
The Implementation of GNU Radio Blocks for Decoding Long-lasting Frames
in Mobile Underwater Acoustic Communications

Jamil Kassem JAMILAHKASSEM@GMAIL.COM

Lebanese International University, Bekaa, Lebanon

Michel Barbeau BARBEAU@SCS.CARELETON.CA

School of Computer Science, Carleton University, Ottawa, ON, Canada, K1S 5B6

Abdel-Mehsen Ahmad ABDELMEHSEN.AHMAD@LIU.EDU.LB

School of Engineering, Lebanese International University, Bekaa, Lebanon

Joaquin Garcia-Alfaro JOAQUIN.GARCIA ALFARO@TELECOM-SUDPARIS.EU

SAMOVAR, Telecom SudParis, Paris-Saclay University, France

Abstract
We present the implementation of new GNU Ra-
dio blocks that support mobile underwater acous-
tic communications. More specifically, to ad-
dress the Doppler shift that occurs during the
transmission of data frames at a very low data
rate. We aim at long distance communications,
which require low frequency and extremely nar-
row bandwidth modulation, and implies weak
signals. We build upon our previous works on
ad hoc underwater wireless communications, to
handle constant or variable (linearly and nonlin-
early) Doppler shift patterns. Experimental re-
sults are discussed using simulation of underwa-
ter autonomous vehicles and underwater wireless
sensors. Our main contributions are in the design
of the decoder, implemented using the GNU Ra-
dio development toolkit.

1. Introduction
Underwater data communications and networking have ap-
plications in monitoring and surveillance of coastal wa-
ters (Otnes et al., 2008), submarine activity sensors (Otnes
et al., 2012), autonomous undersea vehicles (Button et al.,
2009), underwater robots (Antonelli, 2014) and submerged
airplane locator beacons (Wikipedia, 2018b). We con-
centrate on low frequency mobile acoustic communica-
tions (Decarpigny et al., 1991; Hixson, 2009), i.e., in the
range 300 Hz to 3 kHz. In contrast to higher frequen-
cies, Stojanovic has already pointed out that attenuation

Proceedings of the 8 th GNU Radio Conference, Copyright 2018
by the authors.

is lower in that range (Stojanovic, 2007). Hence, there is
potential for long distance contacts (Freitag et al., 2015).
However, because of the narrow half-power bandwidth at
low frequency and long distance, solely extremely low data
rates are possible. Furthermore, the relative mobility of a
transmitter and a receiver affects the acoustic waves used
for underwater communications. This is the Doppler ef-
fect. Contrasted with classical electromagnetic communi-
cations, it has a significant impact. For example, accord-
ing to Marage and Mori, the Doppler effect is almost 4 000
times greater in sonar than in radar (Marage & Mori, 2010).

In this paper, we present the implementation of four new
GNU Radio blocks to support mobile underwater acoustic
communications. We focus on the mobile and long dis-
tance communication capability, which implies low car-
rier frequency, weak signal strength and extremely nar-
row bandwidth modulation. We build upon our previous
research (Barbeau, 2017; Ahmad et al., 2017; 2018a;b).
With respect to our work published in the last year pro-
ceedings of the GNU Radio conference (Barbeau, 2017),
this paper expands with new capabilities that enable decod-
ing of data frames subject to a nonlinear Doppler effect.
This is a difficult problem with long lasting data frames
(111 seconds in our system) because the carrier frequency
must be tracked along the symbols making the frame. The
frequency may drift following many different and erratic
patterns. We approach the problem pragmatically making
assumptions about the cause of the Doppler effect. That
is, we assume a straight-line trajectory model for mobile
communicating vehicles and infer the corresponding ef-
fects on the frequency (Ahmad et al., 2018b). We believe
that this assumption is reasonable in the context of under-
water communications. It is expected that vehicles travel
along certain maritime paths and through certain known
channels. This paper focuses on the implementation details



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

of the GNU Radio blocks comprising a previously devel-
oped straight-line trajectory model (Ahmad et al., 2018b).

The paper is structured as follows. Section 2 is about
the high level design of the GNU Radio implementation.
Section 3 describes the frequency tracking logic. Sec-
tion 4 demonstrates the execution of our new GNU Radio
blocks together with an experimental scenario of underwa-
ter acoustic communications. Section 5 concludes the pa-
per.

2. New GNU Radio Blocks

Figure 1. New GNU Radio bocks

The design consists of four new blocks: Sliding Window
Stream to PDU, FDR, Sync and Demodulate, and WSPR
Unpacker, see Figure 1. Block Sliding Window Stream to
PDU accepts a continuous stream of time-domain samples.
When a temporal window of 120 seconds of signal samples
has been buffered, the samples are stored in the payload of a
Protocol Data Unit (PDU) that it posted on the output port.
The window slides nine seconds forward over the buffer
of signal samples. Block FDR (Frequency Domain Repre-
sentation) takes in input such a PDU and constructs a fre-
quency domain representation from the buffered 120 sec-
ond signal samples. A frequency domain search proce-
dure generates a PDU containing indices of candidate fre-
quencies together with related relevant parameters that in-
clude estimated time shift (relative to the sample window
start), frequency drift and SNR (Signal to Noise Ratio).
Block Sync and Demodulate attempts to resolve time de-
lays and demodulate signals at the candidate frequencies. It
takes into account the Doppler effect on frequencies. Two
Doppler forms are considered: linear and nonlinear.

The linear form is handled considering the maximum fre-
quency shift over the time interval associated with a frame.
The nonlinear form is handled making hypotheses about
the two communicating objects, i.e., their positions, head-
ings and velocities. The choice of suitable frequency shifts
is made exploring a set of plausible candidate values for
positions, headings and velocities. These values are chosen
such that they likely contain all probable Doppler varia-
tions. The linear and nonlinear forms are simultaneously
considered to cover all possible variations. The block
chooses the form with higher correlation when searching
for a frame. If successful, output frame payloads (i.e.,
packets) are posted, as PDUs.

High-level behavior of the decoder

for loop #1 // (s)lope search

for loop #2 // (v)elocity search

// Use triple [s, v, p] for Frequency Tracking:

for loop #3 // (p)osition search

// Step 1. Energy search:

// Try synchronization and demodulation ... 

end for
end for

end for

01:

02:

03:

04:

05:
06:
07:
08:
09:
10:
11:
12:

13:

// Find & store candidate tuples as [s, v, p]

// Step 2. For each candidate signal:
// Use energy peaks to identify candidate signals

// ... assuming Doppler shifts.

Figure 2. Pseudocode of the decoder

Figure 2 outlines the search strategy. There are thee em-
bedded for-loops. Headings are modelled by straight line
on a 2D plane. The slope of each line determines the as-
sociated heading. The first for-loop explores a range of
slopes. The second for-loop searches through a domain of
plausible velocities. The third for-loop scans a number of
starting positions, at the beginning of the window of sam-
ples. All values of slopes, velocities and positions, are dis-
crete. The body of the loops comprises two steps. Firstly,
given a nominal frequency and a triple comprising a slope,
a velocity and a position, a frequency tracking procedure
finds peaks of energy on the corresponding path in the fre-
quency domain. Secondly, when such a peak of energy
exists, then synchronization and demodulation of a frame
are attempted.

Figure 3 shows examples of linear and nonlinear Doppler
shifts. The figure shows six curves, where the velocity
of a transmitter varies from 5 m/s (light yellow curve) to
10 ms/s (darkest curve). For each curve, from start to the
0.25 minute time point the Doppler varies linearly. From
0.25 minute to 3.5 minutes, the Doppler varies nonlinearly.
Afterwards, the Doppler effect is present but almost con-
stant.

Figure 4 shows the flow graph of a complete receiver. GNU
Radio generates a Python program from it. Each rectangle
represents a block, which can be a variable, an instance
of a predefined GNU Radio block or one of the afore-
mentioned four new blocks. Top left, the Audio Source
block interfaces the decoder with a sound card. The sound
card bridges the analog underwater acoustic world and dig-



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (minutes)

-20

-15

-10

-5

0

5

10

15

S
hi

ft 
(H

z)

Figure 3. Doppler plots over a five minute interval

Figure 4. Flow graph of the audio decoder

ital computer environment. Variable Center Frequency de-
termines the nominal frequency of operation, 15 kHz in
the example. The audio is sampled at 12 k samples per
seconds. Variable Half Bandwidth specifies the effective
bandwidth of the decoder. It is the variable value (10 Hz)
times two (20 Hz). Control of the effective bandwidth is
very important in the underwater environment. In the low
frequency range, maritime traffic generates strong noise
that can be several orders of magnitude stronger than a
weak data signal. Filtered out maritime traffic noise and
narrow bandwidth capability greatly increase the perfor-
mance of the decoder. The first Frequency Xlating FFT
Filter block achieves this filtering. The second Frequency
Xlating FFT Filter block down converts the broadband sig-
nal to a baseband signal centered at zero Hz. A Rational
Resampler block decimates the input signal from a high

rate to a low rate, by a factor of 32 in this example. Variable
Sampling Freq defines the rate at which the analog input is
decimated, 375 samples per seconds in this example. In ac-
cordance with the Nyquist criterion, this rate also fixes the
maximum bandwidth of the decoder. It is less than one half
the sampling frequency, i.e., 187 Hz in this case. Follow-
ing decimation, instances of our new blocks are connected
together to decode the input signal into a packet, namely
the blocks Sliding Window Stream to PDU, FDR, Sync and
Demodulate and WSPR Unpacker. Block WSPR Unpacker
parses packets in the WSPR format (Wikipedia, 2018a) and
outputs text content.

3. Frequency Tracking
The movement of vehicles in the sea, and consequently
the transmitters and receivers that they embed, generates
Doppler frequency shifts in signals. We use frequency
modulation. Handling of Doppler shift is required to
achieve good results during the decoding process. To mit-
igate the Doppler effect, we devised a two-step frequency
tracking scheme. At the receiver, the tracking scheme takes
into account that a carrier frequency can be shifted. This
shift may be variable during the reception of a frame. This
variation can be linear or nonlinear. This means that it is
not sufficient to find where the frequency of a signal is, but
in addition the frequency must be tracked during the recep-
tion of each frame. In the receiver, the first step consists
of an energy search procedure. Energy peaks are identified
and used to determine approximate candidate frequencies
where valid signals may be present. In a second step, syn-
chronization and demodulation are attempted at each can-
didate frequency, taking into account the presence of a pos-
sibly linear or nonlinear Doppler shift.

3.1. Energy Search

Implemented in the GNU Radio block FDR, the energy
search aims at finding candidate frequencies where data
frames could be present. It takes into account three vari-
ables: carrier frequency, frequency drift during data frame
reception and data frame start time. The search for candi-
date frequencies is performed while simultaneously vary-
ing the frequency drift as a function of time. The frequency
search is coupled with a drift search to mitigate the Doppler
effect. The drift search is done by generating a signal with
a drift pattern that is compared with the received signal.
Correlation of the received signal with a synchronization
bit sequence is evaluated. We consider two main frequency
drift patterns: linear and nonlinear. The specific nonlin-
ear drift patterns that are examined is configurable. When
needed, it can be extended to cover more cases.

A linear Doppler pattern is characterized by a linearly in-
creasing drift starting at zero Hz, at the beginning of a data



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

frame, up to maxdrift Hz at the end of the data frame, where
maxdrift is a configurable parameter. For example, Figure
5 pictures a linear frequency drift example over an interval
of 120 seconds. The carrier frequency is 1.5 kHz and the
drift is five Hz. The formal parameter Max Freq Drift of
the GNU block FDR determines the data member maxdrift
in the implementation. The drift resolution process is iter-
ative. After each iteration, the receiver checks if the cur-
rent correlation is larger than the previous highest corre-
lated drift (initial maximum correlation is set to zero). The
decoder successively evaluates all candidate drifts. It elects
the drift yielding the highest correlation.

0 20 40 60 80 100 120

Time (second)

1500

1500.5

1501

1501.5

1502

1502.5

1503

1503.5

1504

1504.5

1505

F
re

qu
en

cy
 (

H
z)

Figure 5. Linear Doppler shift

A nonlinear Doppler effect is produced when one or both
communicating vehicles are moving. Moreover, the an-
gles that their velocity vectors are making, with a vector
connecting their positions, are variable. Though veloci-
ties may be constant, the Doppler effect produces a non-
linear frequency drift due to the variation of these angles.
This concept is shown in Figure 6. Represented by a cir-
cle and a square, there are two communicating vehicles at
constant velocities V1 and V2. With respect to a vector
connecting their positions, the velocity vectors are at an-
gles α1 and α2, shown at time instants T1 and T2. As a
function of time, α1 and α2 are variable. Theoretically,
there is an unbounded number of possible nonlinear devi-
ating frequency drift patterns. Besides, we aim at a so-
lution that preserves the capability of the system to deal
with extremely weak signals (Barbeau, 2017). We adopted
a pragmatic approach. To resolve nonlinear Doppler cases,
we make assumptions about possible trajectories of vehi-
cles. In the underwater environment, it is an assumption
that is perfectly acceptable since vehicles tend to follow
known maritime passages. This is particularly true at the
highest velocities. We first compute and explore the time

V1

V2

V1

V2

𝛼1

𝛼1𝛼2
𝛼2

Time T1
Time T2

Figure 6. Angles separating objects at different time points

dependent parameters of a range of potential straight-line
trajectories, which would model paths through known mar-
itime passages. See Ref. (Ahmad et al., 2018b) for the
mathematical details of the model. See also Ref. (Bar-
beau, 2017) for the signal processing details. Hereafter,
we focus on implementation details of the Doppler shift
handling aspect. The full source code is available online
(github.com/michelbarbeau/gr-uwspr).

All the information about a candidate frequency is stored
in an instance of structure candidate t:

enum Modes { linear, nonlinear };
typedef struct {
float freq;
float snr;
float sync;
int shift;
Modes m type; // mode type (1: linear, 2: nonlinear)
union {
// linear frequency drift model
mode linear m linear;
// straight−line nonlinear frequency drift model
mode nonlinear m nonlinear;
};
} candidate t;

In all cases, the candidate is characterized by a nominal fre-
quency (freq), a SNR (snr), a correlation value (sync),
and a relative time offset representing a start position for
synchronization (shift). A union declaration holds the
two exclusive types of Doppler effect, defined as modes 1
and 2, with corresponding structures mode linear and
mode nonlinear. For the linear case, solely a numeri-
cal value characterizing the total amount of frequency drift
is stored.

typedef struct {
float drift;
} mode linear;

For the nonlinear case, we store the velocity, slope and start
position of the transmitter (vehicle a) and receiver (vehicle
b):

typedef struct {



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

// vehicle ”a”
double va; // velocity
double ma; // slope
int xa, ya; // start position
// vehicle ”b”
double vb; // velocity
double mb; // slope
int xb, yb; // start position
} mode nonlinear;

This information is used to derive the frequency drift
while a frame is being received. Referencing the struc-
ture candidate t, the straight line trajectory model (Ah-
mad et al., 2018b) is implemented in class SLM. In accor-
dance with the conventions of the GNU Radio framework,
the block FDR is implemented by the C++ class named
FRD impl. By inheritance, the class FRD impl obtains
all the properties defined in the class SLM:

#include "candidate_t.h"
class SLM
{ <Public declarations of class SLM> }
class FDR impl : public FDR, public SLM
{ ... }

Class SLM contains the following public declarations:

public:
// returns frequency drift according to the straight line model
float slmFrequencyDrift(mode nonlinear m nl, float cf, float t);
// generator of parameters for the straight line model
bool slmGenerator(mode nonlinear ∗m nl);
// initialize the generator
void slmGeneratorInit();

Given the information about vehicles in motion gen-
erating a nonlinear frequency shift m nl, a nom-
inal frequency cf and a time instant t, method
slmFrequencyDrift calculates the corresponding
drifted frequency. Method slmGenerator is a generator
of instances of structure mode nonlinear. It is initial-
ized by method slmGeneratorInit. Once initialized,
method slmGenerator consecutively returns all plausi-
ble nonlinear cases, one by one.

In class FRD impl, a first analysis of the frequency do-
main representation identifies peaks of energy, across the
corresponding 120 second interval. In the frequency do-
main, the locations of these peaks become candidate fre-
quencies. Then, a for-loop examines every candidate fre-
quency. The parameters of the candidate frequencies are
considered tuning the nominal frequency, finding where the
start symbol of the frame is in the window and determin-
ing a potential frequency drift during the reception of the
frame. The parameters are chosen to maximize correla-
tion with a synchronization bit pattern. The synchroniza-
tion bits are present along the entire frame. Every of the
162 symbols contains a synchronization bit, together with

a data bit. The following code illustrates how the generator
of nonlinear cases is used:

for(j=0; j<npk; j++) { // for each candidate at index j
// try linear frequency drift
...
// try nonlinear frequency drift
slmGeneratorInit(); // init generator
while (slmGenerator(&m nl)) {
for (k=0; k<162; k++) { // sum of power over symbols
// map symbol index to delay in seconds
t = k ∗ 111 / 162;
// determine drifted frequency
ifd = ifr + slmFrequencyDrift(m nl, carrierfrequency, t);
... calculate power at each synchro bit ...
}
sync = <total power at positions of synhro bits>
// synchro bit power versus total power
sync = ss/pow;
// more than threshold times current max
if(sync/candidates[j].sync>threshold)
candidates[j].shift=<start position>
candidates[j].freq=<index to tuned frequency>
candidates[j].sync=sync;
// a non linear case
candidates[j].m type = nonlinear;
candidates[j].m nonlinear = m nl;
}
}
}

The array candidates stores instances of the structure
candidate t. The variable npk indicates the actual
number of instances in the array. The variable j is an ar-
ray index for denoting individual instances. When the for-
loop is entered, each cell in the array candidates identi-
fies a candidate frequency, i.e., candidates[j].freq,
associated with the presence of an energy peak. The
linear case is evaluated first, then the nonlinear case.
Hereafter, we focus on the nonlinear case. The method
slmFrequencyDrift is invoked to initialize the gen-
eration process of straight line trajectories. A while-loop
examines each generated case, represented by the variable
m nl. A for-loop calculates the power contents at each
synchronization bit (there are 162 of them in a 111 sec-
ond interval). The symbol index k is translated to a time
offset t. The method slmFrequencyDrift is called
to calculate the frequency drift due to the Doppler effect
for the current symbol. It is added to the current tuned fre-
quency ifr. The result, i.e., ifd, is used to determine and
find the power at the synchronization bit. The total power
at the positions of the synchronization bits is stored into
the variable sync. If the ratio of this power versus what
has been determined before is higher that a threshold, then
this candidate frequency is put in the nonlinear category.
The corresponding parameters are stored in the array cell
candidates[j] for the upcoming steps.

For each of the aforementioned parameters (slope, veloc-



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

ity and position), a range of plausible values is explored.
At each iteration, a new value for one of the parameters is
tested. Each combination is successively tested, until they
have been exhausted. For each candidate frequency, lin-
ear frequency drifts (including a null drift) and nonlinear
frequency drifts are explored. The mode yielding the high-
est correlation with the synchronization bits is retained, to-
gether with the parameters determining the drift. To illus-

0 10 20 30 40 50 60 70 80 90 100 110

Time (second)

-16

-15

-14

-13

-12

-11

-10

-9

-8

-7

S
hi

ft 
(H

z)

Figure 7. Velocities and timing variations

trate the combination of the drift and time search, let us
have a look at a simple example. The Doppler shift of the
received signal is represented by the solid black line (cf.
Figure 7) while the dashed lines represent the Doppler shift
obtained with different velocities that are tested. Notice
how the curves do not match. This is because there is also a
five second-timing difference from the dashed-curves with
the received-signal curve. To solve this issue, we use a
time search alongside a frequency drift search. Using the
two together yield a good match (cf. Figure 8).

3.2. Sync and Demodulate

Demodulation is implemented in the GNU Radio block
Sync and Demodulate. The results from the energy
search are used to find the bits in the data frames.
In accordance with the GNU Radio conventions, the
block Sync and Demodulate is implemented by the C++
class sync and demodulate impl. By inheritance,
the class sync and demodulate impl obtains all the
properties defined in the class SLM, together with the prop-
erties of the class Fano for probabilistic Forward Error
Correction (FEC) (Fano, 1963):

class sync and demodulate impl :
public sync and demodulate, public SLM, public Fano
{

0 10 20 30 40 50 60 70 80 90 100 110

Time (seconds)

-14

-12

-10

-8

-6

-4

-2

0

S
hi

ft 
(H

z)

Figure 8. Time synchronization with velocity variations

...
// synchronize and demodulate
void sync and demodulate(candidate t candidate,...);
...
}

The main logic is implemented in the method
sync and demodulate, which takes as one of its
arguments a candidate frequency denoted as candidate
that has been identified by the GNU Radio block FDR.
Before demodulating, a refined search is done to improve
the estimate for the time offset, where the frame starts
in the 120-second window of samples. The logic of this
search is similar to the one of the energy search in the
block FDR, but with refined steps and time intervals:

for (i=0; i<162; i++) { // i = frame symbol index
candidate.m type==nonlinear);
switch(candidate.m type) {
// linear drift search
case linear : {
... calculate drifted carrier freq ...
break;
}

// nonlinear drift search
t = i ∗ 111 / 162; // map symbol index to delay in seconds
case nonlinear : {
fp = f0 + slmFrequencyDrift(candidate.m nonlinear,
carrierfrequency, t);

break;
}
}
... non coherent demodulation of symbol ...

A for-loop examines each of the 162 symbols, indexed by
variable i. Since the kind of frequency drift has been al-
ready determined, only one mode is considered (linear or



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

nonlinear). According to the mode, the carrier frequency
is determined. Focusing on the nonlinear case, the sym-
bol index i is translated to a time offset t. The method
slmFrequencyDrift is used again to calculate the fre-
quency drift due to the Doppler effect for the current sym-
bol. It is added to the current tuned frequency f0. The
result, i.e., fp, is used to demodulate the symbol. Non-
coherent demodulation of symbols is performed, which
means that the signal phase is not recovered (Proakis &
Salehi, 2008). We use four frequency-shift keying mod-
ulation. For each of the four symbols, the corresponding
waveform is generated as function of time using the fre-
quency fp. Correlation is calculated with the input signal.
The calculated correlation is used to infer a probability for
binary values. They are used in input by probabilistic FEC.

4. Example Application
We have conducted several simulations and experiments in
various bodies of water, including canals, lakes and coastal
waters (Barbeau, 2017). An example application is pro-
vided hereafter. One transmitter sends two frames, 110 sec-
onds each at 1.46 baud. The transmitter moves with a con-
stant speed of 8 m/s, leading to a Doppler shift that starts
as non-linear and, as the separation distance increases, be-
comes linear during the transmission of the frames.

Figure 9. Decoding a two frames sent repeatedly

Figure 9 shows as function of time (vertical axis) the re-
sulting frequency drift (horizontal axis). The decoder is
successful at decoding the frames.

In Figure 10, the experiment is repeated, but with AWGN
(Additive White Gaussian Noise) such that the resulting
SNR is -25 dB. Due to the low SNR, the trace of the sig-
nal becomes confused with noise. Although, the decoder is
still successful at decoding the frames.

5. Conclusion
We have demonstrated how our four new GNU Radio
blocks are capable of decoding frames in an underwater

Figure 10. Decoding a two frames with noise

environment, while being subjected to very high noise lev-
els (-25 dB SNR, 2.5 kHz bandwidth reference) and linear
or nonlinear frequency shifts. They are capable of han-
dling Doppler due to mobility of the communicating vehi-
cles (both linear and nonlinear). Source code and examples
are available online: github.com/michelbarbeau/gr-uwspr.

References
Ahmad, Abdel-Mehsen, Barbeau, Michel, Garcia-Alfaro,

Joaquin, Kassem, Jamil, Kranakis, Evangelos, and Por-
retta, Steven. Doppler effect in the underwater acoustic
ultra low frequency band. In Proceedings of the 9th EAI
International Conference on Ad Hoc Networks, Niagara
Falls, Canada, Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunica-
tions Engineering, vol 223, pp. 3–12. Springer, Cham,
2017.

Ahmad, Abdel-Mehsen, Barbeau, Michel, Garcia-Alfaro,
Joaquin, Kassem, Jamil, Kranakis, Evangelos, and
Porretta, Steven. Doppler effect in the acoustic ultra
low frequency band for wireless underwater networks.
Mobile Networks and Applications, pp. 1–11, 2018a.
https://link.springer.com/article/10.1007/s11036-018-
1036-9.

Ahmad, Abdel-Mehsen, Barbeau, Michel, Garcia-Alfaro,
Joaquin, Kassem, Jamil, Kranakis, Evangelos, and Por-
retta, Steven. Low frequency mobile communications
in underwater networks. In 17th International Confer-
ence on Ad Hoc Networks and Wireless (AdHoc-Now),
St. Malo, France, 2018b.

Antonelli, Gianluca. Underwater robots. In Springer
Tracts in Advanced Robotics, volume 96, pp. 987–1008.
Springer, 2014.

Barbeau, Michel. Weak signal underwater
communications in the ultra low frequency



Decoding Long-lasting Frames in Mobile Underwater Acoustic Communications

band. In Proceedings of the 7th GNU Ra-
dio Conference, San Diego, CA, U.S.A., 2017.
https://pubs.gnuradio.org/index.php/grcon/article/view/20/14.

Button, Robert W., Kamp, John, Curtin, Thomas B., and
Dryden, James. A survey of missions for unmanned un-
dersea vehicles. RAND National Defense Research In-
stitute, 2009.

Decarpigny, J., Hamonic, B., and Wilson, O. The design of
low frequency underwater acoustic projectors: present
status and future trends. IEEE Journal of Oceanic Engi-
neering, 16(1):107–122, 1991.

Fano, R. A heuristic discussion of probabilistic decoding.
IEEE Transactions on Information Theory, 9(2):64–74,
April 1963.

Freitag, L., Partan, J., Koski, P., and Singh, S. Long range
acoustic communications and navigation in the arctic. In
OCEANS 2015 - MTS/IEEE Washington, pp. 1–5, Octo-
ber 2015.

Hixson, E. A low-frequency underwater sound source for
seismic exploration. The Journal of the Acoustical Soci-
ety of America, 126(4):2234–2234, 2009.

Marage, J.P. and Mori, Y. Marage, J.P., Mori, Y.: Sonar
and Underwater Acoustics. Wiley, 2010.

Otnes, R., Voldhaug, J. E., and Haavik, S. On communica-
tion requirements in underwater surveillance networks.
In OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp.
1–7. IEEE, 2008.

Otnes, Roald, Asterjadhi, Alfred, Casari, Paolo, Goetz,
Michael, Husøy, Thor, Nissen, Ivor, Rimstad, Knut,
Van Walree, Paul, and Zorzi, Michele. Underwater
acoustic networking techniques. Springer Science &
Business Media, 2012.

Proakis, J.G. and Salehi, M. Digital Communication.
McGrah-Hill Higher Education, fifth edition, 2008.

Stojanovic, M. On the relationship between capacity and
distance in an underwater acoustic communication chan-
nel. SIGMOBILE Mob. Comput. Commun. Rev., 11(4):
34–43, October 2007. ISSN 1559-1662.

Wikipedia. The WSPR (Weak Signal Prop-
agation Reporter) amateur radio software.
https://en.wikipedia.org/wiki/WSPR (amateur radio software),
2018a.

Wikipedia. Underwater locator beacon.
https://en.wikipedia.org/wiki/Underwater locator beacon,
2018b.


