
Flowgraph Acceleration with GPUs:
Analyzing the Benefits of Custom Buffers in GNU Radio

Seth D. Hitefield SETH.HITEFIELD@VT.EDU
T. Charles Clancy TCC@VT.EDU

Hume Center, Virginia Tech, 1991 Kraft Dr., Suite 2019, Blacksburg, VA 24060 USA

Abstract
Recently, there have been major improvements
in graphics processing (GPU) hardware, making
it an excellent tool for accelerating large parallel
applications. Some discrete graphics cards can
have thousands of individual cores and reach ter-
aflops of computing power in contrast to a gen-
eral purpose CPU. Since many digital signal pro-
cessing operations are inherently parallelizable
algorithms, GPUs are interesting candidates for
also accelerating software radios.

However, there are a couple of challenges to uti-
lizing GPUs in a software radio framework such
as GNU Radio: specifically, memory manage-
ment and kernel scheduling overhead. The cus-
tom buffer feature being developed for the GNU
Radio runtime helps simplify these issues by al-
lowing blocks to allocate specialized memory
buffers that the runtime manages.

This paper discusses the challenges of integrat-
ing GPUs into applications and explores the ben-
efits of using custom buffers with GPU based
blocks. It presents some performance compar-
isons of several implementations of a very sim-
ple flowgraph that demonstrate the advantage of
using custom buffers and GPUs for acceleration.

1. Introduction
Over the past few years there have been major advances in
graphics processor hardware (GPUs) and software frame-
works that can be used to accelerate many types of general
purpose computing. GPUs can have different form factors
such as an integrated, embedded/mobile system-on-chip,
though the most common package is a discrete PCIe card.
These cards (like NVIDIA’s Titan X) contain thousands of
computing cores (3,584) and reach teraflops of computa-
tional power in a relatively small, power efficient package

Proceedings of the 6 th GNU Radio Conference, Copyright 2016
by the author(s).

(in comparison to the equivalent number of general purpose
CPUs)(NVIDIA, 2016). GPUs are based on the single in-
struction, multiple data (SIMD) architecture and are perfect
for accelerating many applications with highly parallel al-
gorithms and datasets. They have been utilized in many dif-
ferent scientific disciplines, and in fact, many of the world’s
top supercomputers are now powered by GPUs.

Since many operations in digital signal processing (DSP)
applications are inherently parallelizable (like a channel-
izer), they can be mapped to a SIMD architecture. There
has already been significant work investigating flowgraph
acceleration using SIMD hardware extensions available in
many modern general purpose processors. Libraries such
as the Vector-Optimized Library of Kernels (VOLK, 2016)
allow developers to easily integrate these capabilities into
their applications in a portable, platform agnostic way.

While these CPU hardware extensions are very useful, their
capabilities can be limited in comparison to recent GPU
platforms. GPUs’ parallel architecture make them an in-
teresting candidate for accelerating software defined radio
applications, but there are several challenges with integrat-
ing them into existing frameworks like GNU Radio.

This paper will discuss some of those challenges and will
briefly introduce the new custom buffer support being de-
veloped that allows blocks to allocate specialized memory
buffers. The main focus of the paper is analyzing the bene-
fits of using the custom buffer feature to integrate GPUs
into a flowgraph. For example, a GPU using a custom
buffer can significantly increase the overall throughput of
the system without incurring major overhead from addi-
tional memory operations. While the concepts can be ap-
plied to any GPU platform, this paper will have a focus
on embedded, heterogeneous platforms such as NVIDIA’s
Tegra X1 system-on-chip (NVIDIA, Jan. 2015) using the
CUDA framework. Custom buffers are not limited to just
GPUs and can also be useful for integrating other types
of processors (such as FPGAs or DSP co-processors) into
flowgraphs, but that is out of scope for this paper

Section 2.1 briefly discusses VOLK, which is an existing
SIMD acceleration library for GNU Radio. Section 2.2
covers the challenges in integrating GPUs into flowgraphs.

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

Section 3 will give an overview of the custom buffer sup-
port being added to the GNU Radio runtime, and Section
4 presents the performance comparison of VOLK kernel
compared to a GPU implementation. The GPU kernels
(and terminology) used for performance comparisons in
this paper will be using CUDA framework (NVIDIA, Sept.
2015).

2. Background
2.1. VOLK

Most modern CPU architectures support additional hard-
ware SIMD extensions, such as Intel’s SSE and AVX and
Arm’s NEON extensions. These extensions implement
specialized instructions and have minimal overhead other
than some requirements for memory alignment. There is a
learning curve to implementing these extensions, and, once
implemented, they can require significant hand tuning to
optimize an operation.

VOLK is a subproject of GNU Radio designed to sim-
plify the use of SIMD extensions in software radio applica-
tions. It provides an portable, platform agnostic interface
to various SIMD-optimized mathematical operations that
can be integrated into an application. Many core GNU Ra-
dio blocks already use VOLK to accelerate operations on
supported systems.

There are two types of abstraction in VOLK: 1) machines
represent supported architectures, and kernels represent
specific DSP functions (Rondeau et al.). Machines abstract
hardware platforms, which may contain one or more set of
different SIMD extensions; also, newer architectures typi-
cally support the legacy extensions from previous hardware
generations. A kernel consists of multiple proto-kernels:
the optimized implementations of a DSP function for a spe-
cific machine. Dispatchers are automatically generated for
each kernel that allow the runtime system to select and call
the best available proto-kernel. Generic proto-kernel im-
plementations also exist as a fall back if no other proto-
kernel supports the current system. This design provides a
platform agnostic method for integrating SIMD capability
into DSP pipelines.

2.2. CUDA Programming Model

NVIDIA’s CUDA framework provides both a program-
ming model for their GPUs, as well as, the runtime sup-
port for general purpose computing on supported systems
(NVIDIA, Sept. 2015). The programming model addresses
specific concepts of programming GPUs, such as threads,
memory access, and synchronization. A CUDA kernel is
essentially a specialized C function that is executed in par-
allel based on the number of scheduled threads.

While the concept of a thread does not differ much from
a traditional definition, GPU threads are scheduled in a
very different manner than on a CPU. They are executed in
groups of 32 (warps) on a Streaming Multiprocessor (SM),
which could be compared to an individual core of a CPU.
Threads can be organized into a multi-dimensional hierar-
chy composed of blocks and grids to help simplify the map-
ping of a problem to a parallel model. Each grid eventually
gets scheduled to a single GPU and the blocks in the grid
are mapped to the GPU’s individual SMs; blocks are not
split across multiple SMs. The number of cores in each SM
depends on the hardware generation; NVIDIA’s newest ar-
chitectures typically have 128 cores/SM and cards like the
newest Titan X have 28 SMs.

An example of a CUDA kernel is shown in Section A.1.
This kernel is a GPU implementation of the multiply const
block, which multiplies input samples by some constant
value. The cuda kexec() wrapper function shows the re-
quired compiler (NVCC) notation for launching a kernel
using the CUDA runtime.

2.2.1. KERNEL OVERHEAD

Because GPUs have their own execution pipeline separate
from the host, launching a kernel can incur significant over-
head. Many times, the workload for a GPU kernel is so
immense that any overhead from launching kernels is neg-
ligible compared to the overall execution time of the ker-
nel. For a software radio application where latency is a
huge concern, not correctly accounting for this overhead
can significantly reduce the performance of the executing
kernels.

Table 1. Launch overhead for a CUDA kernel
Buffer Size Overhead (µs)

8192 48.7

16384 51.7

32768 50.5

65536 49.9

131072 79.1

262144 146.1

524288 149.1

1048576 183.1

GPUs are capable of handling a significant amount of pro-
cessing, but there is overhead from launching even the most
simple of kernels. For example, on the Tegra X1 platform,
benchmarking multiple kernel launches (multiply const)
showed an that the overhead for each launch ranged from
approximately 50 µs to 180 µs (shown in Table 1) as the
size of the scheduled kernel increased. There were sev-

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

Host

GPU

Null Source Multiply Const Null Sink

Kernel

Me
mc

py
() M

em
cpy()

1 2 3

CUDA

GR Runtime

Figure 1. Example memory management for GPU integration in GNU Radio without custom buffer support: 1) Memory is copied to a
device accessible buffer, 2) a kernel is executed, and 3) the results are copied back to a host buffer.

eral outliers in the timing data, but there was a clear trend
that the launch overhead increased with the buffer size; this
was expected as more kernel threads were being scheduled
to execute. For single kernel launches 50-180µs is negligi-
ble, but the total overhead can significantly increase as the
number of launches increases.

This creates a trade-off between the amount of work to be
accomplished per kernel call and the amount of latency for
the overall system. For example, the default GNU Radio
buffer size (on the Tegra X1) for complex floats is 8,192
samples; the runtime attempts to call work() after half of
the buffer is full. If a kernel were launched for every single
work() iteration, the system would incur major overhead
simply launching kernels. Increasing the amount of work
per kernel reduces the overall number of launches but re-
quires larger memory buffers within the system. In fixed
rate systems (either input or output), larger buffers increase
the overall latency for the entire pipeline; this may not be
an optimal solution when low latency is a operational re-
quirement.

Also, the specific dimensions of the grid and blocks for
each launch can play a role in overhead and overall exe-
cution time of a kernel. If the scheduled dimensionality is
greater than the work available, the runtime can waste time
scheduling threads that will ultimately have no work to ac-
complish.

2.2.2. MEMORY MANAGEMENT

Memory management is also a concern for GPU devel-
opment; when programming with the CUDA framework,
every memory buffer needed must be allocated through
CUDA and not through standard methods such as malloc().
With the current GNU Radio architecture, the runtime is re-
sponsible for allocating and managing the output buffer for
each block. In order to use a GPU within this constraint, a
developer must allocate one or more buffers accessible to

the GPU and copy data back and forth between the GNU
Radio and CUDA buffers (Figure 1). This additional copy
operation can cause huge overhead and greatly reduce the
overall performance of the application.

Handling memory for a discrete GPU can be more com-
plex; in many cases, data must be copied from the host to
the device itself before a kernel can be executed. For appli-
cations with large datasets and no latency requirements, the
optimal solution is copying the entire dataset (or as much
of it as possible) to the GPU before launching a kernel.
However, for applications with latency requirements (like
software defined radio), handling small memory transfers
between the host and device for each work() iteration can
quickly cause significant overhead; this problem would be
further compounded by multiple GPU blocks in a flow-
graph.

The GR-GPU project from the University of Maryland ad-
dressed some of these issues with a new dataflow approach
for integrating GPUs into GNU Radio (Plishker et al.,
2011). Their approach included two new blocks, H2D and
D2H, which were responsible for managing memory trans-
fers from the GNU Radio allocated buffers on the host to
CUDA allocated memory on the GPU. The runtime buffers
allocated (on the host) for each block were used to trans-
fer GPU memory pointers between the other CUDA based
blocks. Other blocks could then use these pointers when
launching kernels without additional memory transfers or
allocating other buffers. This approach would be very use-
ful for consecutive CUDA blocks; once data was initially
copied to device memory, each downstream block could ex-
ecute its kernel without an unnecessary copy to host mem-
ory and back.

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

GPU

Host

Null Source Multiply Const Null Sink

Kernel

cudaHostAlloc()

multiply_const->allocate_upstream_output_buffer()
multiply_const->allocate_output_buffer()

cudaHostAlloc()1

GR Runtime

Figure 2. Example memory management for GPU integration with custom buffers. Buffers are allocated by the block in page-locked,
host memory that is directly accessible by the GPU.

3. Custom Buffers
The main rationale for supporting custom memory buffers
in GNU Radio is allowing blocks to allocate specialized
buffers that will be owned by the block but managed by the
runtime without changing the underlying flowgraph model
presented to developers. A small downside to the GR-
GPU approach is that the input/output pointers passed to
the work() function no longer point to data, but rather point
to a list of GPU pointers. This breaks the current flowgraph
model, which the custom buffer feature avoids; the call to
a block’s work() function passes a pointer to the data no
matter what type of buffer or where it was allocate. There
are several use cases for custom buffers, with GPU accel-
eration being a major example.

An immediate benefit can be seen on platforms with in-
tegrated GPUs such as the Tegra X1. Both the CPU and
GPU share access to global memory, so memory access is
simplified; there is no need to copy data from the host to
the device. However, without the custom buffer feature,
a memory copy would still be required to move data into
a CUDA allocated buffer. With custom buffers, a block
can allocate both its upstream and downstream buffers us-
ing the CUDA framework, from which the corresponding
blocks would write and read. When a downstream CUDA
block’s work() function is called, the block could immedi-
ately launch a kernel without requiring extra memory man-
agement (Figure 2).

Dealing with discrete GPUs is more complex than an in-
tegrated embedded platform, but the custom buffer feature
can also drastically simplify memory management in this
use case. The CUDA framework can allocate page-locked,
host memory (cudaHostAlloc()) that can be accessed from
both the CPU and the GPU. Using this method, an explic-
itly copy from host to device is no longer needed, since
memory is already accessible directly from the device. If a
flowgraph contained multiple, consecutive CUDA blocks,

the first block could read from page-locked memory and
write to another custom buffer allocated on the device’s
global memory. Each successive block can read and write
using device memory until the final block writes back to
another page-locked buffer in host memory.

3.1. Runtime Changes

There were several required changes in the GNU Radio
runtime to enable support custom buffers for blocks. A new
flag MEM BLOCK ALLOC was added to the IO signa-
ture for blocks to inform the runtime they need to allocate
a special buffer. If this flag is passed for either an input
or output signature in the block’s constructor, the runtime
will call the corresponding allocate output buffer() or al-
locate upstream output buffer() functions. An example of
this is shown in Section A.2.

3.2. Single Mapped Buffers

One of the characteristics of the core runtime buffers is
the doubly mapped address space that implements a cir-
cular buffer. This simplifies the runtime code managing the
memory buffers and simplifies implementing features such
as sample history. Implementing the same doubly mapped
memory may not be possible for many use cases. For ex-
ample, the CUDA framework and GPUs themselves do not
support this feature, which makes implementing these cus-
tom buffers more complex.

Since a guarantee of the runtime is that any pointer (and
items to read/write) passed to a work() function will always
be valid, additional support must be added to the buffer to
ensure the scheduler does not accidentally break this re-
quirement.

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

Figure 3. Average throughput of the empty flowgraph (Null
Source → Null Sink) vs. the generic implementation (Null Source
→ Multiply Const → Null Sink). The number of samples = 8192
* multiplier (Power of 2)

Figure 4. GRC example of the C++ test flowgraph

4. Performance
In order to evaluate the overall performance gains of GPU
acceleration with custom buffers, several different imple-
mentations of the same basic flowgraph were compared
by their overall throughput. The maximum throughput is
the main metric being considered simply to determine how
much an application can benefit from GPU acceleration.
All tests were performed on NVIDIA’s Tegra X1 embed-
ded processor (set to maximum performance) that com-
bines a quad-core ARM processor with a 256 core (2 SMs)
Maxwell generation GPU (NVIDIA, Jan. 2015).

The test flowgraph is written in C++ and is very simple,
consisting of a ‘Null Source’, a ‘Multiply Const’, and a
‘Null Sink’ (a GRC representation is shown in Figure 4).
The reasoning for using such a basic flowgraph is removing
all other possible sources of overhead in the system other
than the GNU Radio runtime itself in order to get an accu-
rate comparison of the implementation being benchmarked.
This is not characteristic of a real world flowgraph and is
only designed to demonstrate the benefits of the custom
buffer feature. Factors such as flowgraph back-pressure
and hardware clock rates are not being considered for this
paper, as the goal of these tests is executing as quickly as

Figure 5. Average throughput comparison for different implemen-
tations of the test flowgraph.

possible to compare the maximum possible throughput of
each implementation.

Five different implementations of the test flowgraph were
compared including: a generic implementation, a VOLK
kernel, a CUDA block with a copy between buffers,
the same block with the CUDA kernel disabled, and a
CUDA block using the custom buffers. The generic
implementation consists of a loop that iterates over
the incoming samples and executes a simple multiply;
the VOLK implementation (‘multiply const cc’) uses the
’volk 32fc s32fc multiply 32fc’ kernel that supports the
Tegra X1’s NEON extensions (West et al., 2015). The two
different CUDA implementations were compared to show
the overhead caused by constant memory copies between
the default GNU Radio buffers and a CUDA accessible
buffer. Additionally, the same memory copy CUDA imple-
mentation was tested without actually executing the kernel
to demonstrate the overhead due to the memory manage-
ment alone. Each test flowgraph was benchmarked using
several different buffer sizes to analyze the impact of in-
creasing the work per iteration for the CUDA kernels (Fig-
ure 5). The starting buffer size of each test was 8,192 sam-
ples (default) and the size was doubled for each successive
test, up to a maximum size of 1,048,576 samples (128x in-
crease).

Also, an empty version (null source to null sink) of the
flowgraph was benchmarked to evaluate the maximum
throughput of the system based only on the runtime over-
head. Figure 3 and Table 2 show the throughput of the
empty flowgraph based on the allocated buffer size. These
results show that the overall throughput doubled as the
buffer doubled in size for each successive test. This makes

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

Table 2. Average throughput comparison of the different test implementations (MS/s)

Buffer Empty Generic Volk Memcpy CUDA
Memcpy Buffer

8192 294.47 219.24 237.94 34.57 23.75 59.92

16384 584.25 289.51 312.54 36.14 29.17 125.00

32768 1170.24 356.13 402.25 36.98 28.99 105.01

65536 2348.78 402.11 451.04 37.37 31.86 207.76

131072 4648.74 404.33 440.47 34.67 30.86 417.23

262144 9467.53 332.01 376.00 30.59 29.35 777.45

524288 18945.50 368.08 400.80 31.41 27.84 801.83

1048576 37476.80 373.15 397.04 31.99 29.76 992.77

Figure 6. Comparison of the CUDA block with memcpy() opera-
tions to just the memcpy() overhead.

sense considering that the number of samples produced for
each call to work() should be doubling from the previous
test.

Figure 5 and Table 2 show the comparison of the aver-
age throughputs of the various implementations discussed
above. As expected, the VOLK implementation performed
better than the generic implementation for all buffer sizes;
it averaged about 10% better throughput than the generic
test. Interestingly, both implementations have a maximum
throughput at the 8x buffer size.

The performance of the two CUDA implementations was
very different; the maximum throughput of the first (with
the memory copy) never exceeded 32 MS/s, which is a 90%
drop in performance in comparison to the generic version.
Most of this overhead is due to the memory transfers from
GNU Radio buffers to the CUDA managed buffer and back.
Figure 6 shows the results of executing the same flowgraph

Table 3. Percent speedup over generic implementation

Buffer Size VOLK CUDA
Memcpy Buffer

8192 9% -92% -73%

16384 8% -90% -57%

32768 13% -92% -71%

65536 12% -92% -48%

131072 9% -92% 3%

262144 13% -91% 134%

524288 9% -92% 118%

1048576 6% -92% 166%

with the CUDA kernel both enabled (green) and disabled
(blue). When the kernel is disabled, the maximum through-
put measured was about 37 MS/s; this shows that the dual
memory copies per work() are the cause of the significant
loss of performance.

The CUDA implementation using the custom buffer feature
has vastly better performance. Initially, its performance is
terrible compared to both the generic and VOLK imple-
mentations (73% drop in throughput); this is expected be-
cause of the large number of kernel launches occurring due
to smaller buffer sizes, as previously discussed. A signifi-
cant amount of execution is being spent launching the ker-
nels, which is reducing the execution time available to actu-
ally process the incoming samples. However, as the buffer
sizes and work per kernel increase, the performance of the
custom buffer implementation quickly catches (16x buffer)
and surpasses (32x) the other implementations. The per-
formance of the custom buffer implementation continues
to increase as buffer sizes increase and has a throughput
of approximately 1000 MS/s (166% increase) at the maxi-
mum buffer size tested. Additional tests suggest the perfor-

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

mance continues to increase beyond the 128x buffer size.
Of course, there is a trade-off with the overall latency of
the system; as the buffer size increases, the overall latency
is also increases. Whether this additional latency is accept-
able depends entirely on the specific application.

5. Conclusion
The parallel architecture of a GPU system makes it an in-
teresting candidate for accelerating software radio applica-
tions. However, there are challenges to integrating GPUs
into a DSP pipeline: mainly this includes overhead from
launching kernels and managing memory buffers. If not
correctly accounted for, these issues can result in signifi-
cant overhead that degrades the overall performance of the
system.

The custom buffer feature reduces this complexity and al-
lows for blocks to create specialized buffers that are used
by the GNU Radio runtime without changing the underly-
ing flowgraph model. A GPU implementation of the ‘Mul-
tiply Const’ using custom buffers showed varying perfor-
mance characteristics in comparison to the same generic
and VOLK implementations based on the block’s buffer
size. For small buffer sizes, the large number of kernel
executions caused a 73% drop in throughput; however, as
the buffer sizes increased the CUDA implementation was
able to match and exceed the throughput performance of
the generic implementation by 150%.

Acknowledgements
The authors would like to recognize Doug Geiger and
Johnathan Corgan for their initial work with the custom
buffer feature.

Source Code
As of publication, the custom buffer feature is still under
development in the GNU Radio runtime. Examples and
source code will be released once the feature is fully inte-
grated into the GNU Radio code base.

References
NVIDIA. NVIDIA Titan X Specs, 2016. URL
http://www.geforce.com/hardware/
10series/titan-x-pascal#specs.

NVIDIA. Tegra X1 - NVIDIA’s New Mobile Su-
perchip. Technical report, Jan. 2015. URL
http://international.download.nvidia.
com/pdf/tegra/Tegra-X1-whitepaper-v1.
0.pdf.

NVIDIA. CUDA C Programming Guide. Technical report,
Sept. 2015. URL http://docs.nvidia.com/
cuda/pdf/CUDA_C_Programming_Guide.pdf.

Plishker, W., Zaki, G. F., Bhattacharyya, S. S., Clancy, C.,
and Kuykendall, J. Applying graphics processor accel-
eration in a software defined radio prototyping environ-
ment. In 2011 22nd IEEE International Symposium on
Rapid System Prototyping, pp. 67–73, May 2011. doi:
10.1109/RSP.2011.5929977.

Rondeau, T., McCarthy, N., and O’Shea, T. SIMD
Programming in GNU Radio: Maintainable and User-
Friendly Algorithm Optimization with VOLK.

VOLK. Vector-Optimized Library of Kernels, 2016. URL
https://libvolk.org.

West, N., Geiger, D., and Scheets, G. Accelerating software
radio on arm: Adding neon support to volk. In 2015
IEEE Radio and Wireless Symposium (RWS), pp. 174–
176, Jan 2015. doi: 10.1109/RWS.2015.7129727.

http://www.geforce.com/hardware/10series/titan-x-pascal#specs
http://www.geforce.com/hardware/10series/titan-x-pascal#specs
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://libvolk.org

Flowgraph Acceleration with GPUs: Analyzing the Benefits of Custom Buffers in GNU Radio

A. Appendix
A.1. An Example CUDA Kernel

* CUDA multiply constant kernel *\
__global__ void multiply_const(cuFloatComplex *input, cuFloatComplex *output,

float value, int samples) {
// Get the thread index
int idx = blockIdx.x * blockDim.x + threadIdx.x;
// Make sure the current thread has work
if (idx < samples) {

output[idx].x = input[idx].x * val;
output[idx].y = input[idx].y * val;

}
}

// Wrapper for launching the CUDA kernel.
void cuda_kexec(void *input, void *output, float val, int samples) {

// Launch with 8 blocks of 1024 threads
multiply_const<<<8, 1024>>>((cuFloatComplex*)input, (cuFloatComplex*)output,

value, samples);
cudaDeviceSynchronize();

}

A.2. An Example Block Using Custom Buffers

// This is an example of a block using the custom buffer feature
multiply_const_impl::multiply_const_impl(float p_value, long p_samples)

: gr::sync_block("multiply_const",
gr::io_signature::make(1, 1, sizeof(gr_complex),

gr::io_signature::MEM_BLOCK_ALLOC), // Upstream flag
gr::io_signature::make(1, 1, sizeof(gr_complex),

gr::io_signature::MEM_BLOCK_ALLOC)) // Output flag
{

samples = p_samples;
value = p_value;

}

// Allocates an output buffer for this block (called by runtime)
buffer_sptr multiply_const_impl::allocate_output_buffer(int port)
{

int item_size = this->output_signature()->sizeof_stream_item(port);
block_sptr block_ptr = cast_to_block_sptr(shared_from_this());

// Create the cuda pinned buffer and return it to the runtime
cuda_pinned_sptr buf = make_cuda_pinned(samples, item_size, block_ptr);
return boost::dynamic_pointer_cast<gr::buffer>(buf);

}

// Allocates the output buffer of an upstream block (aka this block’s input buffer)
buffer_sptr multiply_const_impl::allocate_upstream_output_buffer(int port)
{

int item_size = this->input_signature()->sizeof_stream_item(port);
block_sptr block_ptr = cast_to_block_sptr(shared_from_this());
cuda_pinned_sptr buf = make_cuda_pinned(samples, item_size, block_ptr);
return boost::dynamic_pointer_cast<gr::buffer>(buf);

}

