.

real-time threads lock-up the system. The Deadline
scheduler is used for sporadic real-time tasks with hard
deadlines and deterministic run time, which is of lim-
ited interest for SDR.

When we configure real-time priority with GNU Radio,
the threads are handled by the real-time scheduler.
Real-time threads have a priority between 1 (high)
and 99 (low), similar to the nice value. However, with
the real-time scheduler, threads with a higher priority
do not get more CPU time but are always processed
before threads with a lower priority. The real-time
scheduler supports two scheduling algorithms: Round
Robin and FIFO. With FIFO, threads are processed
in a first-in-first-out manner until they are done or a
task with a higher priority gets active. The round robin
scheduler, in turn, schedules task with similar priori-
ties for a fixed time slice (by default 100 ms). While
GNU Radio supports both algorithms, it uses the round
robin scheduler by default.

The normal scheduler supports two algorithms: the
Completely Fair Scheduler (CFS) and a batch sched-
uler. The latter was added to handle CPU-intensive
background tasks efficiently. Threads from this sched-
uler are only run if no other threads are active on the
system. The main advantage of a dedicated batch
scheduler is (1) it does not interfere with interactive
tasks and (2) it offers low overhead, since threads
can be scheduled longer, which minimizes context
switches. The CFS is the default scheduler, which is
used for the vast majority of tasks. It is by far the most
complex algorithm that tries to balance between inter-
activity, efficiency, and fairness. Each active thread
gets CPU time depending on past CPU time, the num-
ber of threads in the run queue, and its nice value.

Considering GNU Radio, the performance difference
between normal and real-time priority can be explained

0 1 2 3 4 5 6
Time (in s)

100

101

102

103

104

105

T
hr

ea
d

In
te

rr
up

tio
ns

Priority
Normal
Real-Time

Figure 5. Cumulative number of thread interruptions over time of
a flowgraph with ten pipes and ten stages.

by the CPU time that each thread is assigned, once
it is scheduled. The round robin scheduler always
schedules a block for 100 ms, which might be enough
to process all samples. The CFS, in turn, assigns CPU
time depending on the number of active threads, i.e.,
the number of GNU Radio blocks that have samples
in their input queues and space in their output queues.
The CPU time might, therefore, be much smaller and a
block might not be able to process all samples before
it is interrupted. Since the block is not finished, it also
did not advance the pointers of its ring buffers, so that
adjacent blocks might only be able to process a small
amount of samples or are not able to continue at all.
Overall, this might result in less optimal processing
sequences.

6. Profiling the Scheduler

To better understand the impact of the scheduler, we
use the Linux perf tool to profile the Linux scheduler
while the flowgraph is running. While GNU Radio
exports per block performance statistics through Per-
formance Counters (Rondeau et al., 2013b), they focus
on performance bottlenecks and efficient block imple-
mentations. For profiling the scheduler, they are of
limited use. In the first experiment, we focus on the
impact of thread interruptions by the scheduler. To
this end, we record the Linux tracepoint sched_switch,
which is called when the scheduler switches between
tasks. Among other things, the tracepoint logs a times-
tamp, the thread that is scheduled out, and the previous
state of the thread, i.e., if the thread was interrupted or

Benchmarking and Profiling the GNU Radio Scheduler

[2,
4)

[8,
16

)

[32
,64

)

[12
8,2

56
)

[51
2,1

02
4)

[20
48

,40
96

)

[81
92

,16
38

4)

Produced Samples per Call

0
10

00
20

00
30

00
40

00
O

cc
ur

re
nc

es
(i

n
1k

)

Priority
Normal
Real-Time

Figure 6. Distribution of the number of samples that were produced
in one call to general_work by a flowgraph with ten pipes and
ten stages.

if it entered a sleep state. The first case means that the
block execution was interrupted while processing sam-
ples, the latter case means that the block processed all
samples and waits for upstream or downstream blocks
to provide more samples or free buffer space, respec-
tively. We profile a flowgraph with ten pipes and ten
stages that processes 100 × 106 floating-point num-
bers, similar to the previous experiments. Note that,
while a tracepoint is a low-overhead method to pro-
file Linux internals, adding a probe inevitably changes
the system and with it the result. We, therefore, took
care to minimize the impact of the profiler and made
sure that the perf kernel buffer is large enough to fit all
events from one run, i.e., perf does not have to copy
data to disk while the flowgraph is running.

The cumulative number of thread interruptions over
time is plotted in Figure 5. We can see a huge dif-
ference between normal and real-time priority. (Note
the logarithmic y-axis.) As expected, the CPU time
provided by the real-time scheduler is nearly always
enough to process all samples. The CFS scheduler, in
turn, often interrupts blocks while processing samples.

Since we assumed that this can lead to suboptimal
scheduling sequences, we also compare the distribu-
tion of the number of items that are processed by
block::general_work. Here, we use uprobes,
i.e., dynamic user space probes that can be attached
to shared library functions. While uprobes can also
be instrumented through perf, we decided to use BPF

Compiler Collection (BCC)7, which provides an inter-
face to Linux extended Berkeley Packet Filter (eBPF),
a more recent framework to collect performance data.
Its main advantage over perf is that it allows to process
and aggregate data while it is recorded, i.e., we do not
have to log raw event data. We hook a probe to the re-
turn of general_work and log the number of items
that were produced per call.

The distribution over a period of 20 s is depicted in Fig-
ure 6. It shows that the default CFS scheduler produces
much more often a small number of samples, which
can cause considerable overhead, especially since ev-
ery call of to work() requires accessing shared data
structures. Overall, these experiments show that the
scheduler can have a significant impact on the perfor-
mance of a flowgraph. In particular, short time slices
cause blocks to be scheduled out while in work, which
results in inefficient workloads for GNU Radio blocks.

7. Optimizing Flowgraphs

We have already seen that the operating system sched-
uler can have a major impact on the performance of
a flowgraph. In addition to that, there are further
GNU Radio optimizations with a potential impact on
the runtime performance. The most interesting ones
in this context are the buffer size and the maximum
number of samples that are produced in one call to
block::general_work. To optimize locality and
benefit from CPU caches, an ideal scheduler would run
a block to produce samples corresponding to the cache
size, before running the downstream block on the same
CPU core. By adjusting the buffer size and the max-
imum number of samples that are produced, we can
limit the data that is produced in one call to work to
the cache size. While this gives downstream blocks the
chance to run, we cannot guarantee that these blocks
are scheduled back to back on the same CPU core.

Even though a new general purpose scheduler is out of
the scope of this paper, we wanted to get an idea of the
potential that manual optimizations and an advanced
scheduler could provide. To this end, we consider a
simple flowgraph topology that is easy to optimize
manually. For a more complex general flowgraph, this
would not easily be possible. As shown in Figure 7, we
create four independent branches that forward samples

7https://github.com/iovisor/bcc

https://github.com/iovisor/bcc

Benchmarking and Profiling the GNU Radio Scheduler

Stages

Copy SinkCopy...Source Head

Copy SinkCopy...Source Head

... 2 more similar branches

Figure 7. Simple flowgraph topology, used to benachmark through-
put of different optimizations.

through a given number of stages. In each branch, the
samples are generated from a Null Source. The number
of samples that traverse a branch is limited by a Head
block, which forwards 1 × 109 samples. Given the
simple flowgraph layout, it is straightforward to select
better parameters. We consider three configurations:

• Default: The default configuration of
GNU Radio, i.e., no CPU affinity, a buffer
size of 64 kByte, and a maximum of 100 000
items that are produced in one call to work.

• Manual Optimization: We pin the blocks of a
branch to the same CPU core, adjust the buffer to
twice the size of the L1 cache (since GNU Radio
tries to fill 50 % of the buffer), and configure a
maximum number of output items corresponding
to the size of the L1 cache.

• Scheduler Emulation: We emulate a more ad-
vanced scheduler by replacing the copy operations
with a single block that performs similar copy op-
erations internally. It copies chunks of samples
sequentially through buffers, with the chunk size
corresponding to the size of the L1 cache.

Note that also the third configuration is not strictly op-
timal, since the source and head blocks are still sched-
uled independently. Copying is, therefore, interrupted
randomly in favor of source and head blocks, which
might thrash the cache. The sink block is no problem
here, since it does not perform any memory operations.

Again, we measure the run time of the flowgraph, by
timing the top_block::run() function to exclude
flowgraph setup. Like in the previous experiments, we
allocate four CPU cores exclusively to GNU Radio.
Furthermore, we use real-time priority for all config-
urations and disable compiler optimizations for our

5 10 15 20
Number of Stages

0
5

10
15

20
25

Ti
m

e
(i

n
s)

Slope: 1.1
Slope: 0.9

Slope: 0.4

Default Configuration
Manual Optimizations
Scheduler Emulation

Figure 8. Flowgraph run time depending on the number of blocks
for different optimization levels. The slope is calculated with a
linear regression.

custom copy block to make sure that no copy opera-
tions are optimized out.

The results of the experiment are shown in Figure 8,
where we plot the run time against the number of stages.
Two things are interesting in this plot: First, we can
see that all configurations scale linearly, even for up to
20 stages per CPU core. Second, while manual opti-
mization provides a slight advantage over the default
configuration, a much bigger benefit is promised by
a more advanced scheduler. The improvement is the
combined effect of (1) less synchronization overhead,
since there is only one thread for all copy operations,
and (2) better cache utilization, since threads are not
scheduled in random order.

8. Conclusion

In this paper, we have benchmarked the throughput
of the GNU Radio runtime environment, in particu-
lar, its scaling behavior for a large number of blocks.
We have shown that both message passing and buffer-
based flowgraphs scale well with the number of blocks.
This is a positive results, given the concerns that the
performance of the current implementation could di-
minish when the number of blocks exceeds the number
of CPU cores. We have, furthermore, seen that the op-
erating system scheduler can have a major impact and
switching from the default to the real-time scheduler
can reduce the runtime by up to 50 %. Yet, we have
also shown the limitations of the current implemen-
tation by emulating a more advanced scheduler for a

Benchmarking and Profiling the GNU Radio Scheduler

simple flowgraph topology. The fact that this configu-
ration scales linearly with a much lower slope gives an
impression of what could be possible.

Acknowledgment

This work has been supported by the DFG within SFB
1053 MAKI. It has been performed in the context of
the LOEWE center emergenCITY.

References

Bloessl, Bastian. A Physical Layer Experimentation
Framework for Automotive WLAN. PhD Thesis
(Dissertation), Paderborn University, June 2018.

Bose, Vanu G. Design and Implementation of Software
Radios using a General Purpose Processor. PhD
Thesis, Massachusetts Institute of Technology, April
1999.

Braun, Martin, Pendlum, Jonathan, and Ettus, Matt.
RFNoC: RF Network-on-Chip. In 6th GNU Radio
Conference, Boulder, CO, September 2016. GNU
Radio Foundation.

Gomez-Miguelez, Ismael, Garcia-Saavedra, Andres,
Sutton, Paul D., Serrano, Pablo, Cano, Cristina, and
Leith, Doug J. srsLTE: An Open-Source Platform
for LTE Evolution and Experimentation. In 10th
ACM International Workshop on Wireless Network
Testbeds, Experimental evaluation and Characteri-
zation (WiNTECH 2016), New York City, NY, Oct
2016. ACM.

Hitefield, Seth and Clancy, T. Charles. Flowgraph
Acceleration with GPUs: Analyzing the Benefits of
Custom Buffers in GNU Radio. In 6th GNU Radio
Conference, Boulder, CO, September 2016. GNU
Radio Foundation.

Khattab, Ahmed, Camp, Joseph, Hunter, Chris, Mur-
phy, Patrick, Sabharwal, Ashutosh, and Knightly,
Edward W. WARP: A Flexible Platform for Clean-
Slate Wireless Medium Access Protocol Design.
ACM SIGMOBILE Mobile Computing and Commu-
nications Review, 12(1), Jan 2008.

Mitola, Joseph. The Software Radio Architecture.
IEEE Communications Magazine, 33(5), May 1995.

Plishker, William, Zaki, George F., Bhattacharyya,
Shuvra S., Clancy, Charles, and Kuykendall, John.
Applying Graphics Processor Acceleration in a Soft-
ware Defined Radio Prototyping Environment. In
22nd IEEE International Symposium on Rapid Sys-
tem Prototyping (RSP), Karlsruhe, Germany, May
2011. IEEE.

Rondeau, Thomas W. On the GNU Radio Ecosystem.
In Holland, Oliver, Bogucka, Hanna, and Medeisis,
Arturas (eds.), Opportunistic Spectrum Sharing and
White Space Access: The Practical Reality. Wiley,
May 2015.

Rondeau, Thomas W., McCarthy, Nicholas, and
O’Shea, Timothy. SIMD Programming in GNU
Radio: Maintainable und User-Friendly Algorithm
Optimization with VOLK. In SDR-WInnComm
2013, Washington, DC, January 2013a. Wireless
Innovation Forum.

Rondeau, Thomas W., O’Shea, Timothy, and Goergen,
Nathan. Inspecting GNU Radio Applications with
ControlPort and Performance Counters. In ACM
SIGCOMM 2013, 2nd ACM SIGCOMM Workshop
of Software Radio Implementation Forum (SRIF
2013), Hong Kong, China, Aug 2013b. ACM.

Sklivanitis, George, Gannon, Adam, Batalama,
Stella N., and Pados, Dimitris A. Addressing Next-
Generation Wireless Challenges with Commercial
Software-Defined Radio Platforms. IEEE Commu-
nications Magazine, 54(1), Jan 2016.

Stewart, Gordon, Gowda, Mahanth, Mainland, Geof-
frey, Radunovic, Bozidar, Vytiniotis, Dimitrios, and
Agullo, Cristina Luengo. Ziria: A DSL for Wireless
Systems Programming. In 20th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, Istanbul, Turkey,
3 2015. ACM.

Tan, Kun, Liu, He, Zhang, Jiansong, Zhang, Yong-
guang, Fang, Ji, and Voelker, Geoffrey M. Sora:
High Performance Software Radio Using General
Purpose Multi-core Processors. Communications of
the ACM, 54(1), January 2011.

