Accelerating software radios by means of SIMD Instructions.
A case for the AVX2 and AVXS512 Extensions

Damian Miralles

DAMIAN.MIRALLES @ AERO.ORG

The Aerospace Corporation, 2310 E. El Segundo Blvd. El Segundo, CA 90245-4609 USA

Jessica Iwamoto

JESSICA.IWAMOTO @ AERO.ORG

The Aerospace Corporation, 2310 E. El Segundo Blvd. El Segundo, CA 90245-4609 USA

Abstract

Current computer architecture trends are moving
towards parallelization by means of node repli-
cation and data parallelization, which optimize
the execution speed of a given application. In-
creasing the number of nodes is constrained by
the hardware platform in use; however, effective
data parallelization techniques can improve pro-
cessing speeds by leveraging existing resources
of the platform. This paper presents the AVX2
and AVXS512 instruction addition to several ker-
nels in the VOLK library. We discuss the capabil-
ities of the new extensions and their interaction
with the VOLK library. Finally, we show profil-
ing results of the speed enhancements added to
the library for AVX capable machines.

1. CPU Performance and Evolution

The trend where Central Processing Unit (CPU) frequen-
cies were increasing significantly over time has been halted
due to concerns of power consumption and an increase
in device operating temperatures. Even though the CPU
frequencies between modern processors are not drastically
different, new computers seem to perform better each year.
To achieve this, modern CPUs rely heavily on parallelism.
As the plateau in CPU frequency becomes more evident,
the number of logical cores in devices will increase. This
trend is illustrated in Figure 1, which builds upon previous
book keeping records and extend it to reflect the changes up
to present. The result is a detailed description of the trend
of CPU frequencies, power consumption, and number of
logical cores, among others (Karl Rupp, 2018).

Looking at computer architecture, instructions are per-
formed in terms of CPU clock cycles, with every new tick
being a chance to perform another operation. Keeping with

Proceedings of the 1°* GNU Radio Conference, Copyright 2016
by the author(s).

7 I~ .
10 “ Transistors
a0h " th d
10° | T | (thousands)
LYY Yo)
10° | WA L glngfjle-Thread
. @00 erformance
10* g ‘AAJ."} > | (SpecINT x 10%)
- \’“ N L 1] Frequency (MHz)
10° | As ‘A‘oo;.;ﬂ H L
H .
a
®] 3 Typical Power
10% - e, e',-v v'vv',;'v v;;‘,"'v“’f }: - (Watts)
1 - m Ty L3¢ Number of
10 B = v M b4 Logical Cores
L v v vV vy cnane®
10° *; * Toe B e e summ menenn oo 4
! ! !

1970 1980 1990 2000 2010 2020

Year

Original data up 1o the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Figure 1. CPU performance over time (Karl Rupp, 2018)

that analogy, it is safe to assume that in certain applica-
tions, the faster the clock ticks, the faster the job will get
done. The decay of CPU frequency then seems to be a fun-
damental mistake of computer architectures; however, this
analysis becomes more complex when we take into account
two critical variables in the equation: power consumed and
heat dissipated. Intel calls the speed/power tradeoff a “fun-
damental theorem of multicore processors” (The Intel Cor-
poration, 2017), as these two metrics must be balanced to
achieve the most efficient platform. A solution that has
been utilized over the last decade is the use of multiple
cores inside a single CPU chip. The increase of logical
cores allows instructions to be parallelized so the device
performs better. As a matter of fact, Intel reports that under-
clocking a single core by 20% saves half the power while
sacrificing just 13% of the performance. That means that if
you divide the work between two cores running at an 80%
clock rate, you get 73% better performance for the same
power (Philip E. Ross, 2008).

Given the previous analysis, a discussion of the proper
techniques for parallelization is in place. Work devel-
oped in (Fernandez et al., 2016) divided the parallelization
strategies into three main groups as follows:

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

e Instruction-level parallelism: A model in which
compilers put considerable effort into the organization
of the programs such that functional units and paths
to memory are busy with useful work. Unfortunately,
several studies showed that typical applications are not
likely to contain more than three or four different in-
structions that can be fed to the computer at a time in
this way, limiting the reach of this approach (Fernan-
dez et al., 2016).

e Task parallelism A fundamental model of architec-
tural parallelism is found in shared-memory parallel
computers, which can work on several tasks at once
by parceling tasks out to different processors by ex-
ecuting multiple instruction streams in an interleaved
way in a single processor.

e Data parallelism: A model in which instructions can
be applied to multiple data elements in parallel, thus
exploiting data parallelism. This computer architec-
ture extension is known as Single Instruction, Multi-
ple Data (SIMD).

Work developed in this paper will focus on the exploitation
of data parallelization techniques in processors through
SIMD instructions.

2. Intel SIMD Extensions

The Intel 64 and IA-32 Architectures are some of the most
dominant computer architectures in the world. Some re-
ports list them as being used in 80% of the personal com-
puters in the world today. This becomes more relevant
when another competitor in the market, Advanced Micro
Devices (AMD), has an architecture that is compatible with
Intel’s development. Data parallelism in the Intel and AMD
architectures happens through the SIMD extension for each
processor. These circumstances create a scenario where
layers of software are placed on top of the specific instruc-
tions to create generic implementations as seen per the de-
veloper.

The first extension of Intel supporting SIMD was the In-
tel MMX, unoficially known as Multi Media Extension
(MMX). The extensions were initially released to sup-
port graphics and multimedia operations (Greene, 1997),
but given the resemblance of operations, they represented
an ideal set of instructions for Digital Signal Processing
(DSP). After MMX, Intel released the SSE instructions.
The SSE instructions introduced eight 128-bit registers,
that were used for floating point and integer operations
across its many versions.

Intel’s AVX instruction set was the first of its kind in sup-
porting parallel operations of 256-bit size by promoting
the legacy 128-bit SIMD instruction sets that operate on

Bit#
511 256 255 128 127 0
o o ——
1 ZMM{JT YMMO XMMO
- -
P -
1 ZMM1 YMM1 XMM1
oo o oo o e o e o oam oam omw
e o @
i iy
1 ZMM31 YMM31 XMM31
| o

Figure 2. AVX512 ZMM registers for SIMD operations as an ex-
tension of the AVX YMM register and SSE XMM registers (The
Intel Corporation, 2017)

XMM registers to the YMM registers (The Intel Corpo-
ration, 2017). AVX extended most of the 128-bit size
operations into its 256-bits extension to support a three-
operand syntax. As an enhancement to Intel AVX, Intel
also introduced the Fused Multiply Add (FMA) extensions
to provide high-throughput, arithmetic capabilities cover-
ing fused operations combining multiplication with addi-
tion and subtraction. Intel AVX2 extends the AVX instruc-
tions by promoting most of the 128-bit SIMD integer in-
structions with 256-bit numeric processing capabilities. In-
tel AVX2 instructions follow the same programming model
as AVX instructions. In addition, AVX2 provides enhanced
functionalities for broadcast/permute operations on data el-
ements, vector shift instructions with variable-shift count
per data element, and instructions to fetch non-contiguous
data elements from memory (The Intel Corporation, 2017).

The latest extension to SIMD operations released by Intel
was AVX512. The AVXS512 extension family comprises a
collection of 512-bit SIMD instruction sets to accelerate a
diverse range of applications. Intel AVX512 instructions
provide a wide range of functionalities that support pro-
gramming in 512-256-128-bit vector registers, plus support
for opmask registers and instructions operating on opmask
registers.

CANNONLAKE

KNIGHTS MILLS

KNIGHTS LANDIN! - SKYLAKE

’ AVXS 1

Q AVX512-CD

AVX512-VPOPCNTDQ “AVX512-ER
AVX512-4VNNIW
AVX512-4FMAPS

AVX512-VL
AVXD512-BW
AVX512-DQ

AVX512-IFMA52
AVX512-VBMI

AVX512-PF

Figure 3. AVX512 Instructions available on a range of Intel pro-
cessors (Wikipedia contributors, 2018)

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

2.1. AVX-512 Instructions

The Intel AVX512 Instructions have around 12 subset in-
structions; some are supported by the Intel Xeon Phi pro-
cessors starting with the Intel Knights Corner (KNC) archi-
tecture !, and some will be supported by Intel Xeon proces-
sors. The distribution of supported instructions per proces-
sor type is shown in Figure 3.

2.1.1. AVX512-F

The “Foundation” instruction set is available on both pro-
cessor types (Intel Xeon Phi and Intel Xeon). It contains
vectorized arithmetic operations, comparisons, type con-
versions, data movement, data permutation, bitwise logical
operations on vectors and masks, and miscellaneous math
functions like min/max (The Intel Corporation, 2017). This
is similar to the core feature set of the AVX instruction set,
with the difference of wider registers and additional sup-
port in double precision and integer data types.

2.1.2. AVX512-CD

The “Conflict Detection” instruction set is available on both
processor types (Intel Xeon Phi and Intel Xeon). It con-
tains vectorized operations for memory conflict detection,
counting leading zeros count and performing broadcast op-
erations.

2.1.3. AVX512-ER

The “Exponential and Reciprocal” instructions are de-
signed to help implement transcendental operations and are
only available on Xeon Phi type of processors. This set
contains instructions for base 2 exponential functions (i.e.,
27), reciprocals, and inverse square roots. These instruc-
tions are available in both single and double precision, with
rounding and masking options.

2.1.4. AVX512-PF

The “Pre-fetch” instruction set contains pre-fetch instruc-
tions for gather and scatter instructions. Even though these
instructions provide software pre-fetch support, Knights
Landing (KNL) processors have a much heavier emphasis
on hardware pre-fetching.

2.1.5. AVX512-BW

The “Byte and Word” instructions allow support to 8 and
16-bit arithmetic and memory handling operations for the
512-bit registers.

"KNC was the first generation of Intel Xeon Phi processors

2.1.6. AVX512-DQ

The “Double-word and Quad-word” instructions support
arithmetic operations on Intel 64 and IA-32 Architecture’s
double-word (32-bits) and quad-word (64-bits) data types.

2.1.7. AVX512-VL

The “Vector Length” instructions allow for the AVX-512 to
operate on XMM (128-bits) and YMM (256-bits) registers

2.1.8. AVX512-IFMA

The “Integer FMA” instructions support integers FMA op-
erations with 512-bit precision resolution.

2.1.9. AVX512-VBMI

The “Vector Byte Manipulation Instructions” instructions
add additional capabilities not present in AVX512-BW and
extend operational data types.

2.2. Intel Xeon Phi

The Intel Xeon Phi processors are highly parallel proces-
sors with the Intel Many Integrated Core (MIC) architec-
ture (The Intel Corporation, 2017). Parallelism is present
in these processors at two levels: task parallelism and
data parallelism. Task parallelism comes from the multi-
ple number of cores in the processor while data parallelism
comes from support for the SIMD instructions.

Work presented here was tested in the Intel KNL 2 which
was released in 2016 and supports some of AVX512 exten-
sions discussed before. However, KNL, was not the first
processor to support the 512-bit instruction set. Back in
2012, Intel released its KNC processor, which was the first
Intel architecture processor to support 512-bit vectors. The
KNL architecture has a peak theoretical performance of 6
Tera Floating Point Operations per Second (TFLOP) in sin-
gle precision, which is triple of what KNC had. This per-
formance gain is partly due to the presence of two Vector
Processing Units (VPU) per core, doubled compared to the
previous generation (Zhang, 2016).

2.3. Intel Intrinsics Instructions

The Intel Intrinsic Instructions are C-style functions that
provide access to the SIMD instructions that were previ-
ously only accessible through assembly code. The speed up
presented in this work is by means of the intrinsics avail-
able to the CPU.

The function calls available on the intrinsics are mapped
into assembly code by the compiler before the program is
run. When an operation uses the intrinsics, it will try to

2KNL was the second generation of Intel Xeon Phi processors

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

take advantage of the CPU resources through paralleliza-
tion. The concept of maximum resource utilization is also
a common practice by compilers when parsing code. As
such, it is worth asking if there a use for the intrinsics in-
structions. Can compilers make use of the SIMD instruc-
tions when compiling code? How do the two approaches
compare?

To answer these questions, an analysis of the compiler au-
tovectorization tools is necessary. Autovectorization hap-
pens when compilers try to parallelize the code of a given
application using several techniques, including register
mapping, software pipelining, and loop unrolling (Naish-
los, 2004). Compilers are actually quite good at perform-
ing the latest techniques and can, on some occasion, return
better or similar results to manual optimization (Rondeau
et al., 2013). However, for more complex operations, com-
pilers are not able to fully parallelize the code to avoid mix-
ing the logic in code originally intended by the developer.
As this paper will show, Software Defined Radio (SDR)
signal processing has a plethora of operations where in-
trinsics show better performance than the autovectorization
tools of a compiler. This paper, however, does not use in-
line assembly to accomplish the speed up process, it rather
make efficient use of intrinsics programming through Vec-
tor Optimized Library of Kernels (VOLK). This approach
is ideal because of code simplicity, decreased development
time, and portable efficiency.

3. VOLK Implementation

VOLK as a library is an abstraction designed to fix these
problems of autovectorization and portability. The autovec-
torization dilemma is fixed by means of efficient loop un-
rolling techniques that follows the pseudocode of Listing
1. Each input vector is divided in data chunks that fit in
the targeted register size, then operations are performed in
a parallel fashion before being stored in the output memory
space selected by the calling function. Most functions will
finish then with the equivalent serial operations applied to
the data elements that do not fit in the register size.

The issue of portability is fixed by providing a platform-
agnostic interface called a kernel for each conceptual exe-
cution unit subject to SIMD vectorization (Rondeau et al.,
2013). At its base, VOLK has a set of proto-kernels de-
signed for particular platforms, SIMD architecture ver-
sions, or run-time conditions. The VOLK library com-
piles all possible proto-kernels supported by the compiler
toolchain. At run-time, during the first call to an abstract
kernel, VOLK resolves the kernel to a specific proto-kernel.
VOLK tests the run-time platform for its capabilities to en-
sure the resolved proto-kernel will run correctly and em-
ploys a dynamic rank-ordering to select the best possible
proto-kernel (Rondeau et al., 2013).

Listing 1. Generic protokernel pseudocode with loop unrolling

1 #ifdef LV_HAVEARCH

2

3 #include <extension include files>

4

5 static inline void

6 volk.in—tag_kernel —desc_out—tag_align_proto—kernel—desc
7 (input_params){

8

9 // Variable declarations

0 ...

11

12 // Loop unrolling

13 // Data parallelization over SIMD register
14 for () {

15 // Load data from memory to register
16 ...

17

18 // Perform kernel operations

9

20

21 // Store data from register to memory
22 ..

23 }

24

25 // Serial loop

26 // Items remaining after parallelization
27 for () {

28 // Perform kernel operations

29 L

30

31 // Store data to memory

32

33 }

34

35 #endif

Listing 2. Sample code for multiply proto-kernel using AVX512-
F Intrinsics Extensions

1 #ifdef LV_HAVE_AVX5I12F

2 #include <immintrin.h>

3

4 static inline void

5 wvolk.32f_x2_multiply_32f_u_avx512f(

6 floatx cVector, const floatx aVector,

7 const floatx bVector, unsigned int num_points)
8 {

9 // Variable declarations

10 unsigned int number = 0;

11 const unsigned int sixteenthPoints = num_points / 16;
12 floatx cPtr = cVector;

13 const floatx aPtr = aVector;

14 const floatx bPtr= bVector;

15 .-m512 aVal, bVal, cVal;

16

17 // Loop unrolling

18 // Data parallelization over SIMD register
19 for (;number < sixteenthPoints; number++){
20 // Load data from memory to register

21 aVal = _mm512_loadu_ps(aPtr);

22 bVal = _mm512_loadu_ps(bPtr);

23

24 // Perform kernel operations

25 cVal = _mm512_mul_ps(aVal, bVal);

26

27 // Store the results back into the C container
28 -mm512_storeu_ps (cPtr,cVal);

29 aPtr += 16;

30 bPtr += 16;

31 cPtr += 16;

32 }

33

34 // Serial loop

35 // Items remaining after parallelization
36 number = sixteenthPoints * 16;

37 for (;number < num_points; number++){

38 *cPtr++ = (xaPtr++) * (xbPtr++);

39

40 }

41 #endif /x LV_HAVEAVXS5I2F x/

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

3.1. Programming Model

As mentioned before most of the code development in
VOLK follows the pseudo-code shown in Listing 1. Line 1
is a safeguarded to ensure that only supported architectures
are processed. Line 6 is reserved for the function name. As
arule, all VOLK proto-kernels will start with the word volk,
after which the input tags will follow. The Input tags field
in the VOLK environment refer to the bit count and data
types the function will receive, e.g. 32 fc defines a 32 bit
floating point complex number. The kernel descriptor field
names the kernel being implemented with the architecture.
This is simply the name of the operation the function will
perform like multiply, divide, etc. The output tag field, sim-
ilar to its counter part for the input parameter, describes the
bit count and data types of the results of the operation. The
alignment field hold the type of alignment used for the data
loaded from memory. Finally the proto-kernel descriptor
field identifies the specific architecture being targeted by
the kernel, i.e. sse, avx, avx2, avx512f, etc.

Volk profile results

Volk_32¢_x2_maultiply_32¢

volk_32fc_32¢_d

Volk_321_x2_ints

0 00 20 0 00 EQ EQ 700 0
Protokernel runtime (ms)

Figure 4. VOLK Profiling results for Xeon Phi KNL, highlighting
AVX512-F improvements on the 32 f_x2 kernels

Line 14 starts the process of data parallelization with SIMD
registers. Initially the incoming data is loaded into the reg-
ister type targeted by the proto-kernel. Starting with the
SSE extensions, a dedicated set of intrinsics exists to per-
form “load” operations, handling internally the alignment
of the input data (The Intel Corporation, 2017). Line 18
will start the chain of operations needed to complete the
proto-kernel functionality. Most operations, when targeting
x86 systems will be completed by means of the intrinsics

extensions available to the system (The Intel Corporation,
2012). The online guide presented in (The Intel Corpo-
ration, 2012) organize the intrinsics by extensions and is
in the author opinion the most updated document available
for the code development. Line 21 will store the results in
the output variables dictated in the function call after the
operations required by the kernel are completed. In simi-
lar fashion to the loading procedure, moving data from the
dedicated registers to the output variables is managed inter-
nally by the intrinsics available to the processor.

Volk profile results

Volk_16ic_s32¢_m:

volk 321

Volk_32fc_s32¢_magnit

volk_32¢_x2.,

o 2000 000 000 5000 10000 2000 Ta000 15000
Protokernel runtime (ms)

Figure 5. VOLK Profiling results for Xeon Phi KNL, showing
AVX2 and FMA improvments on the 32f kernels

A final piece of the proto-kernel operation is to perform the
operation on the remaining data elements that were not able
to be parallelized by the loop unrolling techniques as shown
in Line 27. Code in this section will follow the generic
implementation with standard library function calls.

Listing 2 shows sample code for one of the proto-kernels
developed during this work. The code shows the same
guidelines offered in the generic pseudo code listing shown
before. Line 1 shows the targeted architecture of the proto-
kernel, AVX512-F in this case. Line 5 shows the function’s
name following the guidelines described before where:

e volk: required key word volk in use to start each
proto-kernel.

e input tags: defined as 32f_x2, indicating that it re-
ceives two (x2) input vectors of 32 bits floats values

(32f)

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

e kernel descriptor: defined as multiply, indicates
that a multiply operation is to be performed

e output tags: defined as 32 £, indicating that results of
multiplication is to be saved in a single 32 bits float
value (32f)

e alignment tag: input data is to be handle as unaligned

(w)

e proto-kernel descriptor: defined as avx512f, indi-
cates that proto-kernel targets AVX512-F extensions

Starting with line 10, all variable declarations are per-
formed, including the special types defined by the compiler
to handle the intrinsics operation. Line 19 starts the loop
unrolling process followed by the loading, multiplication
and storage operation. For vector sizes not multiple of the
register size targeted, a serial operation is performed in the
remaining data elements as shown in Line 36. Listing 2 is
just one of the many kernels added during this work and
should be available in the VOLK GitHub page in the near
future.

4. Profiling Results

A total of 82 kernels were improved by adding AVX,
AVX2, FMA, and/or AVX512 capabilities. The AVX and
AV X2 intrinsics were added to most of the kernels, while
AVX512-F, AVX512-CD was only added to a subset due to
the limited set of instructions/operations available in the ex-
tension set. Specifically, the lack of permute, xor, and shuf-
fle operations limited the kernels that could be improved
using AVX512-F and the Intel KNL architecture.

Figures 4-7 show the profiling results for a selection of
kernels. For each kernel, the profiling time for the fastest
aligned and unaligned versions of the kernel is plotted and
compared between the master branch of VOLK and the
next branch on which the AVX2 and AVX512 improve-
ments were made. It is important to note that although
the absolute proto-kernel runtimes seem long, we are only
concerned with the relative differences between the run-
times of comparable kernels. The runtimes are slower
because the KNL processor was used to perform profil-
ing, which uses slower CPU frequencies. The majority of
the VOLK kernels show a much faster runtime with the
AVX2/AVXS512-F improvements. Before these improve-
ments, most of the kernels used the generic or SSE instruc-
tion sets as their fastest implementation. The generic im-
plementation is generally especially slow because it does
not take advantage of any parallelization or use the Intel
intrinsics. However, with the AVX, AVX2, and AVX512-
F additions, many of the kernels are faster now than their
previous implementation.

Volk profile results

Volk_32fc_s32¢_deinterle:

Volk_32¢_x2_s32¢_interleas

000 500
Protokernel runtime (ms)

Figure 6. VOLK Profiling results for Xeon Phi KNL, showing
AVX?2 and FMA improvments on several 32fc and 32 f kernels

Volk profile results

Volk_8ic_deinter

Volk_16ic_s32f_deinter

volk_32f_s32¢_calc_spectral_noise f

500 7000 7500
Protokernel runtime (ms)

Figure 7. VOLK Profiling results for Xeon Phi KNL, highlight-
ing AVX?2 improvments on some of the convert and deinterleave
kernels

The volk_32f_sqrt_32f kernel is one of the functions
that shows the most improvement (Figure 5), from 14070
ms using generic to 820 ms using AVX, a 94% improve-

Accelerating software radios by means of SIMD Instructions: A case for the AVX2 and AVX512 Extensions

ment in speed. Many of the other kernels show perfor-
mance improvement of 50% or more, especially many of
the more complex 32f math operations such as sine and
power. Most of the significant improvements in speed come
from an upgrade from generic or SSE to AVX2 (mostly in
Figures 5-7). Smaller performance improvements were ob-
served between AVX2 and AVX2 with FMA, and between
AVX2 and AVXS512-F (Figure 4). Greater performance
improvements were also realized on kernels that required
more mathematical processing, as these used more instruc-
tions, allowing more improvement when the parallel pro-
cessing was increased from 128-bit to 256-bit or 512-bit.

5. Conclusions

The results in this paper show that the addition of AVX2
and AVX512 to the VOLK Library kernels will provide
great improvement to the software using its mathemati-
cal capabilities such as GNU Radio or Global Naviga-
tion Satellite System Software Defined Radio (GNSS-
SDR)(Fernandez—Prades et al., 2011). These improve-
ments were only experimented on Xeon Phi x86 proces-
sors, but cross compatibility with similar architecture like
that of Xeon processors should allow the results to be eas-
ily usable. In addition because the AVX512 capabilities
are only present in x86 processors, we did not focus on
the implementation of similar technologies in embedded ar-
chitectures, particularly those provided by Advanced RISC
Machines (ARM) processors.

Given the evolution of Intel processors and the proliferation
of the processors in consumer markets that support this set
of advanced extensions, it is only natural to assume that
further work will be focused on supporting the remaining
AVX512 flavors, i.e AVX512-BW, AVX512-DQ, etc with
the intention to further improve DSP speeds in SDR appli-
cations.

6. Software and Data

Code developed for this work was submitted to the VOLK
repository as a pull request. At the moment of this writing
the pull request was accepted and pending a merge process
with the master branch. Details of the pull request can be
found at https://github.com/gnuradio/volk/
pull/190

Acknowledgments

The authors would like to thank Eric K. Lai and the Dig-
ital Communications Implementation department at The
Aerospace Corporation for their contributions to this work.
They would also like to thank the GPS Directorate Ad-
vanced Technology Branch for sponsoring this investiga-

tion of software radios.

References

Fernandez, Carles, Arribas, Javier, and Closas, Pau. Ac-
celerating GNSS Software Receivers. In Proceedings of
the 29th International Technical Meeting of The Satel-
lite Division of the Institute of Navigation (ION GNSS+
2016), pp. 44-61, Portland, OR, 2016.

Fernandez—Prades, C., Arribas, J., Closas, P., Avilés, C.,
and Esteve, L. GNSS-SDR: An open source tool for
researchers and developers. In Proc. of the ION GNSS
2011 Conference, Portland, Oregon, Sept. 2011.

Greene, M. A. Pentium(r) processor with mmx/sup tm/
technology performance. Proceedings IEEE COMP-
CON 97. Digest of Papers, pp. 263-267, 1997.

Karl Rupp. 42 Years of Microprocessor Trend Data, 2018.
URL https://www.karlrupp.net/2018/02/
42-years—of-microprocessor—-trend-data/.

Naishlos, Dorit. Autovectorization in GCC. Proceedings of
the 2004 GCC Developers Summit, pp. 105-118, 2004.

Philip E. Ross. Why CPU Frequency Stalled -, 2008. URL
https://spectrum.ieee.org/computing/
hardware/why-cpu-frequency-stalled.

Rondeau, T, McCarthy, N, and O’Shea, T. SIMD
Programming in GNU Radio: Maintainable und
User-Friendly Algorithm Optimization with VOLK.
WinnForum’s SDR conference, 86:101-110, 2013.
URL http://50.19.239.22/redmine/
attachments/422/volk.pdf.

The Intel Corporation. Intel Intrinsics Guide, 2012.
URL https://software.intel.com/sites/
landingpage/IntrinsicsGuide/{#}techs=
AVX, AVX2 {&}expand=3924, 3894, 2758.

The Intel Corporation. Intel ®) 64 and IA-32 Architectures
Software Developer ° s Manual Volume 1 : Basic Archi-
tecture. Technical Report 253665, The Intel Corporation,
2017.

Wikipedia contributors. Avx-512 — Wikipedia, the
free encyclopedia. https://en.wikipedia.
org/w/index.php?title=AVX-512&0ldid=
837564204, 2018. [Online; accessed 23-April-2018].

Zhang, Bonan. Guide to Automatic Vectorization
with Intel AVX-512 Instructions in Knights Landing
Processors. Technical report, Colfax International,
2016. URL https://colfaxresearch.com/
knl-avx512/.

https://github.com/gnuradio/volk/pull/190
https://github.com/gnuradio/volk/pull/190
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
https://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
http://50.19.239.22/redmine/attachments/422/volk.pdf
http://50.19.239.22/redmine/attachments/422/volk.pdf
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{#}techs=AVX,AVX2{&}expand=3924,3894,2758
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{#}techs=AVX,AVX2{&}expand=3924,3894,2758
https://software.intel.com/sites/landingpage/IntrinsicsGuide/{#}techs=AVX,AVX2{&}expand=3924,3894,2758
https://en.wikipedia.org/w/index.php?title=AVX-512&oldid=837564204
https://en.wikipedia.org/w/index.php?title=AVX-512&oldid=837564204
https://en.wikipedia.org/w/index.php?title=AVX-512&oldid=837564204
https://colfaxresearch.com/knl-avx512/
https://colfaxresearch.com/knl-avx512/

