
D3 - A system for recording complex experiments with an extension of SigMF

Ankur Mohan AMOHAN@IQT.ORG

2107 Wilson Blvd. Suite 1100 Arlington, VA 22201 USA

Ravi Pappu RPPAPU@IQT.ORG

2107 Wilson Blvd. Suite 1100 Arlington, VA 22201 USA

Sean Shadmand SSHADMAND@IQT.ORG

800 El Camino Real Suite 300 Menlo Park, CA 94025 USA

Abstract

The Signal Metadata Format (SigMF) is an
emerging data interchange format (Hilburn,
2018) that specifies a way to describe recorded
digital signal samples with metadata written in
JSON (ECMA-404). We broaden this idea to de-
scribe experiments, which are collections of re-
lated signals. and the associated sensors that col-
lect them.

We were motivated to develop this extension by
a real-world problem. DARPA’s Aerial Dragnet
Program (DARPA, 2016), observes Unmanned
Aerial Vehicles (i.e., drones), with multiple si-
multaneous sensors with the goal of several an-
swering analytic questions (e.g., what is the iden-
tity of the drone?). Given the combinatorial
explosion of possible experimental observations
and the large data sizes involved, we needed a
simple way to catalog and discover relevant data
sets without having to download them first.

This paper describes our data collection and dis-
tribution use case, the SigMF-inspired extension
we developed, and our experience with using
the resulting JSON to build an experimental data
browser christened D3 - for Drone Data Distribu-
tion system.

1. Scenario and requirements
In this section we introduce the data collection scenario and
the requirements that led us down the path of extending the
idea behind SigMF.

Proceedings of the 1 st GNU Radio Conference, Copyright 2016
by the author(s).

1.1. Data collection scenario

During Aerial Dragnet data collection, a number of con-
sumer drones were flown multiple times in a variety of ur-
ban environments. Each flight, from takeoff to touchdown,
represents one experiment. Note that an experiment can
consist of multiple drones fliying at the same time, with
multiple sensors observing them. Data from each experi-
ment was collected by an array of sensors active during the
experiment. This resulted in a huge volume of heteroge-
nous data (and corresponding metadata) generated per ex-
periment which needed to be easily located, understood and
downoaded.

Figure 1. D3 data collection scenario. There can be any number of
drones or targets visible, and there can be any number of sensors
simultaneously collecting data, all of whom are synchronized to
the same GPS-disciplined clock.

In addition to the large volume of data, another compli-
cating issue is the lack of a clear correspondence between
an experiment and data files. Certain sensors are naturally
only active during an experiment. For example, the GPS
and Inertial Measurement Units on board a UAV are acti-
vated when the UAV is turned on and are automatically de-
activated when the UAV is turned off. Thus the correspond-



D3 - A system for recording complex experiments with an extension of SigMF

ing data files are automatically associated with the experi-
ment and a many to one mapping between the data files and
the experiment exists. Other sensors are active during the
entire data collection process. The output of such sensors
is one file that spans multiple experiments or multiple files
that lack a clear correspondence with the experiments. See
Figure 2

Figure 2. Sensor 1, 2 are automatically activated/deactivated
when an experiment starts/ends. Thus their output data naturally
corresponds to experiment time boundaries. Examples of such
sensors are onboard UAV IMUs and GPS units. Sensor 3 writes
its data to the disk at regular time intervals not synched with ex-
periment boundaries. For example, a video recorder that writes
the video file to the disk automatically once the file exceeds a cer-
tain size. Sensor 4 collects data continuously during the course
of the data collection and saves its data at the end of the data col-
lection into one large file. For example, an RF/audio background
sensor

1.2. State of prior art

Sensors vary widely in the type of data they collect, how the
data is processed by the sensor and the formats used to out-
put the sensor data. Vendor provided drivers and other soft-
ware tools are typically required to decode the sensor data
and interpret it. Sensor operating parameters and ground
truth information is also required to properly calibrate the
data.

No industry standard for systematically organizing such
heterogenous sensor data exist exist currently. An exper-
iment designer comes up with their own scheme to orga-
nize and describe the data. These schemes typically consist
of custom filenames, custom directories for the data files,
groundtruth files, software tools necessary to decode the
sensor data, sensor drivers and so on. Information about
how the data is organized is usually scattered across mul-
tiple documents. A user must spend considerable effort to
understand the data organization and locate and decipher
the slice of data in which they may be interested. Further-
more, each user is likely to have their own preferred method
to organize their slice of data. Due to lack of consistency
in organizing and describing the data, it can’t be easily in-
gested by data inspection and visualization tools.

Prior to the adoption of our scheme, Aerial Dragnet sen-
sor data and related metadata was organized in a custom
manner. There was no consolidated document that con-

tained all the information necessary to understand the data.
There were various folders that contained software tools,
sensor operating parameters, ground truth data and a set of
documents that described how all this information should
be used. A user had to read multiple documents and keep
track of the location of these documents to understand the
data.

A second problem was related to how sensor data
files were named. The experiment information
was encoded in the filename - for example ”Test-
Site 2017Apr10 Run1 UAS1 GroudTruth GPS1.dat”.
This may appear to be a good idea at first as the filename
offers information about the characteristics of the exper-
iment that generated it at a glance. However this scheme
has many drawbacks. First, for a sufficiently complex
experiment, comprehensive experiment information can’t
be embedded in the filename if the filenames are to be
kept a resonable length. Therefore, there must be an
acconpanying metadata document that describes the details
left out in the filename. Second, the filename itself can’t
be modified without running the risk of orphaning the
file, i.e., removing the link between the file and its source.
Even if the name modification doesn’t result in orphaning
the file, it may remove or alter critical information about
the file that could confuse the user. For instance, a simple
inadvertent modification of ”Run1” to ”Run2” in the
filename above would lead the user to think the data came
from the wrong experiment.

1.3. System requirements

At the time of our involvement in this project, the data had
already been collected. Our task was to devise a system to
efficiently organize and distribute this data so it could be
made available to performers in the DARPA program rel-
atively quickly. Facing this time constraint, we could not
conduct a comprehensive survey of other data organization
schemes. We decided to adapt a SigMF inspired scheme
given our prior familiarity with SigMF and its growing
adoption in describing large signal datasets. Our system
requirements are listed below.

1. Single point of contact: We would like to have a single
document that completely describes the experiment
i.e., what was done and where the data is stored.

2. Separation of data storage from metadata: The sys-
tem shouldn’t impose any storage requirements on the
data and metadata. It should be possible to store the
data files whereever appropriate with links to the files
contained in the metadata

3. Access control by type of user: The system should al-
low for different levels of access control to the data.
One user can have access to certain data files, but not



D3 - A system for recording complex experiments with an extension of SigMF

to others. The access control information is main-
tained separately by system administration and in not
included in the metadata

4. Adaptive user interface for dynamic metadata: The
user interface for the data should be data driven and
update automatically as new fields are added (for ex-
ample, new sensors and targets)

Figure 3. Anatomy of a D3 JSON file. See figure 4 for details

2. Extending SigMF
2.1. Anatomy of an experiment

During Aerial Dragnet data collection, a number of con-
sumer drones were flown multiple times in a variety of ur-
ban environments. Each flight, from takeoff to touchdown,
represents one experiment. Note that an experiment can
consist of multiple drones flying at the same time, with
multiple sensors observing them. Data from each experi-
ment was collected by an array of sensors active during the
experiment.

To describe such experiments, D3 features a single JSON
file corresponding to an experiment (also known as a ”run”)
that includes all the information necesary to understand the
data collected during the run. A run.json file contains key-
value pairs in JSON format that provide general informa-
tion about the run, the sensors that were active during the

run and the targets used during the run (about which infor-
mation was collected). Thus, each run.json file has three
sections, as described below and illustrated in Figure 3
and Figure 4.

2.2. Run-Specific Canonical Metadata

A run.json begins with a unique Run ID, followed by Run-
specific metadata such as location, time, environmental
conditions, participants etc., that apply to the Run as a
whole. The units used for the metadata are made part of
the meta data field. Any additional information about the
unit format is described in a ”comment” field.

2.3. Sensors Array

General information about the Run is followed by a ”Sen-
sors” array. Elements of this array contain information
about sensors that were collecting data about one of more
targets during the Run. This information includes operat-
ing parameters of the sensor - for example, the Center Fre-
quency for a RADAR sensor, the location of any ground
truth, software driver and documentation files necessary to
decipher the sensor data; and the relative links to the data
files collected by the sensor.

Since all necessary sensor metadata is included in the Sen-
sors array entries, there are no requirements or special nam-
ing conventions for the data filenames. The filenames can
be modified and the files be moved to different folders as
long as the relative links in the parent JSON document are
kept consistent. There is no uniqueness requirement either -
files in different folders can have the same names. It’s easy
to check for data consistency by verifying that the path-
names in the run.json files point to actual files on the disk.
The user can be warned about any inconsistencies.

The units for each piece of information are embedded in the
field name and additional information about the data format
is provided in the corresponding ”comment” field. This
helps prevent bit rot where important information about
pieces of data can be lost over time. Preventing bit rot is
a design goal of SigMF. The information about each sensor
in the Sensors array is comprehensive so that the user has
all the information needed to understand the data in one
place. This follows the ”Single Point of Contact” design
principle we established earlier. In our drone data collec-
tion use case, each sensor was collecting information about
all the drones flying during the data collection. In other
cases, a given sensor could only be collecting information
about a single target or a subset of targets - in this case, a
”targetID” field could be included in the elements of the
Sensors array indicating the target about which that sensor
was collecting data.

Certain sensors are naturally only active during an exper-



D3 - A system for recording complex experiments with an extension of SigMF

Figure 4. Anatomy of a D3 JSON file in detail. See text for details about each section



D3 - A system for recording complex experiments with an extension of SigMF

Figure 5. D3 web client



D3 - A system for recording complex experiments with an extension of SigMF

iment. For example, the GPS and Inertial Measurement
Units on board a UAV are activated when the UAV is
turned on and are automatically deactivated when the UAV
is turned off. Thus, the corresponding data files are auto-
matically associated with the experiment. Other sensors are
active during the entire data collection process. The output
of such sensors is one file that spans multiple experiments
or multiple files that lack a 1-1 correspondence with the
experiments. Such cases can be handled by embedding the
beginning and ending data pointers along with the data file
names in the run.json files. See figure 2 as an example.

2.4. Targets Array

The Sensors array is followed by the targets array. The
elements of this array provide information about the tar-
gets about which information was collected during the ex-
periment. The structure of the Targets array is similar to
the Sensors array. Each element of the array provides gen-
eral information about the target, for example the make and
model of a drone followed by any data files, such as the log
file for a drone flight.

3. Putting it all together
The complete D3 system consists of three components.
First, a web client that enables users to inspect the sen-
sor data, perform queries such as ”show me all data col-
lected by a certain sensor where a certain drone was flown”
and request access to data slices of interest. See figure
5 for a screenshot of the client. Second, an admin con-
sole where an administrator can add/remove D3 users and
approve/deny access requests. Lastly, a download man-
ager application helps the user securely download the data
to which they have access keeping track of data the user
may already have downloaded previously. This is an im-
portant consideration when downloading huge amounts of
data. The information presented by the client is automati-
cally pulled from the run.json files. Sensor and target types
don’t need to be hard coded into the system, they are au-
tomatically populated from the JSON files as new sensors
and targets are added.

Visualizers for different pieces of information collected by
the sensors can be easily added. For instance, the system
could pull the flight path coordinates of a drone flight from
the groundtruth file and display the flight path for a run in
a tooltip window next to a target name. Similarly, helpful
information about the sensors can be pulled from the sensor
metadata and displayed next to the sensor name.

The system is currently deployed on Amazon Web Services
Govcloud.

4. Conclusion and Future Work
We have described an extension of SigMF to include the
notion of Experiments, which are collections of signals and
sensors that collect them. We were motivated to do this out
of a problem arising in our work. Our intent is to find a
way to merge this idea into the SigMF repository in the
near future.

References
DARPA. Aerial dragnet. Technical report, 2016.

ECMA-404. The JSON Data Interchange Syntax. Stan-
dard, ECMA International, Geneva, CH, December
2017.

Hilburn, B. The signal metadata format (sigmf). Technical
report, 2018.

Langley, P. Crafting papers on machine learning. In Lang-
ley, Pat (ed.), Proceedings of the 17th International Con-
ference on Machine Learning (ICML 2000), pp. 1207–
1216, Stanford, CA, 2000. Morgan Kaufmann.


