
SigMF: The Signal Metadata Format

Ben Hilburn BHILBURN@DEEPSIG.IO
Nathan West NWEST@DEEPSIG.IO
Tim O’Shea TIM@DEEPSIG.IO
Tamoghna Roy TROY@DEEPSIG.IO

Abstract

The Signal Metadata Format (SigMF) specifies
a way to describe sets of recorded digital signal
samples with metadata written in plaintext, struc-
tured with JSON. SigMF can be used to describe
general information about a collection of sam-
ples, the characteristics of the system that gen-
erated the samples, and features of the signal it-
self. It is designed to be a simple and portable
format that is easily used by memory-limited ap-
plications with real-time requirements and mini-
mal dependencies.

1. Introduction
Sharing sets of recorded signal data is an important part
of science and engineering. It enables multiple parties to
collaborate, is often a necessary part of reproducing scien-
tific results (a requirement of scientific rigor), and enables
sharing data with those who do not have direct access to
the equipment required to capture it. Unfortunately, these
datasets have historically not been very portable, and there
is not currently a widely accepted format for the sharing of
arbitrary metadata attached to recordings of streaming dig-
ital samples. This is the problem that SigMF solves (sig,
2018).

By providing a standard way to describe data recordings,
SigMF facilitates the sharing of data, prevents the ”bitrot”
of datasets wherein details of the capture are lost over time,
and makes it possible for different tools to operate on the
same dataset, thus enabling data portability between tools
and workflows.

Furthermore, SigMF provides a format that is readily us-
able in machine learning. The nature of its design and an-
notation capability make it very simple to use for creating,
labeling, and training machine learning models on record-
ings, which has become a critical area of research in the
field of wireless communications.

Proceedings of the 3 rd GNU Radio Conference, Copyright 2018
by the author(s).

The SigMF specification is readily available, provided un-
der a Creative Commons license, at sigmf.org, and this
paper is not meant to be a re-hash of the details in that doc-
ument. Rather, this paper will discuss the design goals of
SigMF, expand on the major design decisions of the speci-
fication, introduce some of the other options available, and
discuss the future direction of SigMF development.

2. Motivation
While SigMF is generic enough to be used for any record-
ing of a digitized time-series signal, the original motiva-
tion was improving the accessibility of wireless RF signal
recordings. The explosive success of Software-Defined Ra-
dios (SDR) in the early & mid 2000s made it relatively easy
to create digital recordings of RF signals and process them
with software. This gave rise to a large and vibrant in-
dustry of both hardware and software vendors, including
numerous open-source software and hardware projects, en-
abling entirely new approaches for research and engineer-
ing (Akeela & Dezfouli, 2018).

Unfortunately, there never emerged a dominant standard
for these recordings. As a result, recordings made with a
specific software tool or framework have not been easily
portable to others and it is often difficult for many users
to post-process the same dataset and merge the generated
metadata, even using the same software workflow.

The advancing state of SDR technology creates difficul-
ties as well. For example, the Analog-to-Digital Converters
(ADC) available in commodity SDRs are now so fast that
many systems struggle to keep up with the required write-
speed without ”dropping” data (i.e., data is being generated
too quickly to write to disk and the system buffers are full,
so data is lost before it can be stored). The ADCs also pro-
duce data at such rates that creating a recording of even a
few seconds worth of a signal capture is many gigabytes in
size, complicating the storage and sharing of the files.

The topics of storage, portability, and sharing of RF
datasets was a problem posed at the 2017 DARPA Brus-
sels Hackfest (DARPA, 2017). A working group formed
around the discussion, and over the course of the hackfest
laid out the fundamental design principles and an early pro-

sigmf.org


SigMF: The Signal Metadata Format

totype of the SigMF specification.

3. Design Requirements
The original goal of the SigMF effort was to create a stor-
age format for digital recordings. This is different from
a packet format, for example, which is designed for opti-
mal transmission over computer networks, or a data format
that might describe how something is represented while it’s
being processed by a program. A storage format is specif-
ically designed to describe how data is stored and repre-
sented when it has been written to disk and is ”at rest”.

The working group drafted requirements for an ideal solu-
tion to the RF dataset problem, as posed, which became the
design principles behind SigMF. Those principles are:

1. Describes a storage format that maximizes the speed
at which computer programs can both read & write the
recording to/from storage in a streaming fashion.

2. Defines a standard that guarantees the ability to parse
& process a dataset by any program that meets the
specification’s requirements for compliance.

3. Minimizes the requirements (e.g., complexity of code
logic, software dependencies) to read or write a
recording by computer programs that are compliant
with the specification.

4. Provides a method for linking many time-variant
fields to a recording (e.g., recording the location of a
moving receiver or the changing azimuth of a rotating
antenna aperture).

5. Enables the sharing of data without sharing the en-
tirety of the recording (e.g., sharing only a portion of
the metadata without the signal samples).

6. Allows for arbitrary metadata not defined by the spec-
ification.

7. Facilitates easy integration with, and does not pre-
clude use by, existing software tools, frameworks, and
workflows.

8. Represents the metadata in a way that is easily
parseable, searchable, and indexable, including within
a computer database, and that can be easily rendered
in a human-readable & editable form.

9. Can be specified by a standards document that is sim-
ple and easily understandable.

10. Is governed and maintained by an open-source soft-
ware development process.

4. Design Decisions
Based on the requirements above, the working group made
some top-level design decisions.

To maximize the speed at which data can be written to disk,
the ’data’ portion of a SigMF recording is quite simply the
raw data stream - there is no inline metadata or file struc-
ture. This enables a ”writer” program to record informa-
tion as fast as possible, without requiring processing steps
or jumping around on-disk. For a reader, this enables a
program to simply read data off of the disk, in-order, as it
is needed. In many cases, this precludes the need to read
large chunks of data into memory by software applications,
which can be a significant issue on low-SWaP embedded
systems; the data stays on-disk until it is directly needed
for processing. Since the data can be represented on-disk
with the same type and format that it is represented with
in-memory, no data formatting is required to load & store
- the user can actually directly map the SigMF recording
on-disk to memory.

The SigMF specification defines what it means to be ”com-
pliant”, both for applications and for a SigMF recording.
This is done such that there can be a guarantee of compre-
hension: for a given SigMF release version, if one applica-
tion writes a recording and another application reads it, and
both applications are compliant, the user is guaranteed that
the data will be understood by the two programs in exactly
the same way.

With the goal of making it as simple as possible to integrate
support for SigMF into applications, it is designed such
that it can be implemented with minimal software depen-
dencies or calls to external programs. In fact, using most
modern programming languages, no external software de-
pendencies are required to use and interact with a SigMF
recording at all.

Recording metadata about a signal that is continuously
changing can be a significant challenge, and causes sub-
stantial pollution and bloat within other dataset formats. A
great example is a radio receiver that is in a moving vehi-
cle - in addition to the continuous & time-varying signal
that is being received by the radio, the location of the ra-
dio itself is continuously changing. Attempting to record
the geolocation with many existing formats requires either
(a) reducing the update rate of the location or (b) compli-
cating the recording of the samples significantly. A major
design decision of SigMF was to treat such fields as ”just
another signal” - e.g., in the example above, the continu-
ous & time-varying geolocation is just another signal that is
recorded with SigMF, and then linked to the signal record-
ing sampled by the radio receiver. By doing this, the pre-
cision of the geolocation isn’t tied to the update rate of the
RF signal, recording the geolocation doesn’t interfere with



SigMF: The Signal Metadata Format

reading / writing the recorded signal, and the recordings of
the signal and geolocation are separable and can processed
or shared without the other. This design decision has en-
abled users to record many time-varying metadata aspects
of signals in very complex experiments while maintaining
a simple and easy-to-process recording.

The SigMF specification splits the data and metadata into
separate files, linking them by index, thus allowing the two
pieces - the raw data and the information describing it - to
be processed without needing to read or share the counter-
part.

Especially since one of the goals of SigMF was to enable
collaboration on datasets for new applications, the working
group knew that the standard must allow for the creation of
arbitrary metadata. The SigMF specification provides for
this directly in recordings, and furthermore has a canonical
method to extend the specification with user-specific fields
while still maintaining the concept of compliance with the
SigMF.

The SigMF working group was deeply rooted in the Open-
Source Software (OSS) community, and the design re-
quirement of enabling use of existing tools is a major
reflection of that. Making it possible to interact with
SigMF recordings using existing tools in the OSS ecosys-
tem makes the datasets immensely easier to work with and
integrate. Based on this, the working group decided to re-
quire that the binary samples were recorded in industry-
standard datatypes supported on POSIX systems, and that
the metadata must be written in plaintext. This makes it im-
mediately possible to manage, process, and edit the meta-
data with existing OSS tools, including thousands of pop-
ular editors, command-line programs, and software work-
flows. Put differently, SigMF metadata can be treated in
the same way that programmers handle and process soft-
ware code.

Once the decision was made that the metadata must all be
plaintext, the working group decided to use JSON to orga-
nize the data. JSON has built-in support in most modern
software languages and workflows, creates a structure that
is easy to search, is translatable to databases, and is also one
of the easier metadata formats to read directly by humans
(admittedly, this is subjective).

Many standards documents become so complex that navi-
gating them can be a serious challenge, which acts as a bar-
rier to both users and developers. By keeping the specifica-
tion short and as simple as possible, the SigMF standard is
not only approachable to new users but easy to understand
by developers seeking to implement support for SigMF in
their applications. Keeping the specification simple has the
additional benefit of reducing the possibility of incorrect
datasets as there is almost no redundancy of information.

For example, fields that can be derived directly from the
data (e.g., the ’length’ of the data) are not described in the
metadata, as that information makes it possible to create
conflict; if there was a ’length’ field that disagreed with
the actual length of the data, specifying which takes prece-
dence requires growing the spec with edge-case handling.
By keeping it as simple as possible, many of these tyes of
issues can be avoided entirely with minimal impact to im-
plementation.

Lastly, many standards are drafted and maintained in a way
that can be detrimental to the standard itself. Some exam-
ples are closed-door discussions, power over the specifica-
tion granted to paying committee members, or even spec-
ifications that are only available to customers that pay for
them. The SigMF effort was born out of the OSS commu-
nity, and its governance and development reflects any other
open-source project - everyone is welcome to contribute,
and no one person’s input or feedback automatically trumps
anyone else’s - the success of SigMF is always prioritized.
This is made easier by the ’extension namespace’ mecha-
nism, mentioned before, whereby if something is not ac-
cepted in the specification it can still be used (but won’t be
required for compliance).

5. Other Solutions
There are many different formats and standards for data
storage, and even more specifically RF sample storage. We
will briefly discuss some of those most prominently used
for working with RF data.

5.1. VITA-49

VITA-49 is one of the most widely used formats, and is
supported by many SDR hardware and processing IP ven-
dors. The VITA-49 standard (VITA) is a packet format
for RF samples and associated metadata, and is most com-
monly used for sending samples over a data transport (e.g.,
Ethernet).

While VITA-49 is popular and enjoys widespread support
with existing hardware and tools, it solves a different prob-
lem than what the working group set out to address. It’s
fundamentally designed to be a transport format rather than
a storage format, and so doesn’t meet many of the require-
ments described above. For example, as a packet format,
metadata is stored in-line with the data in a packet header
- while this is perfectly sensible for VITA-49’s goals, it
breaks many of the requirements for SigMF. A full radio
system needs both a transport format and a storage format,
and the working group envisions standards like VITA-49
being used in conjunction with SigMF; the former for data
”in-motion”, and the latter for data ”at-rest”.



SigMF: The Signal Metadata Format

5.2. HDF5

HDF5, or ”Hierarchical Data Format version 5” (Group),
is a popular dataset format in the scientific community, and
has widespread support in many scientific and engineering
tools. It is used for many applications (not just signals),
and is supported by The HDF Group, which provides com-
mercial products and services.

HDF5 is a generic dataset format, though, and does not
provide the concept of ”compliance” as defined by the
SigMF specification. Put differently, it doesn’t define what
a recording of signal data must look like, and thus cannot
guarantee that two programs, both with HDF5 support, will
be able to read and operate on an RF dataset with the same
understanding of the information in the recording.

5.3. Digital RF

The Digital RF project (Haystack) is based on HDF5, and
solves the problem of ”compliance” by effectively creating
a schema for RF datasets written in the HDF5 format. Dig-
ital RF is authored and maintained by the MIT Haystack
Observatory, and is used for many of their radio science
experiments.

Of the alternatives, Digital RF is probably the closest to
SigMF in terms of its goals, but its design requirements
are markedly different from SigMF and thus differs signif-
icantly in its design decisions. Which is best in a particular
scenario will depend on the requirements of the application
and the goals of the user - in some cases, ’Digital RF’ will
be better, and in others, SigMF; the decision of which is a
technical design decision to be made by the user. As a goal
of SigMF is interoperability between tools and workflows,
though, SigMF does need translators to & from ’Digital
RF’ to make it simple for users to leverage both where ap-
propriate.

5.4. pickle

’pickle’ (Foundation) provides serialization and de-
serialization of data for storage on-disk. It is specific to
Python, and is only supported within the Python language
ecosystem. It also doesn’t support many of the mechanisms
for metadata needed by SigMF, and so is generally not ap-
propriate for all but the most simple of recordings that will
only be used within Python programs.

5.5. Midas BLUE

The Midas BLUE format (Research) is a data storage for-
mat written for use with the Midas Framework and is used
in a variety of high-performance radio applications, mostly
by the U.S. government. Its design goals are dramatically
different from those of SigMF’s, as it was originally created

specifically to be used with the Midas software workflow.
It now has support in other software workflows that aren’t
related to Midas, but it has not seen widespread adoption
outside of it’s existing community.

6. Usage Patterns
A major advantage of SigMF is the ease of tooling since
metadata is detached in human-readable form and datasets
can be organized by directory structures. Using filesystem
symbolic links allows raw data to be stored independent of
metadata which enables tracking metadata changes with-
out parsing large binary captures. Using a Version Con-
trol System (e.g., ’git’) with pre-commit hooks and JSON
pretty printers (Hodges) that are widely available enables
meaningful change tracking of annotations. Storing raw
files separately from annotations and using symbolic links
to form compliant SigMF recordings also allows flexibil-
ity with recorded datasets that will be annotated - this re-
duces drive usage and eases synchronizing SigMF captures
across distributed storage. This queuing system, relying on
minimal data movement and standard filesystem tools, has
proven to be a valuable dataset generation approach.

At minimum, a simple JSON structure must be parsed to
understand the datatype of the stored samples. This can be
automated by tools parsing the datatype field in the meta-
data or in a one-off fashion with a human reading the struc-
ture and running type-specific tools. Using standardized
POSIX interfaces such as ’memmap’ (POSIX.1-2017) al-
lows lazy reading of sample structures which significantly
reduces the load time of samples since only the indexed
samples need to be loaded. Memory-mapping function-
ality is available from all common operating systems and
most programming languages. For example, NumPy has a
’memmap’ call that exposes a memmapped file as a NumPy
array with the correct datatype, and C/C++ exposes the file
as a pointer which is typically typecast to whatever the un-
derlying sample type is.

7. Future of SigMF
Since it was first published in early 2017, SigMF has seen
rapid adoption by government, industry, and academia. It’s
simplicity and flexibility have made it an attractive op-
tion for many applications. Just to name a few, The Na-
tional Telecommunications and Information Administra-
tion (NTIA), an entity of the US federal government, is us-
ing SigMF for spectrum sensing (NTIA); SkySafe, a com-
mercial counter-drone company, is using it for their RF sys-
tems (SkySafe); In-Q-Tel, a technology research and in-
vestment firm is using it for highly complex experiments
with many sensors (Mohan et al., 2018); and DeepSig (the
authors’ employer), a commercial machine learning com-



SigMF: The Signal Metadata Format

pany, is using it for deep learning on RF data (DeepSig).

7.1. Development

While SigMF is currently shepherded by the GNU Radio
Foundation, it is meant to be a format accessible and us-
able by anyone. Indeed, the specification has received con-
siderable contributions from people developing and using
completely different tools and workflows. All develop-
ment activity, including changes and discussion, occurs on
the SigMF GitHub repository (sigmf.org), and we wel-
come involvement from anyone that wants to participate.

Issues are raised and discussed as Github ’Issues’ in the
repository, and contributions are discussed as ’Pull Re-
quests’, thereby making these discussions not only open
and accessible but preserved for posterity. Since SigMF is
maintained as a git repository, all changes and releases are
tracked and can be individually referenced.

7.2. Current State

As of this paper, the SigMF project has made one release,
’Release v0.0.1’ (Hilburn, 2018), and is now working to-
wards the second release. It is using Semantic Version-
ing (SemVer 2.0.0), and since all current releases are be-
low ’1.0.0’, SigMF is currently considered ’unstable’. This
means that there is currently no guarantee of backwards
compatibility until the project reaches the v1.0.0 stable re-
lease. That said, the SigMF contributors are already work-
ing to preserve backwards compatibility where possible,
and compatibility is already guaranteed for applications &
datasets adhering to the same version (e.g., ’v0.0.1’), per
the specification for compliance.

Some of the software-related goals of the SigMF project
are to provide translators for other common formats (like
those listed above in this paper), validators (for assuring
that recordings are compliant to the specification), and util-
ities for managing and working with SigMF recordings.
Some code contributions have already been made along
these lines, but much more development is needed in this
space.

It is not the goal of the SigMF project to dictate how SigMF
data is used within applications (when the data is not at-
rest), and so framework-specific blocks (e.g., a GNU Ra-
dio SigMF Source block) will never be part of the SigMF
repository.

7.3. Getting Involved

SigMF welcomes participation from everyone, and works
to maintain a friendly and accessibly developer community.
If you have questions or feedback, feel free to post an Issue
on the repository or contact the maintainers directly!

References
Signal metadata format specification. http://sigmf.
org/, 2018.

Akeela, Rami and Dezfouli, Behnam. Software-defined
radios: Architecture, state-of-the-art, and challenges.
CoRR, abs/1804.06564, 2018. URL http://arxiv.
org/abs/1804.06564.

DARPA. Darpa brussels hackfest. https:
//darpahackfest.com/past-hackfest#
DARPA-Brussels-Hackfest, 2017.

DeepSig. Datasets for radio deep learning.

Foundation, Python. pickle. https://docs.python.
org/3/library/pickle.html.

Group, The HDF. Hdf5. https://support.
hdfgroup.org/HDF5/doc/H5.intro.html.

Haystack, MIT. Digital rf. https://github.com/
MITHaystack/digital_rf.

Hilburn, Benjamin. Sigmf release v0.0.1. Jul 2018. doi:
10.5281/zenodo.1418396.

Hodges, Jeff. Jsonpp. https://github.com/
jmhodges/jsonpp.

Mohan, Ankur, Pappu, Ravi, and Shadmand, Sean. D3 -
a system for recording complex experiments with an ex-
tension of sigmf. Proceedings of the GNU Radio Con-
ference, 3, 2018. URL https://pubs.gnuradio.
org.

NTIA. Scos sigmf extension. https://github.com/
NTIA/sigmf-ns-scos.

POSIX.1-2017. IEEE Std 1003.1-2017. Standard, The
Open Group & IEEE, 2018. URL http://pubs.
opengroup.org/onlinepubs/9699919799/.

Research, Rincon. Midas blue. http:
//nextmidas.techma.com/nm/nxm/sys/
docs/MidasBlueFileFormat.pdf.

SemVer 2.0.0. Semantic versioning 2.0.0. Standard, 2013.
URL https://semver.org/.

SkySafe. gr-sigmf. https://github.com/
skysafe/gr-sigmf.

VITA. Vita-49. https://www.vita.com/VITA-49.

sigmf.org
http://sigmf.org/
http://sigmf.org/
http://arxiv.org/abs/1804.06564
http://arxiv.org/abs/1804.06564
https://darpahackfest.com/past-hackfest#DARPA-Brussels-Hackfest
https://darpahackfest.com/past-hackfest#DARPA-Brussels-Hackfest
https://darpahackfest.com/past-hackfest#DARPA-Brussels-Hackfest
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://github.com/MITHaystack/digital_rf
https://github.com/MITHaystack/digital_rf
https://github.com/jmhodges/jsonpp
https://github.com/jmhodges/jsonpp
https://pubs.gnuradio.org
https://pubs.gnuradio.org
https://github.com/NTIA/sigmf-ns-scos
https://github.com/NTIA/sigmf-ns-scos
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://nextmidas.techma.com/nm/nxm/sys/docs/MidasBlueFileFormat.pdf
http://nextmidas.techma.com/nm/nxm/sys/docs/MidasBlueFileFormat.pdf
http://nextmidas.techma.com/nm/nxm/sys/docs/MidasBlueFileFormat.pdf
https://semver.org/
https://github.com/skysafe/gr-sigmf
https://github.com/skysafe/gr-sigmf
https://www.vita.com/VITA-49

