
Multi-Vehicle Map Fusion using GNU Radio

E. Akin Sisbot, Augusto Vega, Arun Paidimarri, John-David Wellman, Alper Buyuktosunoglu,
Pradip Bose {easisbot, ajvega, apaidima, wellman, alperb, pbose}@us.ibm.com

IBM Research, Yorktown Heights, NY

David Trilla david.trilla@bsc.es

Barcelona Supercomputing Center, Barcelona, Spain

Abstract

In this paper, we present a representa-
tive open-source application for fully/semi-
autonomous vehicles operating as a collabo-
rative swarm using GNU Radio. This appli-
cation is the driver of the DARPA-sponsored
EPOCHS project led by IBM, which fo-
cuses on agile heterogeneous system-on-a-
chip (SoC) development. The EPOCHS Ref-
erence Application (ERA) incorporates local
sensing, creation of occupancy grid maps,
vehicle-to-vehicle (V2V) communication of
grid maps between neighboring vehicles us-
ing GNU Radio-based dedicated short-range
communication (DSRC), and map fusion to
create a joint higher-accuracy grid map.

This paper analyzes the GNU Radio-based
DSRC transceiver workload on a Xilinx Zynq
UltraScale+ MPSoC, identifying computa-
tion kernels for software and/or hardware ac-
celeration. In particular, we present opti-
mizations of Viterbi decoding and complex
exponential that result in a measured 5.4×
performance improvement over a CPU-only
baseline, with projections of a fully-optimized
version of this hardware accelerator showing
significantly higher benefits.

1. Introduction

Recent advances in AI and sensors provide greater ca-
pabilities for autonomous vehicles, but require more
powerful hardware processing support. Many chip
manufacturers continue to develop faster and/or more
efficient hardware solutions to help accelerate machine
learning and data processing. Most of this devel-

Proceedings of the 1 st GNU Radio Conference, Copyright
2016 by the author(s).

opment, however, is ad hoc design, not systemati-
cally driven from the application to the silicon design.
The Efficient Programmability Of Cognitive Heteroge-
neous Systems (EPOCHS) project focuses on novel
methodologies to enable rapid development of pro-
grammable, heterogeneous system-on-a-chip (SoC) de-
signs for ultra-efficient deployment and execution of a
target application domain.

Autonomous vehicles and advanced driver assistance
systems (ADAS), through their suite of sensors, are ex-
pected to significantly improve driving safety and dra-
matically reduce traffic accidents. Combining the on-
board sensor capability with vehicle-to-vehicle (V2V)
communications, autonomous vehicles become even
more aware of their environment. Recognizing the
benefits, V2V communication efforts are being driven
by many major automotive manufacturers, including
BMW, General Motors, Daimler, Honda, and Toyota.
The current solution adopted by these manufactur-
ers is through dedicated short-range communications
(DSRC), a variation of IEEE 802.11 Wi-Fi standard
operating in the 5.9-GHz band.

In the specific context of autonomous cars, the addi-
tion of V2V connectivity can provide significant ben-
efits. One of the most critical challenges that the au-
tomotive industry faces these days, for example, is re-
lated to the rate of false predictions while the car is
driving and perceiving the environment. False pre-
dictions (either false negatives or false positives) can
be alleviated through the use of arrays of sensors to
build redundancy into the on-board system; however
this approach can be economically inefficient and will
not necessarily solve the problem. In cases where the
vehicle is poorly positioned for any on-board sensor to
reduce the false prediction rate, adding sensors cannot
effectively reduce these errors. V2V communications
can enable swarm-based perception use cases, where
vehicles make use of other vehicles’ sensor data (i.e.
other perspectives) to effectively reduce false predic-
tion rates, as Figure 1 depicts. Even though individ-

Multi-Vehicle Map Fusion using GNU Radio

ual vehicles may have a relatively poor vision of the
surrounding environment (due, for example, to bad
weather conditions or line-of-sight occlusion), the real-
time fusion of their local views can result in more reli-
able navigation. This remark is further supported by
observations from the swarm robotics domain, where
several works have shown that the successful comple-
tion rate of a task by a group of robots improves with
the number of robots in the swarm. Object recog-
nition accuracy, for example, increases significantly
when performed in a cooperative manner and with a
relatively large number of robots involved in the pro-
cess (Giusti et al., 2012). Similarly, navigation de-
lays are cut down when the navigation activities are
conducted cooperatively by a robot swarm (Ducatelle
et al., 2014). We anticipate the emergence of a similar
behavior in groups of vehicles when the proper swarm-
ing elements are in place.

To guide the development of a heterogeneous SoC, we
developed an open-source reference application called
ERA (EPOCHS Reference Application) that models
a set of connected autonomous/semi-autonomous ve-
hicles operating in a common environment. Each au-
tonomous vehicle in ERA uses its on-board sensors to
generate local occupancy grid maps, which it also com-
municates to other nearby vehicles using DSRC. When
a vehicle receives occupancy maps from its nearby
neighbors, it merges the received ones with the locally-
generated occupancy maps, expanding the scope and
increasing the accuracy of this vehicle’s perception. A
vehicular system could use a dedicated DSRC modem
for the V2V communications such that ERA would
only need to implement the higher layers of the com-

Number of
vehicles in
the swarm

swarm-based

Sensing and
computation
capabilities

Fa
ls

e
pr

ed
ic

tio
ns

car-centric

Fa
ls

e
pr

ed
ic

tio
ns

Figure 1. Increasing the on-board sensing and computation
capabilities do not necessarily reduce false predictions by
the same factor. V2V communication and swarm intelli-
gence are expected to alleviate this problem.

munication stack. However, we propose to integrate
the computation from the entire modem (PHY and
MAC layers) into the main SoC. This would provide
opportunities for maximal hardware reuse and more
optimal load balancing across accelerators and general
purpose cores in the chip. In this regard, ERA incorpo-
rates an open-source DSRC IEEE 802.11p transceiver
implemented using GNU Radio (Bloessl, 2018; Bloessl
et al., 2018). The continuous stream processing re-
quired for the protocol presents a key challenge for real
time operation, especially within a power-constrained
embedded SoC.

This paper describes ERA, our local sensing and V2V
communications application suite, and presents a novel
system-level performance evaluation methodology that
we apply to ERA. We illustrate this methodology with
an analysis of the V2V communication subsystem, in-
cluding performance hot-spots, and the potential of
various acceleration schemes to improve the perfor-
mance and efficiency of the implemented system.

2. EPOCHS Reference Application

This work is conducted as part of our project, spon-
sored by the DARPA MTO Domain-Specific System
on Chip (DSSoC) Program (DSSoC, 2019). In this
context, ERA (ERA, 2019) serves as the testbed and
driving application domain for the development of
our domain-specific SoC design methodology and as-
sociated technologies. Specifically, ERA is an open-
source application that enables multi-vehicle (cooper-
ative) sensor fusion in future autonomous/connected
cars, using elements of computer vision and vehicle-
to-vehicle (V2V) communications. It models an au-
tonomous vehicle that incorporates an on-board sens-
ing and mapping fabric for multi-modal sensing and
mapping. ERA extends these local perception capabil-
ities with a communication and consensus fabric con-
sisting of V2V communications and multi-vehicle map
fusion. The ultimate goal is to explore and demon-
strate the improvement in perception capability by
sharing information with other vehicles, and partici-
pating in collaborative swarm intelligence.

2.1. System Overview

ERA is built using the Robot Operating System
(ROS) (Quigley et al., 2009) middleware and GNU
Radio (GNU Radio Foundation, Inc., 2019) to imple-
ment the V2V software defined radio. The overall ar-
chitecture of ERA for two agents in sufficiently close
proximity to communicate with one another is shown
in Figure 2. The major components of ERA are the
following:

Multi-Vehicle Map Fusion using GNU Radio

Figure 2. Overall ERA Architecture.

(a)

(b)

Figure 3. Gazebo simulations for vehicles 1 and 2.

2.1.1. Gazebo

We use Gazebo (Koenig & Howard, 2004) to simulate
the sensors feeds, the position of the vehicles (agents),
and the physics of the world. The Gazebo simula-
tor creates sensor data, and makes it available to the
overall system. In our implementation each agent is
equipped with an RGB-D camera. Gazebo generates
a color image along with a depth image based on the
environment and agent’s position. Figure 3a shows
a sample simulated environment for vehicle 1. In this
scenario, the current vehicle is represented by the black
circle in the middle of the screen. The remote vehi-
cle (vehicle 2) is represented by the blue box. Fig-
ure 3b shows the simulated environment for vehicle 2,
where the local vehicle (vehicle 2) is represented by

(a)

(b)

Figure 4. Occupancy grids created by vehicles 1 and 2.

the black circle whereas the remote vehicle (vehicle 1)
is represented by the blue box. The simulated vehicles
(agents) are equipped with simulated RGB-D cameras
(such as Microsoft Kinect, or Intel Realsense), which
provide point clouds as output. We then transform the
point clouds to 2D laser scans by projecting them onto
the ground.

2.1.2. Costmap 2D

Costmap 2D is a ROS package in the 2D Navigation
Stack (ROS, 2019). This package builds occupancy
grid maps centered around the agent using 2D laser
scans as input. An occupancy grid map is a m×n
matrix where each element represents a square region
sized r. Thus the overall size of the occupancy grid

_! .. ,

802 J 1p

~ j_
USRP USRP

2D Map

•
•

I

•

Multi-Vehicle Map Fusion using GNU Radio

Transmitter
Receiver

Figure 5. GNU Radio-based 802.11p transceiver flowgraph based on (Bloessl, 2018; Bloessl et al., 2018).

is m×n×r m2. The resolution and size of the grid
depend on the sensor’s specifications and environment
characteristics.

Each element in the occupancy grid has one of the
following values:

• free, a location free from any obstacles;

• occupied, a location occupied by an obstacle;

• unknown, a location the sensor doesn’t cover.

The costmap calculated from the simulated environ-
ment for vehicle 1 is shown in Figure 4a and for vehicle
2 in Figure 4b.

2.1.3. ERA Message Builder

This block is in charge of packing the necessary in-
formation in a message and preparing it for transmis-
sion. The messages exchanged between vehicles in-
clude each vehicle’s local occupancy grid and its pose
(position and orientation) information. The informa-
tion is time-stamped, and the ID of the agent is also
attached. Overall, an ERA message is composed of
following data:

• ID, the unique ID of the vehicle;

• timestamp, the time of the sensor data acquisition;

• pose, the position and the orientation of the vehi-
cle at time timestamp;

• occupancygrid, the occupancy grid map;

2.1.4. GNU Radio

This block is in charge of broadcasting ERA messages
using the adopted DSRC IEEE 802.11p protocol. Fig-

ure 5 presents the GNU Radio flowgraph, an open-
source software defined radio implementation of the
IEEE 802.11p standard (Bloessl, 2018; Bloessl et al.,
2018). To reduce the message payload size, ERA ap-
plies LZ4 compression (LZ4, 2019) to the message be-
fore injecting it into the transmission pipeline. Once
the transmission payload has passed through the GNU
Radio transmitter pipeline, we send it to a USRP (Uni-
versal Software Radio Peripheral) device to be broad-
cast over the air.

When a message is received by the receiver’s USRP
device, it passes through the GNU Radio receiver
pipeline, and the subsequent message payload is sent
through LZ4 decompression to recover the original
ERA message.

2.1.5. ERA Message Interpreter

This block parses received ERA messages and makes
the embedded occupancy grid map available to the
overall system. The first time the received vehicle ID
is “seen”, a representation of the remote vehicle is cre-
ated in the Gazebo simulator. Otherwise, the location
of the existing remote vehicle in the simulator is up-
dated.

Figure 6. Occupancy grid map created in vehicle 1.

Multi-Vehicle Map Fusion using GNU Radio

2.1.6. Map Merger

The last process in ERA is the Map Merger, where
the remote map received through DSRC, and the lo-
cal map built by Costmap 2D are merged into a single
occupancy grid of potentially higher accuracy. Map
Merger uses the time stamp to obtain a synchronized
pair of maps, and using the pose information received
in the ERA message, applies the correct transforma-
tion and overlays the local map to the remote one. The
resulting map is an accumulation of the two maps, pro-
viding a larger scope on the world, with greater aggre-
gate information than any individual map. Figure ??
shows the combined map created in vehicle 1.

3. Performance Evaluation of V2V
Communications using GNU Radio

This section focuses on the GNU Radio components
within ERA to identify the most critical (CPU in-
tensive) blocks in the 802.11p transceiver. We use a
Xilinx Zynq UltraScale+ MPSoC (ZCU102, 2019) as
the development platform, featuring a quad-core ARM
Cortex-A53 CPU (1.2 GHz) and an FPGA substrate.
This SoC provides heterogeneous computing resources
along with the programmable logic for rapid architec-
ture exploration. We use Ubuntu 16.04 and GNU Ra-
dio 3.7.9.3 in our evaluation platform.

We create a stand-alone “mini” version of ERA to sim-
plify the evaluation, which consists of transceiver com-
ponents configured in a loop-back mode. Packets are
injected at a specified rate and passed to the trans-
mitter pipeline. The output of this pipeline is routed
back to the receiver pipeline. This approach effectively
simulates the full ERA DSRC transceiver and is exe-
cuted continuously, sending and receiving messages at
a desired rate.

We use the Linux perf (Linux Kernel Organization,
2019) performance analysis tool to monitor perfor-
mance with low overhead, recording the performance
data and the associated location in the program, in
order to ascribe the sample to a given function/code
location. Figure 7a shows the execution time frac-
tion per GNU Radio block. The following blocks ac-
count for 60% of the total execution time: sync short,
frame equalizer, decode mac, and sync long.

Figure 7a also shows that each of these four blocks
consume more than 14% of the total execution time,
and all of them belong to the receiver pipeline. Fig-
ure 7b illustrates some of the underlying functions in
the GNU Radio 802.11p pipeline that take more than
2% of the DSRC workload execution time. Functions
in this figure are different from the blocks shown in

Figure 7a — functions are smaller than blocks, and a
GNU Radio block can make calls to multiple functions.
Similarly, multiple blocks can make calls to the same
functions.

The most time consuming functions from Figure 7b
are cexpf and viterbi butterfly2, taking 32% and 11%
of the execution time, respectively. In considering the
most time consuming blocks of the DSRC applica-
tion, we note that three different blocks use cexpf :
sync short2, sync long3 and frame equalizer. Simi-
larly, both the decode mac and frame equalizer blocks
use the viterbi butterfly2 function — however the con-
tribution to execution time of the viterbi butterfly2
function in frame equalizer is negligible (less than
0.1%). Given that these functions (cexpf and
viterbi butterfly2) comprise approximately 43% of the
total DSRC application run-time, we determine that
these two are the best candidates for explicit acceler-
ation.

3.1. Throughput Optimization Opportunities

As indicated in the previous section, the most time
consuming GNU Radio blocks belong to the receiver
— specifically, the cexpf and viterbi butterfly2 func-
tions called from them. Compared to the transmitter
(where frames can be pre-computed before they are
streamed to the radio), the receiver must keep pace
with the incoming data rate to avoid packet losses.
In addition, the vehicle will transmit one message but
can potentially receive N messages per time period
(where N is the number of nearby cars) and thus the
stressor is on the worst-case portion of the receiver’s
performance. More collaboration (i.e. more received
inputs) per time period means better decision making
and better collaborative intelligence.

In order to assess the acceleration opportunities of
the receiver pipeline, we replace all the calls to
cexpf and viterbi butterfly2 with “dummy” (empty)
ones. Specifically, these calls just return proper pre-
computed output without making any computation —
in other words, these are “ideal” calls that take almost
no time. The goal is to determine how much effort
should be dedicated to accelerating each part of the
code, by indicating the level of acceleration achievable
for the overall system.

Figure 8 shows the throughput when different injection
rates (x-axis) are used. The throughput is measured
by injecting a fixed-content 1500-byte packet into the
transmitter at that rate, and measuring the through-
put of the DSRC pipeline. The baseline (solid orange
line) shows a maximum throughput of 378 kb/s. The
ideal throughput would continue to follow the input

Multi-Vehicle Map Fusion using GNU Radio

(a) Transceiver blocks. (b) Transceiver functions.

Figure 7. Execution time fraction.

rate (dashed dark blue line). The other lines in the
figure show projections of the throughput when ideal
versions of the cexpf and viterbi butterfly2 functions
are used. For readability, we limit the projections
to cases where each function is singly accelerated to
near-zero computational effort, and then both in con-
cert. These results therefore identify an upper bound
on the maximum performance that can be achieved by
accelerating these functions, which in this case reaches
slightly over 600 kb/s. Also, the optimization of cexpf
yields a better performance improvement than the op-
timization of viterbi butterfly2, and the combination of
both optimizations yields the highest return.

Figure 8. Performance throughput at different input rates,
comparing different (ideal) optimizations for the two most
time consuming functions.

4. Acceleration Alternatives

Section 3.1 establishes the upper bound on the max-
imum performance that can be obtained by acceler-
ating the cexpf and viterbi butterfly2 functions. This
section moves on to determining the actual, realizable

performance acceleration alternatives for the adopted
Zynq UltraScale+ MPSoC. We specifically consider
vector and FPGA implementations, which are dis-
cussed next.

4.1. Understanding functionality

The cexpf function is a call to the standard C math
library that computes complex base-e exponentials.
Given a complex input a + bi, the cexpf function re-
turns the value r = ea+bi. The result of this opera-
tion can be computed using Euler’s formula ea+bi =
ea ∗ (cos(b) + sin(b)i). The computation of the sine
and cosine functions can similarly be performed by
some number of steps (determined by the desired preci-
sion) of well-known Taylor’s expansions (e.g. sin(x) =
x− x3/3! + x5/5!− x7/7! + ...).

The Viterbi decoder (Viterbi, 1967) uses a software im-
plementation of the Viterbi algorithm to decode con-
volutionally encoded data. In our case, it operates on
a convolutional code with constraint length of K = 7
and rate = 1/2 1. The viterbi butterfly2 function per-
forms a butterfly operation, the basic Viterbi decoder
operation.

4.2. Vector Implementations

We use vector implementations of the cexpf and
viterbi butterfly2 functions using native ARM NEON
calls (NeonLib, 2019). We initially considered the pos-
sibility of using the Vector-Optimized Library of Ker-
nels (VOLK) (VOLK, 2019), but its ARM implemen-
tation does not yet include several operations (like sine
and cosine, used in cexpf). Although we could have

1Used in some BPSK, QPSK and 16-QAM modes of
IEEE 802.11p.

18%

16%

14%

l 12%
<II
E 10%
;=
C:
0 8%
:;:;

il 6% <II

~
4%

2%

0%

1200

1000

I 800

"'
ll.
~

600

" :,

5 400

0

200

11111111•••••• ----------- -

- Ideal Throughput

... Ideal Viterbi and Cexpf

- Ideal Cexpf

__. Ideal Viterbi

- Baseline Throughput

200 400 600 800 1000 1200

Input Data Rate {kb/s)

35%

30%

~
25%

<II
E 20%
;=
C:
0 15% :;:;
a
~ 10% UJ

5% I ••..

Multi-Vehicle Map Fusion using GNU Radio

implemented these kernels in VOLK, we decided to
rely on ARM NEON due to time limitations.

4.3. FPGA Implementations of cexpf

The cexpf function of a + bi can be computed by
ea ∗ (cos(b) + sin(b)i). We implement a dual-datapath
pipeline in the programmable logic of our Xilinx Zynq
UltraScale+ MPSoC that computes ea and (cos(b) +
sin(b)i) in parallel, and multiplies them to generate
the full ea+bi output. Figure 9 shows the block design
of the accelerator, which takes a 64-bit input contain-
ing two 32-bit floating-point numbers: the real and
imaginary parts. The imaginary component is sent
to a floating-point unit to convert into the fixed-point
representation required by the CORDIC unit (Xilinx,
2019). The CORDIC unit then computes the sine and
cosine, and returns two fixed-point values which are
converted back to 32-bit floating-point values. The
real component is sent through a floating-point unit
that computes its exponent; then the sine, cosine and
real portions are sent to the final multipliers to ob-
tain the result. This is a simple implementation of the
pipeline, using Xilinx components and the base GNU
Radio buffer data interfaces; as such, it does not rep-
resent the full performance advantage possible from a
custom implementation of the same functionality.

Figure 9. Block design of the cexpf accelerator datapath.

With the main pipeline in place, we explore several
implementations for its interface with the CPU. The
Xilinx IPs naturally support direct AXI bus interfac-
ing, allowing the pipeline to be driven directly by the
bus using built-in buffering and back-pressure control.
This provides a means to use the hardware accelera-
tor much like a (distant) functional unit. Xilinx also
supports a variety of other interfacing options that
allow bulk input data transfers, decoupling the data
write and accelerator computation. The three main
approaches that we adopt in this work are:

FIFO Implementation: It uses Xilinx first-in, first-
out (FIFO) buffers to store the accelerator’s inputs
and outputs. In this case, the CPU stores all the in-
put data into the FIFO buffers and signals the pipeline
to start reading/writing input/output values from/to
the FIFO buffers. Once this process is completed,
the CPU copies the data back from the output FIFO

buffers to main memory. The top part of Figure 10
depicts this scheme.

Block RAM Implementation: In this case, the
CPU transfers the input data into the accelerator’s
Block RAM (BRAM), and then signals the pipeline
to start. The output is written back into an out-
put BRAM. Although the CPU still must do explicit
copies to/from the BRAM, it can use more efficient
block memory move operations (rather than single-
item reads and writes). The middle part of Figure 10
depicts this scheme.

DMA Based Implementation: This implementa-
tion adds a DMA engine to the FPGA that directly
moves data to/from the accelerator’s BRAM from/to
DRAM, freeing the CPU from doing this. The bottom
part of Figure 10 depicts this scheme.

Figure 10. Studied complex exponential accelerator inter-
faces: FIFO (top), BRAM (middle), and DMA (bottom).

In this dual-datapath pipeline implementation, it be-
comes critical to equalize the number of stages of
both datapaths in such a way that they contain the
same number of pipeline stages. If the two real- and
imaginary-input datapaths contain disparate numbers
of stages, then the shorter one can expose stalls af-
fecting the performance of the entire accelerator. This
happens because buffers on the shorter pipeline will fill
up waiting for the other datapath to provide its data.

Floati ng-Poi nt Unit:

Floating-Point Unit: CORDICUnit: Floating-Point Unit : Fixed-to -Float Point

Float-to-Fixe d Point Sine&Cosine Fixed-to-F loat Point
Floati ng-Point Unit: B Fixed-to -Float Poin t

Interface ~---- -, Floating- PointUni t :,_ ___ -----i
Exponent

(----------------------,

l \ _____ _

[-----------------------,,

'--------------------------

(--------
CPU

·---=c== ======= ----
FPG;-\

DMA
Engine

HMM

·~--------------------------------------- -"·'/

Multi-Vehicle Map Fusion using GNU Radio

Figure 11. Execution time per operation of different accel-
erator options for the complex exponential function. The
average time is computed using 4096 complex exponential
operations. CPU Baseline shows the original model perfor-
mance. FPGA implementations break execution times into
exposed computation and memory copy overhead for (left
to right) AXI FIFO buffers, FPGA Block RAM memory,
and a DMA engine without and with well-balanced datap-
aths. CPU Vectorized is a NEON SIMD optimized version
of the code, and FPGA DMA Fully Optimized shows a pro-
jection of a more optimized implementation running at 300
MHz with four parallel computation engines and memory-
copy elimination.

As a result, we also implement and evaluate a balanced
datapath in this study.

4.4. Performance Comparison of cexpf
Implementations

Figure 11 shows a performance comparison of the dif-
ferent accelerator implementations of the cexpf func-
tion on a test bench decoupled from the entire applica-
tion. We plot the average execution time to compute
4096 complex exponent operations on random input
data, and break it out into computation time and data
movement overhead. The performance is reported in
CPU cycles sampled at 100 MHz. The baseline is the
standard C math library executed in the ARM CPU,
which requires 37 CPU cycles, with no additional over-
head to move input or output values.

The simple AXI FIFO-based pipeline turned out to be
notably slower than the CPU, at 68 cycles per complex
exponent output, where the actual computation time
was negligible compared to the memory copy overhead.
In this case, the CPU must write each input value
into the same FIFO buffer address (and similar for
reading outputs), requiring each subsequent transfer
to wait for the previous one to complete before the
next transfer can be initiated.

The Block RAM (BRAM) implementation corrected
this problem by providing a span of memory addresses
that can be simultaneously accessed by the CPU to
write inputs or read outputs. As a result, we ob-
tain a significant speedup over the FIFO implementa-
tion, bringing the per-operation execution time down
to about 30 cycles. Note, however, that there is still a
significant data movement overhead in this case.

The next implementation uses the DMA engine, which
is in charge of directly accessing DRAM DDR mem-
ory and feeding the accelerator without CPU interven-
tion. This configuration improves the execution time
to 8 cycles. Examination of the throughput, however,
indicated stalling due to imbalance in the accelerator
pipeline reflecting unnecessary stalls. The correspond-
ing balanced version realizes a performance of 6 cycles
per output (with an effective computation time close
to 1 cycle).

We also consider the performance acceleration from
running a vectorized ARM NEON (NeonLib, 2019)
version of cexpf. This implementation runs entirely
on the ARM core, resulting in an execution time of
5.3 cycles per operation — slightly more efficient than
the DMA implementation and offering a 7× speedup
over the CPU baseline.

The DMA balanced design described above still incurs
memory copy overhead, which is due to the fact that
data has to be first moved into physically addressable
DRAM to allow the DMA engine to access it. Ideally,
we could instead map the workload’s input and output
data to known physical address space and completely
avoid this overhead. We estimate that this single mod-
ification would provide a 33× speed-up, reducing the
per-operation cost from 37 to 1.1 cycles. Implement-
ing this change, however, does require modification of
GNU Radio, and also has security implications that
are outside the scope of this paper.

Further performance optimizations of the FPGA DMA
Balanced design can be achieved by increasing the
width of the AXI bus (from the current 64 bits to 128
or 256 bits) and replicating the accelerator pipeline to
allow multiple parallel computations in the accelera-
tor. A 4-way replication could provide a 4× speedup
for the computational portion of the accelerator, re-
ducing the 1.1 cycles per operation to 0.275 cycles.
Finally, the clock rate of the FPGA can be cranked
up from 100 MHz to 300 MHz (which is a stable AXI
bus frequency) to theoretically achieve an extra 3×
throughput speedup, reducing the overall computation
portion to just about 0.1 cycles per operation. The
FPGA DMA Fully Optimized case in Figure 11 shows
the performance projection when all these optimiza-

40
68

35 • Computation Time

30 • Mem Copy Overhead

25
Qi

~ 20 u

~
u 15

10

I
CPU FPGA FPGA FPGA FPGA CPU FPGADMA

Baseline FIFO BRAM DMA DMA Vectorized Fully
(Balanced) Optimized

Multi-Vehicle Map Fusion using GNU Radio

tions work together.

4.5. Overall Workload Performance Analysis

Once we have estimates of the realistic levels of per-
formance acceleration available from the accelerator
options, we can determine the impact on the overall
DSRC transceiver performance. Figure 12 shows how
the throughput of the application changes when vary-
ing the injection rate similarly to Figure 8, but now us-
ing realistically achievable acceleration speedups mea-
sured from our actual implementations.

Figure 12. Performance throughput of the overall DSRC
transceiver application at different input rates, when real-
istic acceleration implementations are in place.

As shown, the vectorized implementation (Neon
Viterbi + Neon Cexpf) is the one that yields the
best throughput: 470 kb/s for a 1200-kb/s input rate.
Some distance behind that is the actual cexpf FPGA
implementation using DMA engines, offering 415 kb/s.
Recall that the FPGA implementation plotted here
still requires accessing physically-addressed DRAM,
which vastly diminishes the performance gains that
can be obtained. These results provide useful insights
of the kind of accelerators that can provide the highest
benefits for DSRC applications.

5. Conclusion

This work introduces our ERA software suite, which
models intelligent vehicles operating in an open world
and sharing information to enable greater collective
(swarm) insights. Specifically, ERA models intelligent
vehicles using on-board sensors to identify objects in
the nearby locus of their world view, and communi-
cates this information with other in-range vehicles al-
lowing each to form a greater composite world view.

Using ERA, we consider the computing requirements
for an autonomous vehicle workload, and determine

that the vehicle-to-vehicle (V2V) receiver functional-
ity performance is critical to the efficient exchange of
information between in-range vehicles. We develop a
focused V2V workload driver that exercises the GNU
Radio V2V DSRC pipeline within ERA at a pro-
grammable messaging rate, and allows ready investi-
gation of the performance bottlenecks and hot-spots.
In this V2V DSRC implementation, we identify the re-
ceiver task as the critical functionality, and in that two
main functions (Viterbi decoding and complex expo-
nential) that contribute significant performance over-
heads.

Having identified functions that constitute approxi-
mately 43% of the receiver pipeline execution time,
we then consider techniques to accelerate their perfor-
mance, and measure the full receiver pipeline speedup.
We evaluate a simple FPGA implementation of the
complex exponential function with balanced datapath,
which provides 5.4× performance improvement over a
CPU-only baseline. Projections of a fully-optimized
version of this hardware accelerator show that the
computation portion could provide 58× speedup over
the vectorized code, but the performance is currently
constrained by the need for redundant memory copy
(from GNU Radio buffers to physically addressable
memory).

As we progress in our program, we continue to apply
our performance analysis methodology throughout the
full ERA workload, and to identify performance bot-
tlenecks. This process progressively identifies the best
candidates for acceleration, and expresses the perfor-
mance potential of such acceleration in the context of
the full running workload. In this way, we can explore
the full workload performance space, iteratively im-
prove the underlying hardware design, and eventually
settle on a fully optimized SoC implementation.

6. Acknowledgements

This research was developed with funding from the De-
fense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are
those of the authors and should not be interpreted
as representing the official views or policies of the De-
partment of Defense or the U.S. Government. This
document is approved for public release: distribution
unlimited.

References

Bloessl, Bastian. IEEE 802.11 a/g/p transceiver
for GNU radio. https://github.com/bastibl/

gr-ieee802-11, 2018.

I ..
1ii
a:

fJ
" =>

5
0

1200

1000

800

600

- Ideal Throughput

_., Neon Viterbi+ Neon Cexpf

- Neon Viterbi+ DMA FPGA Cexpf

•·•·· Neon Viterbi

~ Neon Viterbi+ VOLK Cexpf

- Baseline Throughput

,,.✓

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/

/

..
/

/

/ __ ___________ .
/~ - 4

400

200

200 400 600 800

Input Data Rate (kb/s)

. .
1000 1200

https://github.com/bastibl/gr-ieee802-11
https://github.com/bastibl/gr-ieee802-11

Multi-Vehicle Map Fusion using GNU Radio

Bloessl, Bastian, Segata, Michele, Sommer, Christoph,
and Dressler, Falko. Performance assessment of
IEEE 802.11p with an open source SDR-based pro-
totype. IEEE Transactions on Mobile Computing,
17(5):1162–1175, May 2018. doi: 10.1109/TMC.
2017.2751474.

DSSoC. DARPA DSSoC Program.
https://www.darpa.mil/program/

domain-specific-system-on-chip, 2019.

Ducatelle, Frederick, Di Caro, Gianni A., Förster,
Alexander, Bonani, Michael, Dorigo, Marco, Mag-
nenat, Stéphane, Mondada, Francesco, O’Grady,
Rehan, Pinciroli, Carlo, Rétornaz, Philippe, Tri-
anni, Vito, and Gambardella, Luca M. Cooper-
ative navigation in robotic swarms. Swarm In-
telligence, 8(1):1–33, Mar 2014. ISSN 1935-3820.
doi: 10.1007/s11721-013-0089-4. URL https://

doi.org/10.1007/s11721-013-0089-4.

ERA. ERA GitHub. https://github.com/IBM/era/,
2019.

Giusti, A., Nagi, J., Gambardella, L., and Di Caro,
G. A. Cooperative sensing and recognition by a
swarm of mobile robots. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems, pp. 551–558, Oct 2012. doi: 10.1109/IROS.
2012.6385982.

GNU Radio Foundation, Inc. GNU radio.
http://www.gnuradio.org, 2019.

Koenig, N. and Howard, A. Design and use paradigms
for Gazebo, an open-source multi-robot simulator.
In 2004 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pp. 2149–2154 vol.3,
Sep. 2004. doi: 10.1109/IROS.2004.1389727.

Linux Kernel Organization. perf: Linux profiling with
performance counters. https://perf.wiki.kernel.org,
2019.

LZ4. Extremely fast compression algorithm.
https://github.com/lz4/lz4, 2019.

NeonLib. Simple ARM NEON optimized sin, cos, log
and exp library. http://gruntthepeon.free.fr/

ssemath/neon_mathfun.html, 2019.

Quigley, Morgan, Conley, Ken, Gerkey, Brian P.,
Faust, Josh, Foote, Tully, Leibs, Jeremy, Wheeler,
Rob, and Ng, Andrew Y. ROS: an open-source robot
operating system. In ICRA Workshop on Open
Source Software, 2009.

ROS. ROS 2D navigation stack.
http://wiki.ros.org/navigation, 2019.

Viterbi, Andrew J. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. In IEEE Transactions on Information
Theory, 1967.

VOLK. Vector-optimized library of kernels.
http://libvolk.org, 2019.

Xilinx. Xilinx LogiCORETM CORDIC IP.
https://www.xilinx.com/products/intellectual-
property/cordic.html, 2019.

ZCU102. ZCU102 evaluation board user guide.
https://www.xilinx.com/support/documentation
/boards and kits/zcu102/, 2019.

https://www.darpa.mil/program/domain-specific-system-on-chip
https://www.darpa.mil/program/domain-specific-system-on-chip
https://doi.org/10.1007/s11721-013-0089-4
https://doi.org/10.1007/s11721-013-0089-4
http://gruntthepeon.free.fr/ssemath/neon_mathfun.html
http://gruntthepeon.free.fr/ssemath/neon_mathfun.html

