Experiences with using GNU Radio for
Real-time Wireless Signal Classification

Christopher Becker
Aniqua Baset
Sneha Kasera

CBECKER@CS.UTAH.EDU
ANIQUA@CS.UTAH.EDU
KASERA@CS.UTAH.EDU

University of Utah, 50 Central Campus Drive, Salt Lake City, UT 84112 USA

Kurt Derr
Samuel Ramirez

KURT.DERR @INL.GOV
SAMUEL.RAMIREZ@INL.GOV

Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID 83415 USA

Abstract

The ability to monitor the wireless spectrum
in real-time is important in a variety of envi-
ronments including high-security and control-
system environments such as power plants and
military facilities, as well as shared spectrum
environments such as the 3.5 GHz band model
that was announced by the Federal Communica-
tions Commission (FCC). In all of these cases,
real-time detection and classification of signals
while minimizing missed detections and misclas-
sifications is paramount. Motivated by these im-
portant applications, we built a real-time system
for spectrum monitoring and analysis which uses
GNU Radio and Universal Software Radio Pe-
ripheral (USRP) X310s. In this paper, we fo-
cus on the GNU Radio-specific implementation
challenges we face as well as the approaches
we take to tackle these challenges. We also
present our experiences with our implementa-
tion. We show that in some instances, partic-
ularly message passing, we can achieve a sub-
stantial improvement in processing performance
by using alternative mechanisms, including Qt
Signals and Slots (yielding a 78x performance
improvement) and treating streams of data as
strings, or by simply improving upon the exist-
ing code such as switching to using VOLK.

1. Introduction

The ability to monitor the wireless spectrum in real-
time is important in a variety of environments includ-

Proceedings of the 3" GNU Radio Conference, Copyright 2018
by the author(s).

ing high-security and control-system environments such
as power plants and military facilities, as well as shared
spectrum environments such as the 3.5 GHz band model
that was announced by the Federal Communications Com-
mission (FCC) in rulings (FCC, April 2012) (FCC, July
2012)(FCC, April 21, 2015). In the case of high-security
and control-system environments, only a limited number
of signal types may be allowed for security reasons. These
environments can be impacted in different ways: changes
in the signals, either the addition of unauthorized signals or
the removal of authorized signals, may indicate the pres-
ence of an adversary or a problem that must be addressed
quickly to avoid possible consequences such as a breach
or system failure; devices that do not act as intended or
emit additional signals can cause interference or problems
within the environment. In the case of the shared spec-
trum environment, a three-tier model has been proposed
which provides different levels of service to different types
of users: incumbent users (e.g., naval radars), priority ac-
cess license (PAL) users (e.g., mobile service providers),
and generalized authorized access (GAA) users which is
controlled by a Spectrum Access System (SAS). Incum-
bent users are guaranteed to have the highest priority and
interference-free access of the band. PAL users have priori-
tized access of the band when incumbents are absent. GAA
users may use the band, but must not interfere with incum-
bent or PAL users and are not guaranteed an interference-
free environment. Efficient mechanisms and protocols
must be used for various tasks related to shared access en-
forcement: detecting the presence of incumbent transmit-
ters, channel allocation among PAL users, and spectrum us-
age enforcement among PAL users and GAA users with the
tiered access. The SAS must react quickly as the environ-
ment changes (e.g., an incumbent transmitter comes online)
so as to provide the guarantees required by the different
users. In all of these cases, real-time detection and classi-
fication of signals while minimizing missed detections and
misclassifications is paramount.

Experiences with using GNU Radio for Real-time Wireless Signal Classification

Motivated by these important applications, we built a real-
time system for spectrum monitoring and analysis which
we report in (Becker et al., Under Submission, 2018) which
uses GNU Radio (GNU Radio) and Universal Software Ra-
dio Peripheral (USRP) (Ettus Research, 2017b) X310s. In
that work, we focus on the system capabilities, the classi-
fication techniques used, and the classification results. In
this paper, we focus on the GNU Radio-specific implemen-
tation challenges we face as well as the approaches we take
to tackle these challenges. We present our system (Becker
et al., Under Submission, 2018) briefly in Section 2. How-
ever, this system only serves as an example, but the chal-
lenges we identify can apply to other real-time, high sample
rate tasks built on GNU Radio. The challenges we tackle
in this paper include:

e GNU Radio message passing

overflow and dropped packet detection

e non-optimized block implementations

dynamic decimation

the GNU Radio scheduler bottleneck

no GPU acceleration

We evaluate the performance of our approaches. We show
that in some instances, particularly message passing, we
can achieve a substantial improvement in processing per-
formance by using alternative mechanisms, including Qt
Signals and Slots (yielding a 78x performance improve-
ment) and treating streams of data as strings, or by simply
improving upon the existing code such as switching to us-
ing VOLK. We also show that improving the performance
is very challenging and that an approach that works in one
instance will not always work in other instances so a variety
of techniques, including combining blocks and alternative
uses for built-in mechanisms, must be employed and tested.

Feedback for noise floor calculation

: Noise floor §
i calculator : Alist of
""" (signal_class, center_freq, score)
Energy-based found in last {, sec
Classifier (EBC)
RF
Merger
Measurements 9 Amerged list of
(signal_class, center_freq, score)
found in last tn sec
Machine Learning- Alist of
based Classifier ["(signal_class, center_freq, score)
Performance (MLBC) found in last t, sec
Monitor
Usage control

Figure 1. System Architecture

2. System Overview

This section provides an overview of a subset of the sys-
tem which we reported in (Becker et al., Under Submis-
sion, 2018). Again, while we provide this as a fully work-
ing example that incorporates the challenges we identify,
we believe these challenges apply to other real-time, high
sample rate systems using GNU Radio. Note that we are
not claiming any contributions in regards to the system in
Figures 1 and 2.

Figure 1 provides an overview of our real-time classifica-
tion system. The system itself is implemented as two sepa-
rate C++ applications using Qt4 (Qt) and GNU Radio. The
first application runs our classification scheme while the
second application monitors the performance of our classi-
fication scheme. The reasons for the second application are
discussed in Section 3.2. Our classification scheme consists
of a low-cost, but typically less accurate classification tech-
nique (Energy-based Classifier) which runs continuously
and a compute-intensive, but more accurate classification
technique that runs occasionally (Machine Learning-based
Classifier). The results from the techniques are merged to
form a final result. This final result is processed further on
another machine as well as used to provide feedback to the
low-cost classification technique to improve its accuracy.

Figure 2 provides an outline of the flowgraph used to im-
plement our classification system in GNU Radio. A “UHD:
USRP Source” configured with a sample rate of 25 MHz
and using a tune request for the center frequency is used to
provide samples to the flowgraph. The samples are first run
through a Fast Fourier Transform (FFT) block before being
sent to both classification paths.

The low-cost classification technique we use is an energy-
based classifier. This classification path consists of a power
spectral density (PSD) calculator, noise floor calculator,
and multiple signal classifiers. Each signal classifier con-
sists of multiple blocks: a dynamic cutoff calculator, peak
detector, bandwidth and/or timing analyzer, and a pattern
matcher. The PSD, noise floor calculator, and dynamic cut-
off calculator are used to dynamically determine the noise
floor cutoff to use for classification based on feedback pro-
vided by the merger. The peak detector and bandwidth and
timing analyzers extract features that are then used by the
pattern matcher to provide classification results.

The compute-intensive classification we use is a machine
learning-based classifier. This classification path consists
of a data reducer, a feature set calculator, and a signal clas-
sifier. The data reducer is used to reduce the number of
samples sent to the rest of the path and therefore limit the
amount of computation done by the path based on feed-
back from the external performance monitor. The feature
set calculator computes the Spectral Correlation Function

Experiences with using GNU Radio for Real-time Wireless Signal Classification

Energy-based Classifier (EBC) Feedback: cut-off multiplier, m

Signal Classifier|1
cut-off

mean of lowest

N..- . 3 ;
- n values, i Foemeen eeeed s S U MO e ymasked [Analyzer L_ g
1 Dynamic Cutoff ———"! Peak :_PSD i Pattern |
Calculator std of lowest n -._CE]ID'{IHT:E”_ | :_F)ﬁt_e_:itp_r_i B g | Alist of (signal class, center

| Bandwidth :

values, 0 B § freq, score, count) detected in
- d last t, sec
| Signal Classifier 2 |
| Signal Classifier n |
sarr‘gles FFT Merger >
Amerged list of (signal class,
center freq, score, count)
detected in last t,, sec
Signal Classifier /'
i SCF, a-profile | ;-emeemeemee s
Data iliniCichinks TR SRR E iOne-class: |fnotnovel i Multi-cl | Alist of (signal class, center
Usage Reducer| ¢ js ined based on (SCF and a-profile) ' SVM —_— USI\}CMESS H freq, score, count) detected in
Control UEED Eiie] 8 ccomnomood Lo oYM last t, sec
Machine Learning-based Classifier (MLBC)
Performance

Monitor

Figure 2. Classification Flowgraph

(SCF) (Roberts et al., 1991) and a-profiles (Fehske et al.,
2005) which are used as features for our machine learning
models. The signal classifier module runs our pre-trained
SVM (Cristianini & Shawe-Taylor, 2000) models on the
feature set to determine the signal class and then forwards
the results to the merger.

The merger takes classifications results from the two clas-
sification paths to determine final classification results for
the classifier. These results are used to determine feedback
to provide to the energy-based classifier for adjusting the
noise floor cutoff calculation. The results are also sent to
another system for further processing. Currently, the results
are sent every two seconds, giving us under two seconds to
perform the classification and send the results.

Due to our extensive use cases, our goal is to provide all this
functionality on a system that does not require external net-
work access and is somewhat mobile. Therefore, we target
being able to run this part of our system on a high-powered
laptop. This is also a constraint in terms of resources that
we can use, forcing us to focus on optimizing performance
whenever possible.

3. Challenges and Approaches

In the following subsections, we discuss the challenges we
face while implementing our classification system using
GNU Radio and the approaches we use to tackle these chal-
lenges.

3.1. Message Passing

One of the challenges we face is limitations with the
message passing capabilities included within GNU Ra-

dio. Within GNU Radio, messages can be passed by ei-
ther adding tags to streams of data or by sending messages
between blocks. In the energy-based classifier path, data
about signals is sent between the peak detector and band-
width and timing analyzer blocks for feature extraction.
Since we no longer need the raw samples after the peak de-
tector, adding tags to a stream of data we no longer needed
is inefficient. However, we quickly find out by ‘“asyn-
chronous message buffer overflowing, dropping message”
warnings that we are sending more data than the GNU Ra-
dio messages framework can handle.

We use a variety of approaches to bypass the limitations of
the message passing capabilities included within GNU Ra-
dio. In some cases, we use standard streams as fixed-sized
formatted data strings to pass information between blocks.
As one example, between two of our blocks, byte strings
are used to represent true and false values. As another ex-
ample, between other blocks, we use fixed-sized integer
strings where non-used values of the stream are set to -1 to
denote the end of useful information. While this approach
is probably less useful in general blocks as the stream for-
mat needs to be clearly defined and some processing over-
head is incurred in processing the streams, using streams
in alternative ways can be an excellent approach between
custom purpose-driven blocks that require data to be sent
rapidly between each other.

In other cases, we use the Signals and Slots mechanisms in
Qt to pass information between blocks that did not involve
the overhead of encapsulating and unecapsulating the data.
In order to keep our options open as far as using the blocks
for both GNU Radio Companion (GNU Radio Companion)
and within our own applications, blocks that use the Signals
and Slots functionality are implemented as Qt Objects with

Experiences with using GNU Radio for Real-time Wireless Signal Classification

thin GNU Radio block wrappers around them. While used
in GNU Radio Companion, the GNU Radio block wrap-
pers and GNU Radio’s message passing mechanisms are
used. However, both the GNU Radio blocks and the un-
derlying Qt Objects are accessible in both C++ and Python
code, allowing flexibility in usage particularly when used
outside of GNU Radio Companion. For example, between
the merger block and the dynamic cutoff calculator block,
this approach is taken to pass changes given as feedback to
the energy-based classification path.

As an approach similar to the Signals and Slots mecha-
nisms in Qt, in some cases callback functions are used to
move data as well. In particular, we use this approach to
connect the thin GNU Radio wrappers to the underlying Qt
Object block implementations. We provide an evaluation
of the performance difference between passing data using
GNU Radio’s message passing capabilities and using Qt’s
Signals and Slots mechanism in Section 5.1.

Input GNU Radio (PMT) Message

Request
1% GNURadioBlock | y GNU Radio Block / g
A ~" g A 4
Output
Message Message
FL\llr\{gtrilén Generation Handling Fxxgtrilén - ll'
Function Function
I Callbackh 1 LY
V2 [4 64 \° 10
. 3 7
Processing > Output Update Output
Function Function Function > Function

5
Qt Object B ¥

Qt Object

Qt Signal and Slot

Figure 3. GNU Radio/Qt Object Blocks

Figure 3 provides an example overview of two Qt Ob-
ject classes (bottom portions) with thin GNU Radio block
class wrappers (top portions). The classes on the left take
GNU Radio data streams and create asynchronous mes-
sages based on the input. The blocks on the right re-
ceive asynchronous messages and produce GNU Radio
data streams based on the messages. The following steps
are performed:

1. GNU Radio passes the input stream(s) to the GNU Ra-
dio block’s work function

2. The work function passes the data to the internal QT
Object’s processing function

3. The processing function prepares data to be forwarded
to other blocks via either GNU Radio Messages, Qt
Signals and Slots, or a combination of the two

4. The output function calls the GNU Radio block’s mes-
sage generation function when output is ready and
data is converted to GNU Radio message

5. Data is forwarded via the appropriate mechanisms to
the next block

6. Data is converted from GNU Radio message to data
(if necessary)

7. Internal data is updated and prepared for output
8. GNU Radio requests the block produce output

9. The work function passes the output buffer to the in-
ternal Qt Object’s output function

10. The Qt Object’s output function fills the buffer and
returns control to the work function

11. The work function returns the output to GNU Radio

3.2. Overflow and Dropped Packet Detection

One of our longest-lasting challenges has been detecting
overflows and dropped packets at run-time so that we can
adjust the performance of our system dynamically. While
the UHD source block will tag a stream with a new times-
tamp when an overflow or dropped packet occurs, no
other information about the event is provided. Likewise,
the UHD driver sends information about overflows and
dropped packets to the stderror output and does not provide
the details via its API in a way that is accessible to GNU
Radio flowgraphs. Without this information, it is very dif-
ficult to maximize the performance of the flowgraph with
the computational overhead versus classification accuracy
trade off we face, particularly when the system resources
may vary due to other processes starting or stopping or
changes in processing requirements by other processes.

Performance counters, such as those described in (Ron-
deau et al., 2013) are useful tools during development, but
we find them not as useful or as informative as we would
like during run-time. To handle detecting overflows and
dropped packets, we develop a separate program which
takes piped stderror output from our classification program
as well as information from the operating system to de-
termine whether or not any overflow or dropped packets
occur or if they are likely to occur. The program parses
the stderror output from the classification program and
looks for the number of “O’s” and “D’s” coming from the
UHD driver as a metric to determine overflow and dropped
packet rates. It then uses that information along with other
information from the underlying operating system (e.g.,
network buffer usage, CPU usage, etc.) to send signals to
the classification system to reconfigure itself and change
the portion of samples being sent through the data reducer
block to the machine learning-based classification path. By
changing the number of samples being sent to our more
compute-intensive part of our flowgraph, we can adjust to
the changes in the operating environment as the work in the

Experiences with using GNU Radio for Real-time Wireless Signal Classification

Listing 1. ‘add_cc’ block work function for complex data type af-
ter template expansion

Listing 2. ‘add_cc’ block work function for complex data type us-
ing VOLK

gr_complex xoptr =
(gr_complex x) output_items [O0];
int ninputs = input_items.size ();
for (size_t 1 = 0;
i < noutput_itemsxd_vlen;
i++){
gr_complex acc =
((gr_complex x)
input_items [0])[i];
for (int j = 1; j < ninputs; j++)
acc +=
((gr_complex x)
input_items[j])[1i];
xoptr++ = (gr_complex) acc;

}

return noutput_items;

gr_complex xout =
(gr_complex *x) output_items[O0];
int noi = d_vlenxnoutput_items;
memcpy (out ,
input_items [0],
noixsizeof (gr_complex));

for(size_t i = 1;
i < input_items.size ();
++1){

volk_32fc_x2_add_32fc(out, out,
(const gr_complexx) input_items/[i],
noi);
}

return noutput_items;

blocks will be completed quicker and the blocks will not be
called as often by the scheduler.

3.3. Non-optimized Block Implementations

While attempting to optimize the performance of our flow-
graph, we find some of the standard blocks within GNU
Radio to not always be the most optimized implementa-
tions, at least for our specific use cases. For example,
the standard ‘add_cc’ block does not take advantage of
VOLK to add the samples together rather than iterating
over each individual sample. The difference between the
standard and VOLK implementations is shown in List-
ings 1 and 2 respectively. Another example is the log power
FFT block. This block is a hierarchical block which uses
a combination of ‘stream_to_vector_decimator’, ‘fft_vcc’,
‘complex_to_mag_squared’, ‘single_pole_iir_filter_ff’, and
‘nlog10_ff” blocks to calculate the result. This block takes
samples, computes the FFT internally and then calculates
the PSD from those values using non-optimized code (i.e.,
does not take advantage of VOLK to speed up processing).
However, in our case, we had to calculate the FFT for both
classification paths, but only used the PSD for one of the
paths, which meant we would have added additional com-
putational overhead by using the standard blocks.

We reimplement several standard blocks to have them use
VOLK or better serve our needs, reduce overhead, and pro-
vide better performance. These blocks are: ‘add_cc’, ‘fft’,
log power FFT, and ‘analog_const_source’. We switch the
add_cc block to using VOLK as shown above. We reduce
the fft block overhead slightly and change it to better serve
our interests. For example, we change the input to allow

streamed input similar to the log power fft block. Chang-
ing the input also allows us to reduce our flowgraph by a
block which can be important as described in Section 3.5.
We break down the log power FFT as described above and
change to using VOLK when possible. We change the ana-
log_const_source block so we can change the value it is
sending dynamically via messages. We evaluate the per-
formance differences in Section 5.2.

3.4. Dynamic Decimation

One of our more recent challenges encountered while
working on interaction between our performance monitor
and flowgraph is dealing with dynamic decimation val-
ues. Our data reducer block, which allows us to adjust the
amount of processing we are doing, has a constant decima-
tion rate between commands from the performance moni-
tor to change the amount of samples sent to the machine-
learning based classifier. However, even while pausing and
reconfiguring the flowgraph, we ran into issues with the
buffer sharing methods used by GNU Radio. When the
flowgraph would be restarted, we would get errors from
GNU Radio that the input buffers to the block did not con-
tain enough samples to be processed.

We find that by deleting elements in the flowgraph that
change decimation, as well as the immediately preced-
ing blocks, and re-initializing them while reconfiguring
the flowgraph we are able to bypass the issues with the
buffers. By deleting multiple blocks and re-initializing
them, buffers are also reinitialized to the correct sizes.
Howeyver, this also results in a loss of data due to the sam-
ples in those buffers being lost. We find that being able to
have the flowgraph adapt to outside influences (e.g., system
processing changes) quickly can be very useful.

Experiences with using GNU Radio for Real-time Wireless Signal Classification

3.5. Scheduler

Our most recent challenge encountered is when we run our
flowgraph with a large number of blocks/threads, we actu-
ally see the thread used by the GNU Radio scheduler seem
to become a bottleneck for the flowgraph. We monitor the
processing load of individual threads within a process us-
ing the fop command in Linux. Our application consists of
roughly 40 threads. While monitoring the thread process-
ing load, we see the thread containing the scheduler staying
at a consistent 100% CPU usage, while the threads for the
blocks themselves utilizing very little CPU usage and the
UHD driver reporting overflows and dropped packets.

Having the GNU Radio scheduler be a bottleneck is still
an open challenge for us. Currently, we have started trying
to reduce the number of threads by reducing the number
of blocks. If we reduce our thread count by as little as
one thread, the CPU usage seems to spread out across the
processors and stay in the 70-80% utilization range, un-
derutilizing the processor. In many cases we combine the
functionality of multiple standard blocks into a smaller set
of newly-implemented blocks. In other cases, we change
blocks to accept multiple inputs rather than limiting it to
one input. In both cases, this has the effect of having fewer
blocks that each do more work. When we run the flow-
graph using these new blocks, the GNU Radio scheduler
thread does not seem to be as much of a limiting factor to
throughput. An evaluation involving combining blocks and
adding inputs to blocks is provided in Section 5.3.

3.6. GPU Acceleration

We also explore using GPU acceleration, as explored by
works such as (Gunther et al., 2017), (Hitefield & Clancy,
2016), and (Piscopo, 2017), for increasing the performance
of our classification system, particularly one part of the
machine-learning based classifier. We implement the fea-
ture set calculator (SCF and a-profile) block (as shown in
Figure 2) as a CUDA kernel wrapped in a GNU Radio
block. After several attempts at optimizing the implemen-
tation however, we come to a similar conclusion as (Hite-
field & Clancy, 2016) and (Piscopo, 2017): the current im-
plementation of GNU Radio does not lend itself well to
GPU acceleration due to the limited data buffer sizes and
the memory copying overhead for the blocks we are using.

In the end, we abandon the GPU acceleration approach
and take the approach of using VOLK whenever possible
as well as optimizing our own code as needed by various
methods. Due to the amount of memory we have access to
on our computers, we tend to focus on processing optimiza-
tion rather than memory optimization. Focusing on pro-
cessing optimization over memory optimization allows us
to use constructs such as heaps and lookup tables to quickly
find and manipulate internal data within our blocks while

Table 1. Laptop Configurations

Development | Testing and
and Testing Evaluation
Operating System Ubuntu Ubuntu
14.04.1 (LTS) | 18.04 (LTS)
UHD Version 3.11.0 3.11.1
GNU Radio Version 3.7.11 3.7.12
LibVOLK Version 1.3.0 1.4.0

Table 2. X310 Configurations

Development | Testing and
and Testing Evaluation
Revision 6 8
Firmware Version 5.1 6
FPGA Version 33 35

leading to slightly larger memory usage.

4. Setup

For all of our work, we use Dell M4800 laptops with in-
creased RAM (2.8 GHz, 4-core 64-bit Intel i7-4810MQ
processor and 32 GB of RAM) and USRP X310s using
a 1 Gbps Ethernet Link, providing us with a sample rate
of 25 MHz. Table 1 provides an overview of the laptop
configurations we use. In both cases, the build GNU Radio
script (GNU Radio Build Script) (slightly modified to work
with Ubuntu 18.04) is used to install GNU Radio and its de-
pendencies, including USRP Hardware Driver (UHD) (Et-
tus Research, 2017a) and LibVOLK (VOLK). Table 2 pro-
vides an overview of the X310 configurations we use.

5. Evaluation

In this section we evaluate some of the performance im-
provements made by the approaches used to meet the chal-
lenges we face in areas of Message Passing, Non-optimized
Implementations, and the Scheduler as described in Sec-
tions 3.1, 3.3, and 3.5 respectively. For the tests, we use
4096 samples as the target number of samples due to the
default behavior of buffers and the scheduler in GNU Ra-
dio as discussed in (Piscopo, 2017).

5.1. Message Passing

We test the performance of sending messages through the
message passing mechanisms built into GNU Radio com-
pared to using the Signals and Slots mechanism included in
Qt. For this test, we implement two blocks that can either
use GNU Radio’s message passing mechanisms or the Qt
Signals and Slots mechanisms. The first block receives a
stream of integers and forwards them (as long integers) to

Experiences with using GNU Radio for Real-time Wireless Signal Classification

Table 3. Median Time to process 4096 outputs for various imple-
mentations

Implementation Median Time
Standard Complex Add | 0.00143647193909
VOLK Complex Add 0.00141096115112
Log Power FFT 0.0159084796906
PSD 0.0158760547638

the other block via one of the two mechanisms. The median
time for 100 trials to process 4096 samples using GNU Ra-
dio’s message passing mechanisms was 0.263926029205
seconds while the median time for the same setup using
Qt’s Signals and Slots mechanism was 0.00337398052216
seconds (more than a 78x performance improvement).

5.2. Non-optimized Implementations

We test the performance result of reimplementing some of
the standard blocks to be more optimized or better suit our
needs. Table 3 provides an overview of the median time it
took to process 4096 samples for the different implementa-
tions. To get the median time, we performed the tests 100
times. For these tests, we compare the standard Complex
Add block with our new VOLK Complex Add block as well
as the standard Log Power FFT block with our PSD block
which uses VOLK. As can be seen, in both cases our new
implementations provide better performance. This perfor-
mance gain can be substantial in the long run, particularly
at high sample rates as well as when combined with other
performance improvements made in other areas.

Mean

Std. Dev.

Cutoff
Calculator

» Null Sink

Protocol 1

Q
O
O

Protocol n

Figure 4. Flowgraph for Single Cutoff Calculator Timing Test

5.3. Combining Blocks or Adding Inputs

We test the performance result of reducing the number of
blocks through combining blocks and/or adding additional
inputs to the same block. For these tests, n represents
the number of wireless protocols our classification system

Mean
Std. Dev.
Cutoff
Calculator 1 X
Protocol 1
8 Null Sink

O 3 e

@)

o | Cutoff | .

... Calculator n

Protocol n

Figure 5. Flowgraph for Multiple Cutoff Calculators Timing Test

Mean Add 1
g
! O
Std. Dev. O Null Sink

. O
Multiply 1 |-X I
Protocol 1 o Add n
©)
Q O
Q
o Multiply n

Protocol n

Figure 6. Flowgraph for Add and Multiply Timing Test

would be classifying against.

Figures 4, 5, and 6 give an overview of the flowgraphs used
for our tests. In these tests, we compare our custom cut-
off calculator block and standard add and multiply blocks.
In each setup, one ‘vector_source’ block is used to repre-
sent each protocol as well as two additional vector_source
blocks to represent the mean and standard deviation used
for the noise floor cutoff. Using the standard add and mul-
tiply blocks, this means we have 3 *n 4 3 blocks in play (n
add blocks, n multiply blocks, n + 2 vector_source blocks,
and 1 null sink), resulting in 3 * n + 3 threads. However,
using our custom cutoff calculator block, we compute the
same results using either 2 ¥ n 4 3 or n 4 4 blocks (n + 2
vector_source blocks, 1 or n cutoff calculators, and 1 null
sink), resulting in 2%n + 3 or n+ 4 threads. Figure 7 shows
the median time it took to get 4096 samples through our
new custom cutoff calculator block versus completing the
same operations using standard add and multiply blocks.
Each test was run 50 times to determine the median. As
can be seen, as more protocols are used, the larger the per-
formance increase by reducing the number of blocks. The
number of protocols our system will classify against will
vary depending on the application, anywhere from less than
10 in the case of most licensed bands, to potentially 10s to
100s in the case of an unlicensed (e.g., ISM) band.

Experiences with using GNU Radio for Real-time Wireless Signal Classification

—— Combined
Somewhat Combined
- Separate

0.030 4

0.025 4

0.020 4

0.015 1

Median Run Times

0.010 4

0.005 4

0.000

T T T T T T
0 20 40 60 80 100
Number of Protocols

Figure 7. Median time to run 4096 samples through a single cus-
tom block (combined), multiple custom blocks (somewhat com-
bined), and separate add and multiply blocks (separate)

PSD
A\ Peak

Protocol 1 —— | Detector

Q
Q
O

A 4

Null Sink

Protocol n

Figure 8. Flowgraph for Combined Block Input Test

However, it is important to note that this performance in-
crease is not always the case. Another test we run involves
reducing the number of blocks by increasing the number
of inputs that block will handle. Figures 8 and 9 give an
overview of the flowgraphs used for a single peak detec-
tor with more inputs and multiple peak detectors. In each
setup, one ‘vector_source’ block is used to represent the
PSD data as well as n vector_source blocks to represent
the values used for each protocol, resulting in n + 3 or
2 % n + 2 threads respectively. Figure 10 shows the me-
dian time it took to get 4096 samples through our peak
detector block. As can be seen, in this case, the perfor-
mance actually decreases when adding more inputs to the
block without converting it to a multi-threaded version.
We are still investigating the step-like appearance, partic-
ularly in the case of the single peak detector. However, at
this time it appears to correlate with increases with data
cache misses in the vector_source and peak detector block
seen using cachegrind (Cachegrind). Similar to the dis-
cussion in (Piscopo, 2017), different approaches are some-
times needed depending on the type of operations being

PSD —
Peak
Detector 1 X
Protocol 1 —/—>
Q Null Sink
i @]]
Q O
0
O Sea| Peak |
»| Detector n
Protocol n

Figure 9. Flowgraph for Separate Block Input Test

—— Combined

Separate
0.10 1

0.08

0.06

Median Run Times

0.04 1

0.02 1

0.00 1

T T T T T T T T
0 20 40 60 80 100 120 140
Number of Protocols

Figure 10. Median time to run 4096 samples through one block
with multiple inputs versus multiple blocks

performed within a block.

6. Conclusion

In this paper, we presented our experience with using GNU
Radio and the USRP X310 to build a real-time spectrum
monitoring and analyzing system. We identify important
challenges we experienced using GNU Radio to implement
our real-time system for spectrum monitoring and analy-
sis as well as the approaches we took to tackle the chal-
lenges. We also evaluated the performance of some of our
approaches. We showed that in some instances, particu-
larly message passing, we can achieve a substantial im-
provement in processing performance by using alternative
mechanisms, including Qt Signals and Slots (yielding a 78x
performance improvement) and treating streams of data as
strings, or by simply improving upon the existing code such
as switching to using VOLK. We also showed that improv-
ing the performance is very challenging and that an ap-
proach that works in one instance will not always work in
other instances so a variety of techniques, including com-
bining blocks and alternative uses for built-in mechanisms,
must be employed and tested.

Experiences with using GNU Radio for Real-time Wireless Signal Classification

References

Becker, Christopher, Baset, Aniqua, Kasera, Sneha, Derr,
Kurt, and Ramirez, Samuel. Robust flexible system for
real-time spectrum monitoring and analysis, Under Sub-
mission, 2018.

Cachegrind. Valgrind: Tool Suite. http://valgrind.
org/info/tools.html#cachegrind, 2018.

Cristianini, Nello and Shawe-Taylor, John. An introduc-
tion to support vector machines and other kernel-based
learning methods. Cambridge university press, 2000.

Ettus Research. UHD. https://kb.ettus.com/
UHD, 2017a.

Ettus Research. The Universal Software Radio Peripheral.
https://www.ettus.com/product, 2017b.

FCC. In the Matter of Unlicensed Operation in the TV
Broadcast Bands: Third memorandum opinion and or-
der. FCC Document 12-36, April 2012.

FCC. Amendment of the Commissions Rules with Re-
gard to Commercial Opeations in the 3550-3650 MHz
Band, Report and Order and Second Further Notice of
Proposed Rulemaking. FCC Document, April 21, 2015.

FCC. Presidents Council of Advisors on Science and Tech-
nology, Realizing the Full Potential of Govt-held Spec-
trum to Spur Economic Growth, July 2012.

Fehske, A, Gaeddert, J, and Reed, Jeffrey H. A new ap-
proach to signal classification using spectral correlation
and neural networks. In IEEE DySPAN, 2005.

GNU Radio. GNU Radio. http://gnuradio.org/,
2017.

GNU Radio Build Script. GNU Radio Build Script. http:
//www.sbrac.org/files/build-gnuradio,

2016.

GNU Radio Companion. GNU Radio Companion.
http://gnuradio.org/redmine/projects/
gnuradio/wiki/GNURadioCompanion, 2017.

Gunther, Jake, Gunther, Hyrum, and Moon, Todd. GPU
Acceleration of DSP for Communication Receivers.
Proceedings of the GNU Radio Conference, 2(1), 2017.

Hitefield, Seth and Clancy, T. Flowgraph Acceleration
with GPUs: Analyzing the Benefits of Custom Buffers
in GNU Radio. Proceedings of the GNU Radio Confer-
ence, 1(1), 2016.

Piscopo, Michael. Study on Implementing OpenCL in
Common GNURadio Blocks. Proceedings of the GNU
Radio Conference, 2(1), 2017.

Qt. Qt. https://www.qgt.io/,2017.

Roberts, Randy S, Brown, William A, and Loomis, Her-
schel H. Computationally efficient algorithms for cyclic
spectral analysis. IEEE Signal Processing Magazine, 8
(2):38-49, 1991.

Rondeau, Thomas W., O’Shea, Timothy, and Goergen,
Nathan. Inspecting GNU Radio Applications with Con-
trolport and Performance Counters. In Proceedings of
the Second Workshop on Software Radio Implementation
Forum, SRIF *13, 2013.

VOLK. Vector Optimized Library of Kernels. http://
libvolk.org/, 2017.

http://valgrind.org/info/tools.html#cachegrind
http://valgrind.org/info/tools.html#cachegrind
https://kb.ettus.com/UHD
https://kb.ettus.com/UHD
https://www.ettus.com/product
http://gnuradio.org/
http://www.sbrac.org/files/build-gnuradio
http://www.sbrac.org/files/build-gnuradio
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion
http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion
https://www.qt.io/
http://libvolk.org/
http://libvolk.org/

