
GPU Acceleration of DSP for Communication Receivers

Jake Gunther JAKE.GUNTHER@USU.EDU

Department of Electrical and Computer Engineering, 4120 Old Main Hill, Logan, UT 84322-4120 USA

Hyrum Gunther HYGUNTH@GMAIL.COM

Department of Electrical and Computer Engineering, 4120 Old Main Hill, Logan, UT 84322-4120 USA

Todd Moon TODD.MOON@USU.COM

Department of Electrical and Computer Engineering, 4120 Old Main Hill, Logan, UT 84322-4120 USA

Abstract
Graphics processing unit (GPU) implementa-
tions of signal processing algorithms can outper-
form CPU-based implementations. This paper
describes the GPU implementation of several al-
gorithms encountered in a wide range of high-
data rate communication receivers including fil-
ters, multirate filters, numerically controlled os-
cillators, and multi-stage digital down convert-
ers. These structures are tested by processing
the 20 MHz wide FM radio band (88-108 MHz).
Two receiver structures are explored: a single
channel receiver and a filter bank channelizer.
Both run in real time on NVIDIA GeForce GTX
1080 graphics card.

1. Introduction
1.1. Background

On 28 October 2011, a Delta II rocket lifted off from Van-
denberg Air Force Base carrying a weather satellite to a
820 km altitude, sun-synchronous orbit for NASA, NOAA,
and DoD (NPP Launch). Along the way, the rocket de-
ployed a pair of identical 1.5U (10 cm ⇥ 10 cm ⇥ 15 cm)
cube satellites for the Dynamic Ionosphere CubeSat Exper-
iment (DICE), a NASA/NSF sponsored mission (Fish et al.,
2014). Each CubeSat was equipped with Languir probes to
measure ionospheric plasma density, electric field probes
to measure AC and DC electric fields, and a magnetometer
to measure AC and DC magnetic fields. With slightly dif-
ferent orbital velocities, the CubeSats separated over time.
Using two satellites, pairwise measurements could be used
to resolve motion-induced ambiguities in observations of
the ionosphere. Since variability in the ionosphere can dra-
matically interfere with radio frequency (RF) systems for

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

communication and navigation, the ability of observe and
predict conditions in the ionosphere is of great importance.

In addition to the science objectives, the DICE mission
demonstrated a significant advancement in high-data rate
communications capabilities over previous CubeSat mis-
sions. The science instruments aboard each DICE satellite
are capable of generating approximately 1 Gbits of data
each day. Assuming 7-10 minutes of overpass downlink
times and 11 overpasses per day leads to the requirement
of 1.5 Mbits/s downlink data rate. Prior CubeSat missions
typically used amateur radio bands and equipment achiev-
ing 10 kbits/s. Thus the downlink data rates needed for
DICE were 150 times greater than those used in most pre-
vious CubeSat missions. Each DICE satellite was equipped
with a Cadet radio (originally built by L-3 Communications
and now, as of 2017, provided by the Space Dynamics Lab-
oratory). For the DICE mission, the Cadet used forward
error correction (FEC) encoded OQPSK modulation and a
downlink data rate of 3 Mbits/s in the 460-470 MHz band
(UHF). The transmit power was between 1 W and 2 W.

The DICE ground station utilized a 18.3 m high-gain (ap-
proximately 35 dB) UHF dish at NASA’s Wallops Flight
Facility (WFF). The discrete-component RF equipment
was minimal consisting of a low noise amplifier (LNA),
a bandpass filter and cables leading to an Ettus USRP
N210 (Ettus Research, a) containing a WBX daughter
card (Ettus Research, b). The USRP fed baseband I/Q sam-
ples to a PC workstation. OQPSK demodulation and FEC
decoding were performed using programs written in C.

The software defined nature of the receiver became a life
saver for the DICE mission. When on-orbit operations be-
gan, the DICE telemetry data was demodulated and de-
coded at a low 10% success level. Investigations revealed
the cause to be interference from the primary users of the
460-470 MHz band (police, emergency medical, pager sys-
tems, etc.). The space-to-Earth use is secondary in this
band. When signal processing algorithms were developed
and implemented to cancel intermittent narrowband inter-



GPU Acceleration of DSP for Communication Receivers

ference from primary users, successful demodulation and
decoding increased to a consistent 90-100% level (Gunther
et al., 2015).

1.2. Problem: Slow processing

A problem that was never overcome during the DICE mis-
sion was the computational requirements of interference
cancellation and demodulation. Despite best efforts at opti-
mization, the C-programs for interference cancellation and
demodulation could not run in real-time on the PC worksta-
tion. A work around was used throughout the DICE mis-
sion. The I/Q samples from the USRP were recorded to
disk during the 7-10 minute overpasses. After the satellite
disappeared over the horizon, the recording would be pro-
cessed in a slower than real-time manner. This worked for
DICE because overpasses were 90 minutes apart.

After the DICE mission, demand for the Cadet radio grew
for CubeSat missions. The ground station code is avail-
able to the community through the Space Dynamics Labo-
ratory. There remains a need to accelerate the implemen-
tation of the OQPSK demodulator to enable real-time pro-
cessing during data downlinking.

1.3. Solution: Accelerating using GPUs

Recently the authors began to experiment with graphics
processing units (GPU) as a means to accelerate digital sig-
nal processing algorithms such as those used in communi-
cation receivers. Our ultimate goal is to implement the in-
terference cancellation and demodulation functions for the
Cadet radio on GPU hardware and achieve faster than real-
time execution of these functions. The demand for higher
data rates is driving the need for acceleration even further.

A full OQPSK demodulator involves many different types
of operations including filtering, multirate filters, phase
locked loops (for carrier phase recovery and symbol timing
recovery), automatic gain control, etc. As a first step to-
ward a full OQPSK demodulator, this paper focuses on the
implementation of filtering and multirate filtering opera-
tions on a GPU. To add realism to the problem we target the
demodulation of broadcast FM signals. To add challenge
to the real-time implementation, the full 20 MHz wide FM
band (88-108 MHz) is processed. Two alternative imple-
mentations are explored. The first approach selects an FM
station from the start and removes other stations through
several stages of filtering and decimation (Oppenhime &
Schafer, 2016). The second approach uses a uniform DFT
filter bank (Vaidyanathan, 1993) to separate all FM stations
simultaneously. These types of signal processing opera-
tions are useful in communication receivers. Future work
will add additional processing elements to our growing li-
brary of GPU-based processing algorithms. In this paper,
the USRP B205mini is used to acquire RF data.

1.4. Why GPUs?

Traditional CPUs are composed of a small number of cores
(4 to 8) surrounded by large cache memories. This archi-
tecture can support a few software threads at a time. In con-
trast, a GPU is composed of hundreds of cores (100 to 1000
or more) and can support thousands of threads simultane-
ously. Thus GPUs offer the potential to accelerate software
by factors of 100 or more compared to a CPU, provided that
parallelization can be exploited. Acceleration via GPUs is
more power and cost effective than comparable accelera-
tion via CPUs.

Field programmable gate arrays (FPGAs) are often used to
accelerate DSP algorithms. An advantage of GPUs over
FPGAs is the ability to program GPUs using well known
extensions of the C language such as CUDA (Sanders,
2011) and OpenCL (Scarpino, 2012).

1.5. Outline of the paper

The rest of the paper is organized as follows. Section 2
discusses FIR filtering as a basis for understanding our pre-
ferred GPU filter implementation. Section 3 extends the ba-
sic filter implementation to accommodate a reduction in the
output sample rate yielding a structure for down sampling
FIR filters. Extensions to multichannel signals is touched
on briefly in Section 4. Together with a GPU-based nu-
merically controlled oscillator, these structures are used to
design, implement and test a real-time FM receiver as de-
scribed in Section 5. This section also presents a filter bank
approach that simultaneously channelizes all 100 FM sta-
tions. A summary and directions for future work are listed
in Section 6.

2. Basic FIR Filtering
We begin with a discussion of time-domain FIR filter-
ing. Later sections devoted to multirate filtering build
on this discussion. Much of the literature on GPU-based
filtering compare performance improvements over CPU-
based implementations. In 2005, Smirnov and Chiueh
compared time-domain implementations of FIR filters on
GPU (Geforce 6600) and CPU (SSE-optimization on Pen-
tium 4-HT 3.2 GHz) (Smirnov & Chiueh, 2005). At
that time the SSE-optimized CPU was faster than the
GPU except for very long filters. More recently Hirano
and Nakayama (Hirano & Nakayama, 2010) and Rebacz,
Oruklu and Saniie (Rebacz et al., 2010) showed that GPUs
can outperform CPUs on FIR filtering problems.



GPU Acceleration of DSP for Communication Receivers

2.1. Inner product view of convolution

The convolution formula

yn =

N�1X

k=0

hkxn�k (1)

describing the input-output relationship of an FIR filter is
well known. In (1) the sequence h0, h1, · · · , hN�1 is the
filter impulse response, also know as the filter coefficients.
As it is written, (1) has the appearance of an inner product
(i.e. it is the sum of products). This viewpoint motivates
the majority of FIR filter implementations such as the fol-
lowing C code example.

x[n] = input;
y = 0;
for(k=0; k<N; k++) {

y += h[k] * x[(n+k)%N];
}
output = y;
n = (n - 1 + N) % N;

This example uses a circular data buffer with n being the
circular index. If written out explicitly as the inner product
of two vectors we have

yn =

2

66666666664

...
hN�2

hN�1

h0

h1

h2
...

3

77777777775

T 2

66666666664

...
xn�N+2

xn�N+1

xn

xn�1

xn�2
...

3

77777777775

,

where the filter coefficients are arranged so that h0 is
aligned with the current input sample xn.

A straightforward implementation of an inner product
in the multithreaded environment of a GPU requires N
threads to multiply the elements of the vectors during the
first time slot and requires N/2 threads and log2 N time
slots to do the adding in parallel. The efficiency is low due
to the need for thread synchronization and because many
threads sit idle in later time slots. It also requires accessing
two arrays in memory.

2.2. Matrix-vector multiplication view of convolution

The matrix-vector multiplication view of convolution of-
fers an alternative computational strategy that is more ef-
ficient in a multithreaded environment. Convolution is
equivalent to multiplying a Toeplitz structured matrix by a
vector. A matrix-vector product may be computed through
computing inner products, and this view leads back to the
standard inner product view of convolution. Alternatively,

a matrix-vector product may be computed by a linear com-
bination of the columns of the matrix. The scalars in the
linear combination are the elements of the vector. Building
on this idea, define the partial sum

ymn =

N�1X

k=m

hkxn�k. (2)

When m = 0 the partial sum becomes the complete con-
volution sum (1) and y0n = yn. Stacking these partial sums
leads to the following relation at time n

2

666666666666666664

...
yN�2
n+N�2

yN�1
n+N�1

y0n

y1n�1

y2n�2
...

3

777777777777777775

=

2

666666666666666664

...
yN�2
n+N�2

yN�1
n+N�1

y0n

y1n�1

y2n�2
...

3

777777777777777775

+

2

666666666666666664

...
hN�2

hN�1

h0

h1

h2
...

3

777777777777777775

xn,

which is evidently a linear combination of vectors.
Whereas the inner product approach maintains a circular
buffer of input samples, the linear combination approach
maintains a circular buffer of partial sums. After each sam-
ple is processed, the m = 0 accumulator is output and then
reset to zero for the next iteration as in the following C code
example.

for(k=0; k<N; k++) {
y[k] += h[(k-m+N)%N] * input;

}
output = y[m];
y[m] = 0;
m = (m - 1 + N) % N;

The linear combination approach is advantageous in a
multithreaded environment because the entire operation is
completed in a single time slot. Each thread performs one
multiply-accumulate operation and all threads work in par-
allel. This assumes that there is one thread for each coeffi-
cient in the filter. Each thread updates its own accumulator.
It is memory efficient because only the array of filter co-
efficients is accessed. Furthermore, no threads sit idle. A
CUDA kernel based on this idea follows.
__global__ void filt1(

float* h, // coefficients

float* y, // accumulators

float* output, // output sample

int* m, // time index

float x) // input sample

{
int j = threadIdx.x; // get thread index

int k = (j - *m + N) % N;



GPU Acceleration of DSP for Communication Receivers

y[j] += h[k] * x; // multiply-accumulate

if(k == 0) {
*output = y[j]; // set output

y[j] = 0; // reset accumulator

}
*m = (*m + 1) % N; // update circ. index

}

Here N is the length of the filter. If N threads are launched
on the GPU and each one runs this kernel, each thread re-
ceives the input sample x and updates one element in the
accumulator array y. The accumulator in one of the threads
now holds a completed sum. That accumulator is output
and its value reset for the next iteration. This kernel may
be called from main as shown below.

int main(...) {
...
while(cnt>0) {

cnt=fread(&x,sizeof(float),1,fin);
filt1<<<1,N>>>(d_h,d_y,d_out,d_m,x);
cudaMemcpy(h_out,d_out,sizeof(float),

cudaMemcpyDeviceToHost);
fwrite(h_out,sizeof(float),1,fout);

}
...

}

This program reads input samples one-by-one from file.
Each input sample is passed to one block of N threads
running the filt1 kernel on the GPU. The filter output
is saved on the GPU in d_out. After the kernels finish,
the output is copied back to the host CPU to the variable
h_out, which is subsequently written to an output file.

Launching a kernel to process each input sample is not very
efficient due to overhead and excessive memory copies.
A more efficient approach is to copy a large chunk of in-
put data to the GPU device, process the whole block, and
then copy the output back to the CPU host. This reduces
the number of kernel launches and memory copies. Fur-
thermore, the chunk of input data can be broken up into
overlapping slices and each slice can be processed on the
GPU in separate thread blocks. This further exploits the
parallelism inherent in the processing and also exploits the
power of the GPU architecture.

Methods such as overlap-add and overlap-save for block
convolution are well known (Oppenhime & Schafer, 2016)
and will not be reviewed here. We adopt an overlap-save
method in which the slices of the input chunk are over-
lapped by N samples, where N is the length of the filter im-
pulse response.

__global__ void filt2(
float* h, // coefficients

float* y, // accumulators

float* output, // array of outputs

int* m, // time index

float* x, // array of inputs

int len) // length of slice

{
int j = threadIdx.x;
int start = len * blockIdx.x;
int stop = len * (blockIdx.x + 1) + N;
for(int i = start; i < stop; i++) {

k = (j - m + N) % N;
y += h[k] * x[i];
if(i-N>=start) { // save valid samples

if (k == 0) {
output[i-N] = y;
y = 0;

}
}
*m = (*m + 1) % N;

}
}

In this kernel, the overlap of input blocks is accomplished
in the computation of start and stop. Notice that the
stop index has an extra N samples added on. These sam-
ples overlap the first N samples of the next block. This
kernel is called from main as follows.
int main(...) {

...
while(cnt>0) {

memcpy(h_x,h_x+xlen,N*sizeof(float));
cnt=fread(h_x+N,sizeof(float),xlen,fin);
cudaMemcpy(d_x,h_x,

(xlen+N)*sizeof(float),
cudaMemcpyHostToDevice);

filt2<<<B,N>>>(d_h,d_y,d_out,d_m,d_x,
slice_len);

cudaMemcpy(h_out,d_out,xlen*sizeof(float),
cudaMemcpyDeviceToHost);

fwrite(h_out,sizeof(float),xlen,fout);
}
...

}

Block convolution requires a lot of data movement between
kernel calls as this example shows. The main point of this
example is how parallelism is exploited. The large chunk of
xlen input samples is broken down into B smaller slices of
slice_len samples. Each of these smaller slices is pro-
cessed in a separate block of threads. There are B blocks
of threads with each block having N threads. The number
of memory copies is drastically reduced over the previous
example.

Block convolution is an approach to performing convolu-
tion on a long sequence by combining the results of convo-
lutions on short subsequences. Block convolution is inde-
pendent of the method used for convolution on the subse-
quences. Often the FFT is used to efficiently perform sub-
sequence convolution. This has been explored in the setting
of GPUs by Mauro (Mauro, 2012) and Belloch (Belloch
et al., 2011). We did not pursue the FFT-based approach
because the FFT loses efficiency when used for multirate
filters, which is the subject of the next section.



GPU Acceleration of DSP for Communication Receivers

xn ⇥ LPF # D yn

exp(�j2⇡f0n)

Figure 1. Block diagram of a digital down converter.

3. Multirate FIR Filtering
Digital down conversion (DDC) is prevalent in radio re-
ceivers. This operation translates the signal of interest to
baseband and removes unwanted signals by low pass fil-
tering. Down sampling is usually part of the DDC opera-
tion. The full operation is shown in Fig. 1. Upadhyay and
Rajan (Upadhyay & Shakun Rajan, 2012) and Ma, Deng,
Zhao (Ma et al., 2013) developed GPU-based DDC archi-
tectures and achieved significant processing acceleration
compared to CPU implementations. Digital up conversion
(DUC) is encountered in radio transmitters and essentially
reverses all the operations in DDC.

The CUDA kernel for a down sampling FIR filter can be
derived from the filt2 example above with only a few
minor modifications. Therefore, the code example is not
given in this paper. Our code implementations are available
in a GitHub repository (Gunther, 2017a).

4. Multichannel filtering
Direct conversion receivers (also known as zero-IF re-
ceivers) such as the AD9361 chip (Analog Devices, 2017)
translates a frequency band of interest to baseband and pro-
vides digital I/Q samples. Typically the real and imagi-
nary parts of a complex baseband signal are interleaved
as is done with the USRP Universal Hardware Driver
(UHD) (Ettus Research, 2017). The complex baseband sig-
nal is an example of a two channel signal. Antenna ar-
rays consisting of multiple antennas and receivers output
a multitude of channels that require subsequent process-
ing through filters, DDCs, and correlators (Upadhyay &
Shakun Rajan, 2012), for example. GPUs offer the pro-
grammable computational power needed to process mul-
tichannel signals. We have extended all the CUDA ker-
nels described previously to operate on multichannel sig-
nals. However, publication page limitations do not permit
a disclosure of those details in this paper.

5. FM Demodulator
Two approaches for FM demodulation were developed. In
both cases, the entire 20 MHz wide FM band (88-108
MHz) was acquired using a USRP B205mini. The first ap-
proach uses the direct conversion architecture to acquire a
single FM station. The second approach uses a filter bank
to acquire all 100 FM stations simultaneously.

5.1. Direction conversion

Figure 2 shows a block diagram of the direct conversion
receiver. Complex baseband samples from the USRP ar-
rive on the left. The USRP acquires 20 MHz of bandwidth
centered at 98 MHz and delivers 20 MSamples/s (MS/s)
of interleaved real and imaginary samples to the host com-
puter. Figure 3 shows the spectrum of the acquired signal
as it is processed through the CUDA application.

The FM station of interest is tuned to baseband by select-
ing f0 =

F0�98
20 , where F0 is an FM station in MHz. Each

FM station is 200 kHz wide. The tuned signal may be down
sampled by a factor of 20MHz/200kHz = 100 = 2 ·2 ·5 ·5.
This is accomplished in four stages of filtering and down
sampling as shown in Fig. 2. The filter pass and stop band
frequencies are shown. In each case, the filters were de-
signed to be equiripple filters with 0.1 dB of ripple in the
pass band and 60 dB of stop band attenuation. Figure 3
shows signal spectra at several points in the system. The
DDC isolates a single FM station and reduces the sample
rate to 200 kS/s. These samples are passed to the quadra-
ture FM demodulator shown in Fig. 2. The sample rate of
the demodulated FM signal is reduced to 40 kS/s using a
filter and decimate (by 5) stage.

This receiver is implemented using Unix pipes (FIFO) to
transfer data between three separate C/C++ programs as
shown in Fig. 4. The first program, labeled “UHD app.” in
Fig. 4, is a modified version of rx_samples_to_file.c,
an example program included when UHD (Ettus Research,
2017) is installed. This program receives complex base-
band samples from the USRP and writes them to a bi-
nary file. We modified this program to write samples to
a pipe instead of a binary file. The second program, la-
beled “CUDA app.” in Fig. 4 performs the following op-
erations: (1) it reads complex baseband samples from the
first pipe, (2) it uses CUDA to perform all the digital sig-
nal processing pictured in Fig. 2 (DDC and FM demodu-
lation) on the GPU, and (3) it writes its real-valued output
samples to the second pipe. The third program, labeled
“JUCE app.” in Fig. 4, reads samples from the second
pipe and sends them to the sound card at 40 kS/s. This
program uses JUCE (Storer, 2017), an open-source cross-
platform C++ library for developing audio applications.
Using pipes to move data between applications avoids the
need to link UHD, CUDA and JUCE in a single executable
and each program is automatically executed in separate
process threads.

When multiple stages of filtering are performed on the
GPU, it is advantageous to write intermediate signals to
temporary buffers in the GPU global memory space. This
avoids the need to copy intermediate signals between the
host CPU and the GPU device. The input data is copied
from the host to the device once. After that, kernels are



GPU Acceleration of DSP for Communication Receivers

20 MS/s 10 MS/s 5 MS/s 1 MS/s 200 kS/s

⇥ H1, # 2 H2, # 2 H3, # 5 H4, # 5

fp = 0.005
fs = 0.495
N = 5

fp = 0.01
fs = 0.49
N = 5

fp = 0.02
fs = 0.18
N = 17

fp = 0.09
fs = 0.11
N = 137

exp(�j2⇡f0n)

I/Q samples
from USRP

real & imag. to
FM demod.

z�d

d/dt

z�d

d/dt

real

imag.

from DDC

⇥

⇥

+

200 kS/s 40 kS/s

H5, # 5

fp = 0.09
fs = 0.11
N = 137

speaker

Figure 2. Block diagram of full FM receiver. I/Q samples enter the DDC (green boxes). Real and imaginary DDC output samples are
fed to the quadrature FM demodulator (blue boxes). After FM demodulation, one stage of filtering and down sampling is used to reduce
the sample rate to 40 kS/s.

Table 1. Execution Time for CPU and GPU Receiver Implemen-
tations

Number Chunk CPU GPU Speedup
of Size Time Time

Blocks [⇥10

6] [sec] [sec]
20 0.04 4.4147 0.9299 4.75

100 0.2 4.4096 0.2164 20.38
500 1 4.4255 0.0955 46.34

1000 2 4.4392 0.1054 42.12
2000 4 4.8956 0.1047 46.76
3000 6 4.4658 0.0987 45.25
4000 8 4.9637 0.1058 46.92
5000 10 4.9563 0.1091 45.43

10000 20 4.9796 0.1193 41.74

called sequentially to perform all the operations pictured in
Fig. 2. Only the final audio output samples are copied back
to the host CPU.

We compared the time required for GPU and CPU imple-
mentations of the entire processing chain shown in Fig. 2.
Both were implemented in C. The GPU code base was
compiled using nvcc which uses gcc to compile the host
code. The CPU version of the code was compiled using
gcc. Both versions were executed 10 times and mean exe-
cution time was recorded. Table 1 presents the results.

5.2. Filterbank channelizer

The FM receiver pictured in Fig. 2 demodulates a single
FM station. If more than one station is desired, then the
whole receiver structure must be duplicated for each de-

sired station. When many stations are desired, there are
more efficient structures to recover the stations of interest.

Figure 5 shows a uniform DFT filter bank. This structure
uses a commutator to distribute incoming samples among
a bank of 100 filters. This reduces the sample rate by a
factor of 100 from 20 MS/s to 200 kS/s. After filtering on
each channel, the 100-point FFT simultaneously and effi-
ciently separates and isolates all 100 FM stations from one
another. Then the stations of interest can be demodulated
and the rest of the channels can be ignored. In the example
of Fig. 5, channels 1, 3, and 4 are demodulated.

The filter bank demodulator relies upon the design of
a prototype filter H(z). The coefficients of this proto-
type filter are distributed among the 100 channel filters
H0(z), H1(z), · · · , H99(z). In our design, the prototype
filter had 5100 coefficients so that the channel filters each
had 51 coefficients. For more information on this type of
filter bank see (Vaidyanathan, 1993). Our code implemen-
tation of the filter bank is available in a GitHub reposi-
tory (Gunther, 2017b).

As the number of desired FM stations increases from 1 to
100, there is a point at which the filter bank demodulator
becomes more efficient than duplicating the single channel
FM receiver. With our implementation, we found that the
break even point is when more than 5 channels are desired.

An example of the output of the filter bank channelizer is
shown in Fig. 6. To display all 100 signals simultaneously,
the complex magnitudes were computed for the signals
over time and saved in a 2D array. This array is displayed
as an image in Fig. 6. The color represents the signal mag-
nitude is displayed in decibels. As shown in the picture,



GPU Acceleration of DSP for Communication Receivers

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3. Signal spectra at various points in the processing of Fig. 2: (a) bandpass FM band, 88-108 MHz; (b) base-banded spectrum
from USRP after tuning station of interest (89.5) to zero frequency; (c) after first stage of filtering and decimation by 2; (d) after second
stage of filtering and decimation by 2; (e) after third stage of filtering filtering and decimation by 5; (f) after fourth stage of filtering and
decimation by 5; (g) demodulated FM signal; (h) audio signal sampled at 40 kS/s.



GPU Acceleration of DSP for Communication Receivers

UHD
app. pipe

20 MS/s
CUDA

app. pipe
40 kS/s

JUCE
app.

Figure 4. Software architecture for the FM receiver.

there are only about six strong FM stations received. Evi-
dently there is no spectral leakage between channels. The
strongest station appears to leak into neighboring channels,
but this station broadcasts transmits HD Radio sidebands
which explain the power present in adjacent channels.

6. Summary and Future Work
This paper presented an introduction to a growing library of
signal processing algorithms for communication receivers.
All algorithms are implemented in CUDA to exploit the
computational power of GPUs. By exploiting parallelism
and the power of GPUs, algorithms are capable of process-
ing large swaths of bandwidth in real time. An example
receiver in this paper consumed 20 MHz of bandwidth. To
date the library of functions includes various types of filters
including: basic FIR filters, pure delay filters, and differ-
entiators. These filters are all available in multirate down
sampling versions as well as multichannel versions. The
filters can be cascaded together to create multistage pro-
cessing chains. The library also includes complex mixing
(for frequency translation) enabling digital down conver-
sion. The library also includes routines for FM demodula-
tion. By launching these kernels in multiple thread blocks,
large blocks of input samples are processed in parallel us-
ing overlap save techniques. We plan to release our code
library to the public as an online repository.

With these basic building blocks in place, we will turn at-
tention to accelerating receivers for digital modulation for-
mats. The feedback associated phase locked loops offers a
challenge for parallelization.

References
Analog Devices. Rf agile transceiver. Technical report,

Analog Devices, 2017. http://www.analog.
com/media/en/technical-documentation/
data-sheets/AD9361.pdf.

Belloch, Jose A., Gonzalez, Alberto, Martı́nez-Zaldı́var,
F. J., and Vidal, Antonio M. Real-time massive con-
volution for audio applications on gpu. The Journal of
Supercomputing, 58(3):449–457, Dec 2011. ISSN 1573-
0484. doi: 10.1007/s11227-011-0610-8. URL https:
//doi.org/10.1007/s11227-011-0610-8.

Ettus Research. USRP N210 web page, a. https:

//www.ettus.com/product/details/
UN210-KIT.

Ettus Research. WBX web page, b. https://www.
ettus.com/product/details/WBX.

Ettus Research. Usrp hardware driver and usrp man-
ual. Technical report, Ettus Research, 2017. https:
//files.ettus.com/manual/.

Fish, C. S., Swenson, C. M., Crowley, G., Barjatya, A.,
Neilsen, T., Gunther, J., Azeem, I., Pilinski, M., Wilder,
R., Allen, D., Anderson, M., Bingham, B., Bradford, K.,
Burr, S., Burt, R., Byers, B., Cook, J., Davis, K., Fra-
zier, C., Grover, S., Hansen, G., Jensen, S., LeBaron, R.,
Martineau, J., Miller, J., Nelsen, J., Nelson, W., Patter-
son, P., Stromberg, E., Tran, J., Wassom, S., Weston, C.,
Whiteley, M., Young, Q., Petersen, J., Schaire, S., Davis,
C. R., Bokaie, M., Fullmer, R., Baktur, R., Sojka, J., and
Cousins, M. Design, development, implementation, and
on-orbit performance of the dynamic ionosphere cubesat
experiment mission. Space Science Reviews, 181(1):61–
120, May 2014. URL http://dx.doi.org/10.
1007/s11214-014-0034-x.

Gunther, Hyrum. Cuda-dsp. GitHub, Augsut
2017a. https://github.com/rumbonium/
CUDA-DSP.

Gunther, Hyrum. Cuda-filterbank. GitHub, Aug-
sut 2017b. https://github.com/rumbonium/
CUDA-Filterbank.

Gunther, Jacob, Fish, Chad, Swenson, Charles, and Moon,
Todd. Reliable space-to-earth communication as a sec-
ondary service in the 460470mhz band. International
Journal of Satellite Communications and Networking,
33(2):93–106, 2015. ISSN 1542-0981. doi: 10.1002/
sat.1072. URL http://dx.doi.org/10.1002/
sat.1072.

Hirano, A. and Nakayama, K. Implementation of large-
scale FIR adaptive filters on NVIDIA GeForce graphics
processing unit. In 2010 International Symposium on
Intelligent Signal Processing and Communication Sys-
tems, pp. 1–4, Dec 2010. doi: 10.1109/ISPACS.2010.
5704666.

Ma, Xiao, Deng, Lixia, and Zhao, Yuping. Implementa-
tion of a digital down converter using graphics process-
ing unit. In 2013 15th IEEE International Conference
on Communication Technology, pp. 655–660, Nov 2013.
doi: 10.1109/ICCT.2013.6820456.

Mauro, D. A. Audio convolution by the mean of GPU:
CUDA and OpenCL implementations. In Proceedings
of the Acoutsics 2012 Nantes Conference, 2012.



GPU Acceleration of DSP for Communication Receivers

H99

...

H5

H4

H3

H2

H1

H0

complex baseband
samples from USRP

(20 MS/s)

100
point
FFT

99

5

4

3

2

1

0

...

FM demod.

FM demod.
FM demod.

Figure 5. A uniform DFT filter bank channelizer is used to separate all 100 FM stations and down sample each to 200 kS/s. FM
demodulation is applied to stations 1, 3, and 4.

Figure 6. Magnitude of the filter bank channelizer output over time. Signals for all 100 stations are shown.

NPP Launch. Npp launch. https://www.
youtube.com/watch?v=aCCW3D7fvn4&list=
PL5DE2DDABD8EA7E97.

Oppenhime, A.V. and Schafer, R. W. Discrete-Time Signal
Processing. Prentice Hall, 3rd edition edition, 2016.

Rebacz, J., Oruklu, E., and Saniie, J. Exploring scala-
bility of FIR filter realizations on graphics processing
units. In 2010 IEEE International Conference on Elec-
tro/Information Technology, pp. 1–5, May 2010. doi:
10.1109/EIT.2010.5612114.

Sanders, Jason. CUDA by example: An introduction to
general-purpose GPU programming. NVIDIA Corpo-
ration, 2011.

Scarpino, Matthew. OpenCl in Action. Manning Publica-
tions Co., 2012.

Smirnov, A. and Chiueh, T. An implementation of a FIR
filter on a GPU. Technical report, Experimental Com-
puter Systems Lab, Stony Brook University, 2005.

Storer, Julian. Juce. https://www.juce.com/, 2017.

Upadhyay, A. and Shakun Rajan, Y. Implementation of
digital down converter in GPU. 2012.

Vaidyanathan, P.P. Multirate Systems and Filter Banks.
Prentice Hall, 1993.


