
Time and Frequency Corrections in a Distributed Network Using GNURadio

Sam Whiting SAM@WHITINGS.ORG

Electrical and Computer Engineering Department, Utah State University, 4120 Old Main Hill, Logan, UT 84322

Dana Sorensen DANA.R.SORENSEN@GMAIL.COM

Electrical and Computer Engineering Department, Utah State University, 4120 Old Main Hill, Logan, UT 84322

Todd K. Moon, and Jacob H. Gunther {TODD.MOON, JAKE.GUNTHER}@USU.EDU

Electrical and Computer Engineering Department, Utah State University, 4120 Old Main Hill, Logan, UT 84322

Abstract
When using low-cost analog to digital convert-
ers (ADCs), synchronization between multiple
ADCs is often difficult to achieve but is desir-
able for applications such as direction-of-arrival
or time-of-arrival processing. A lack of synchro-
nization between multiple ADCs can result in
three offsets that are introduced when the sam-
pling begins: a sample timing offset, a frequency
offset, and a phase offset. In this paper, an adap-
tive method for correcting these offsets using
software feedback loops is presented. The sys-
tem is implemented in GNURadio with low-cost
RTL-SDR receivers as a proof-of-concept.

1. Introduction
Synchronization between receivers in a distributed network
is often required to perform analysis such as direction-of-
arrival or time-of-arrival processing. With a clock shared
between ADCs, synchronization can and has been obtained
in previous studies (Krysik, 2016), (RTL2832u, 2014).
Even in this case, the software system and operating sys-
tem may deliver sampled packets at staggered times, so
there are still synchronization issues. More generally, ty-
ing clocks together may be impractical (for example, with
widely separated ADCs), so hardware methods may be em-
ployed such as atomic clocks or GPS-disciplined oscilla-
tors. In many cases, this hardware solution is impractical
and a software solution is desired. This software-based co-
herency fits into the general movement of software defined
radio by requiring less hardware in the RF front end.

Establishing synchronization between low cost ADCs
driven by different clocks is complicated beyond determin-
ing initial timing delays, because the clocks in different

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

ADCs experience drift. For inexpensive ADCs, sample
drift can be substantial, as illustrated in figure 1 which de-
picts the sample drift between two RTL-SDR receivers with
oscillators rated at 1-2 ppm drift, sampling at 2.048 MHz,
where the sample drift was measured using cross correla-
tion.

To produce this data, two RTL-SDR dongles were tuned to
a local FM radio station and their streams of samples were
cross correlated using a 16384 point FFT. This cross corre-
lation produced a peak, located at an index that represents
how many samples apart the two sets of samples are. This
value drifts over time, as can be seen in figure 1 due to the
clock difference in the ADC oscillators.

Figure 1. Sample Drift for two ADCs with independent clocks

This paper discusses how to treat four different aspects of
synchronization between different ADCs. The first is bulk
delay offset, resulting from differences in when the sam-
pling actually starts. The second is fine clock offset and
clock timing drift. The third and fourth are frequency and
phase offsets. Similar projects have tried to correct for
synchronization problems in software, and have had some
success with post-processing methods (Junming Wei). The

Time and Frequency Corrections in a Distributed Network Using GNURadio

main objective of this paper, however, is to present a real-
time method for making these corrections for two ADCs
with no common clock or other hard connection.

Many of the GNURadio blocks used in this paper are from
a custom out-of-tree (OOT) module and can be found at
https://github.com/samwhiting/gnuradio-doa .

2. Bulk Delays
Even in systems with two ADCs sharing a clock, sampling
does not typically start at the same time, resulting in large
delays. This initial “bulk delay” can be detected using cross
correlation to find a rough alignment (within a sample) of
the two signals. Detecting this bulk timing offset is accom-
plished with the “sample offset” block shown in figure 2. In
figure 2, the block Sample Offset computes a cross corre-
lation between the two signals. Given the potential uncer-
tainty in sample conversion start time, this is a long cross
correlation (our system is pictured using 262,144 points in
the FFT). Since computing long cross correlations is ex-
pensive, this is done only for a fixed number of iterations,
defaulting to 10 in the Sample Offset block, but resettable
using a message if it is desired to re-initiate the bulk de-
lay estimation. The output value is the median of the peak
values from the cross correlations. The delay determined
by the Sample Offset block is applied to a Delay block,
applied to whichever signal is ahead in time, as shown in
figure 3.

The bulk delay determined by this cross correlation may be
considered to be the y-intercept of the sample offset plot in
figure 1, with a resolution of one sample.

3. Clock Timing Drift
Over time, the clock frequency difference in the receivers
will change the sample offset, as shown by the slope in the
sample offset in figure 1. In order to adapt to these changes,
a feedback loop is used.

A cross correlator (defaulting to 8192 width) is used to es-
timate offsets after the bulk delay correction. A quadratic
function is fit around the peak of the correlation function
from which the delay is measured to subsample resolution.
This is called the fractional delay, and is denoted by mu (µ).
This is performed by the blocks shown in figure 4. The way
that µ changes in time determines the slope in figure 1.

The fractional delay µ is used in a feedback loop which
drives µ and its slope to zero. This is shown in figure 5.
The fractional delay changes with time approximately lin-
early. By using linear regression, a slope can be obtained
that represents the sample clock frequency difference be-
tween the two receivers.

The value of µ is unwrapped (so that it does not merely go
from −0.5 to 0.5 of a sample). The slope of µ is obtained
by a linear fit. This slope (scaled by β below) is then in-
tegrated in the box “Cumulative Sum”. Also, the value of
µ itself (scaled by α below) is integrated in another “Cu-
mulative Sum” box (the upper one in figure 5). These two
accumulated values are added together and used to update
an error term (ε below) to drive the fractional offset and the
change in fractional offset to zero.

The objective in this feedback loop, as has been stated, is
to drive our error term to zero. As we continue to receive
samples, we continue to update this error term by adding
the value of µ itself, and its slope, or derivative. Each value
can be scaled. This update operation could be written as
follows, with the error term written as ε

ε = εold + αµ+ β
d

dt
µ

Where α and β are scalars that weight each term some
amount which affect the rate of convergence for the feed-
back loop. Typical values for α were between .1 and .01,
while typical values for β were between 100 and 500. To
estimate the slope, data points were grouped into GNURa-
dio vectors of 1024 points to get a decent estimate of the
slope. The direct term, µ, was downsampled by 1024 to
match this rate. These rates and constants were chosen be-
cause they sucessfully drove the error term to zero within
about 30 seconds without oscillations.

The implementation of this updating error term requires
cumulative summation (similar to the standard integrator
block in GNURadio) as well as a way to approximate a
derivative for given points. These custom blocks are also
found in the noted github repository.

The result of the fractional offset accumulations deter-
mined as in figure 5 is used to drive the “Cubic Alignment”
operation in figure 7. This block interpolates whichever
stream has the faster sample rate to be at the rate of the
stream with the slower rate, as illustrated in figure 6. Inter-
polation is done using a cubic interpolator in the box “Cu-
bic Align” in figure 7.

Cubic interpolation requires four points of known data, so
this block is implemented with a queue. One stream of data
(the slowest) is designated as the reference, and is passed
through the block with no change. The other stream of
data enters the queue, where the four relevant samples are
used to interpolate the desired sample. The desired sample
is some fractional distance away from the base, or origi-
nal sample. This distance is controlled by the error value
passed in to the block’s Delay parameter. The operation is
summarized as follows.

Time and Frequency Corrections in a Distributed Network Using GNURadio

Figure 2. Detecting the Bulk Delay with Cross Correlation

Figure 3. Applying the Bulk Delay Correction

For each received sample:

1. Push the sample onto the queue of points

2. Determine which four samples should be used

3. Interpolate using the four relevant samples

4. Update the current sample offset using the given delay
parameter, which allows us to make decisions about
which samples to use next

In figure 6, the four filled circles are the four samples to be
used in order to obtain a new sample at the open square.
The leading filled circle, labeled as the base sample, is the
point two samples ahead of the desired interpolated sample.
Usually this base sample increases, or moves ahead in time
by one sample for every interpolated sample. However,
after enough samples have gone by, the base sample may
need to ’skip’ a sample in order to maintain its position of
two samples in front of the sample to be interpolated. This
is the logic required by step four in the list above, where
we determine if our base sample must skip a sample or not.

The full code for the block can be seen on the provided
github repository. The cubic interpolation is modeled af-
ter Paul Bourke’s primer on intepolation. (Bourke, 1999)
A linear interpolation block is also included in the github
repository.

In summary, the timing correction performs the following
operations: We interpolate between the points of the cross

correlation to get sub-sample results. Once the offset is
known, we can approximate the sample drift rate between
the two receivers with linear regression. This slope is then
used to determine how much each sample should be inter-
polated in order to cancel out the sample drift. The perfor-
mance of this feedback loop can be seen in figure 8. There
is an initial period of wide variation in the sample offset
(until about 12 seconds in this example). This is due to the
time for the bulk offset to be determined and the delays to
take effect. Then the timing loop starts converging. After
about 25 seconds, it converges to where the sample offset
is near 0 and stays there.

4. Frequency and Phase Offsets
The timing interpolation of the last section accounts for
timing offsets, but does not account for frequency offsets
between the two ADCs. Like the timing offset, which has a
bulk offset and a changing time offset, the frequency offset
has both a phase offset term and a frequency offset term.

In order to correct for this offset, the frequency offset must
first be measured or estimated using the phase difference.

In our configuration, the phase difference is estimated using
an eigenvector method. This is computed as follows. Let
s1(t) be the signal at one receiver taken as the reference
receiver. This signal is assumed to be a narrowband signal
m(t) mixed by some frequency component, expressed in

Time and Frequency Corrections in a Distributed Network Using GNURadio

Figure 4. Finding the Fractional Delay

Figure 5. Linear Regression to Produce an Error Term

terms of its complex representation as

s1(t) = m(t)ejωct.

The signal m(t) is not assumed to be known. The signal
s1(t) is basebanded to produce x1(t) = m(t).

A delayed version of the signal is received at a second re-
ceiver, with delay τ . Assumingm(t) is sufficiently narrow-
band and the delay is small enough that that m(t − τ) ≈
m(t), we have

s2(t) = s1(t− τ) = m(t)ejωc(t−τ) = m(t)ejωct−φ

with φ = ωcτ . This signal is also basebanded to produce
x2(t) = m(t)e−jφ. Stacking the two received signals into
a vector x(t) =

[
x1(t)
x2(t)

]
we can write

x(t) = m(t)

[
1

e−jφ

]
.

Let h =
[

1

e−jφ̂

]
be a steering vector applied to x(t) to

form y(t; φ̂) as

y(t; φ̂) = hHx(t) =

[
1

e−jφ̂

]H
m(t)

[
1

e−jφ

]
= m(t)(1 + ej(φ̂−φ)).

The average power in y(t; φ̂) is maximized when φ̂ = φ.
This average power is computed as

E[|y(t; φ̂)|2] = hHE[x(t)x(t)H]h
4
= hHRxh. (1)

Here, Rx is the 2 × 2 correlation matrix of the measured
signals, which is estimated as

Rx ≈
1

N

N+i0∑
i=i0

x(i)x(i)H .

To maximize the average power in (1) for a steering vector
of given norm, it is well known that the maximum is ob-
tained when the steering vector is proportional to the eigen-
vector ofRx corresponding to the largest eigenvalue. Since
Rx is a 2×2 matrix, the largest eigenvalue and correspond-
ing eigenvector are easily computed.

A block to compute the phase difference by this method is
shown in figure 9. The vector autocorrelation and eigende-
composition are done in the block PCA DOA. Also in this
figure, note that the signals are downsampled by 50. This
reduces the computation, and does not affect the phase es-
timate resolution.

The phase estimate produced in figure 9 is passed to the
system in figure 10. The phase is unwrapped so that

Time and Frequency Corrections in a Distributed Network Using GNURadio

time

time

Samples from ADCInterpolate new points here

Slower Data

Faster Data

Open Circles are samples from the ADC

Square represents the sample to be obtained by interpolation

Filled Circles are the four samples used in cubic interpolation

Base Sample

Small Circles are samples we will interpolate to find

Figure 6. Adjusting the timing by interpolation

Figure 7. Applying the Fractional Sample Correction

changes in phase fall approximately linearly. The slope of
the phase change line is estimate by linear regression (“Lin-
ear Fit Slope”). The slope is accumulated, along with the
accumulated phase itself. These two accumulated errors
are added, and used to drive the error term to zero.

This generation of an error term is exactly analogous to
the error term used in correcting the clock timing drift. As
stated earlier, the error term, represented as ε can be up-
dated as samples are available as follows:

ε = εold + αφφ+ βφ
d

dt
φ

Where αφ and βφ are again scalars that weight each term
some amount which affect the rate of convergence for the
feedback loop. Typical values for αφ were around .1 and
for βφ, around 400. Like with the clock timing drift loop,
the data was converted to GNURadio vectors of length 100
to fit a slope to the data, and the direct stream of φ values
from the PCA block were downsampled to match this rate.

The only other difference in this GNURadio implementa-
tion from the clock timing drift loop is the addition of a
moving average block to smooth out the error term, with a
scaling value around .04 and length of 25. This averaged
error term is then used directly as the frequency of the cor-
recting complex exponential mentioned previously.

The phase/frequency correction term so obtained is applied
to the signal after the timing has been adjusted by the Cu-
bic Align step. In figure 11, a complex exponential Sig-
nal Source is produced which goes into a Multiply box to

perform the frequency adjustment. These corrections use
the standard Signal Source and Multiply blocks in GNU-
Radio. Figure 12 shows the results of the phase/frequency
correction. After the timing loops settle down (at about 13
seconds), the phase difference converges to near zero and
stays there.

5. Putting the Pieces Together
With both feedback loops running, the system corrects for
sample, frequency, and phase offsets. As ADCs continue to
drift, the system adapts to correct for the new offsets. The
complete system, implemented as a GNURadio flowgraph,
can be seen in figure 13

6. Conclusions
Synchronizing timing between two RTL-SDR ADCs in-
volves steps to account for bulk timing delay, clock drift,
and phase and frequency offsets. In this paper, signal pro-
cessing methods implementable using the GNURadio sys-
tem have been presented, with some results showing the
performance of these methods. These all combine into a
system with multiple feedback loops that work together to
achieve the desired synchronization.

The authors have made their work available on github, at
https://github.com/samwhiting/gnuradio-doa .

Time and Frequency Corrections in a Distributed Network Using GNURadio

Figure 8. Sample Offset Corrections

Figure 9. Calculating Phase Difference with Principal Component Analysis

References
Bourke, Paul. Interpolation Methods, 1999.

http://paulbourke.net/miscellaneous/interpolation/.

Junming Wei, Changbin Yu. Improvement of software de-
fined radio based TDOA source localization.

Krysik, Piotr. Multi-RTL, 2016. https://ptrkrysik.github.io/.

RTL2832u. RTL2832u based coherent multichannel re-
ceiver, 2014. http://yo3iiu.ro/blog/?p=1450.

Time and Frequency Corrections in a Distributed Network Using GNURadio

Figure 10. Linear Regression to find a Frequency Error term

Figure 11. Applying the Complex Frequency Correction

Figure 12. Frequency Difference Corrections

Time and Frequency Corrections in a Distributed Network Using GNURadio

Figure 13. GNURadio Flowgraph

