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Abstract

Radio Frequency Network-on-Chip (RFNoC™)
is a recently developed architecture for Univer-
sal Software Radio Peripheral (USRP) Software-
Defined Radios (SDR). This new architec-
ture works to leverage the USRP’s field-
programmable gate array (FPGA) chip to con-
figure digital signal processing (DSP) blocks. A
USRP-based SDR application benefits from high
adaptability and quicker development time but
typically shows high latency. The research in
this paper focuses on measuring the latency intro-
duced by the RFNoC architecture in a consistent
and repeatable manner to provide a benchmark
for SDR applications. By focusing on the tvalid
interface of the AXI data stream and probing it at
different points within the layers of RFNoC ar-
chitecture, data packets can be tracked and the
latency can be quantified and characterized. This
study seeks to provide a better understanding of
RFNoC'’s capabilities so that users can determine
whether it meets their performance needs and to
recommend future improvements by diagnosing
the layers of RFNoC where the most latency is
incurred.

1. Introduction

Radio Frequency Network-on-Chip (RFNoC) is an open
source framework to develop software-defined radio (SDR)
applications that can run on FPGA-embedded universal
software radio peripheral (USRP) transceivers. RFNoC
was developed to speed up and streamline the process
of developing signal processing algorithms as well as
modularize and seamlessly integrate the majority of non-
processing related tasks, such as flow control and data
movement, into a common paradigm on the FPGA (Braun
et al., 2016). While this higher layer of abstraction of back-
ground details is useful for certain applications, including
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academia and quick algorithm testing and demonstration, it
could have deleterious effects on certain SDR applications
that involve more intense computational or timing require-
ments. To determine and benchmark the throughput and
timing characteristics caused by the RFNoC framework,
a test to calculate the latency propagating through an im-
plementation of working digital signal processing (DSP)
blocks in an RFNoC-enabled USRP will be demonstrated
and quantified.

One of the primary motivations behind the development of
RFNoC was to migrate the heavy processing tasks of an
SDR application from the general purpose processor (GPP)
of a host computer to the FPGA on the USRP, which is
a more capable and appropriate setting for certain radio
frequency (RF) signal tasks than the GPP (Braun et al.,
2016). Given the complete ability to implement an FPGA
in whatever custom configuration is needed for a particu-
lar computing task or situation, timing and throughput re-
quirements should be able to be met by the final design
in most traditional development settings. Unfortunately, as
a tradeoff to this capability, the time needed to properly
design and test a given FPGA design is typically longer
and more intensive than GPP implementation (Braun et al.,
2016; Malsbury & Ettus, 2013). This customization poten-
tial of FPGAs also means that the entire backbone of the
design must be set by the designer, which can be a daunt-
ing task. RFNoC attempts to alleviate this situation by im-
plementing all of these steps as a common framework so
that the user can focus on algorithm development inside
individual computation engine (CE) blocks, also known
as user intellectual property (IP) cores, and then combine
them to create the processing signal flow to load onto the
USRP (Braun et al., 2016; Malsbury & Ettus, 2013; Braun
& Cuervo, 2017; Braun & Pendlum, 2014). This scenario
should, in theory, act as a good compromise between time
spent creating powerful custom IP cores within the FPGA
and time spent bringing a finalized design to fruition.

As RF environments become more congested and net-
works’ data transmission needs become more stringent, the
transceivers that are used to propagate and receive signals
of interest have to keep up with these ever-evolving sce-
narios. Typically, designers factor some amount of extra
redundancies, such as forward error correction and addi-
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tional bandwidth, to add robustness to the data link. Even
with these allowances, modern data links have increasingly
complicated timing and throughput requirements (Truong
et al.,, 2013). It was of interest to determine whether
the RFNoC development environment could support these
types of applications.

This article examines the magnitude and sources of latency
in a USRP SDR platform that utilizes the RFNoC architec-
ture for its signal processing framework. Section 2 provides
background information for this experiment, Section 3 ex-
plains the approach of this experiment, Section 4 presents
the measurement results of this experiment, and Section 5
concludes the paper.

2. Background

To measure the latency introduced by RFNoC overhead,
the tvalid signal of the AXI stream, which indicates when
data packets are present, was monitored at different points.
By measuring this signal, the latency between blocks, as
well as within each block, was quantified in a repeatable
manner. When the tvalid interface’s signal edge transitions
to logic high, there is data present at whatever point in the
circuit is being scoped (Braun & Cuervo, 2017; Pendlum,
2014). By finding the change in time between different
sets of these points, the latency through different parts of
the signal processing chain can be measured.

This method also applies as this tvalid interface changes
variables as the data packet moves into different submod-
ules in the RFNoC block’s FPGA code. To illustrate this,
these variable names have been overlaid onto a graphic of
the RFNoC architecture (Fig. 5). To establish enough data
points to follow the data packet through the RFNoC archi-
tecture, two CE’s were created: Block 1 and Block 2. To
start, the time delay between a data packet arriving at Block
1 and the same data packet arriving downstream at Block 2
was measured. After this measurement was made, the data
packet was tracked as it moved through Block 1. These
results were compared to the same results in Block 2 to
observe whether they were consistent. The next sections
will cover the different layers of the RFNoC architecture in
more detail.

2.1. Crossbar Switch

All of the CE blocks that are incorporated in a signal pro-
cessing chain are connected via a Crossbar switch. The
AXI stream standard is the supported data stream proto-
col in RFNoC and contains four stream interfaces: tready,
tvalid, tlast, and tdata (Fig. 1) (Malsbury & Ettus, 2013;
Braun & Cuervo, 2017; Pendlum, 2014). It should be
noted that tvalid stays high for the duration of the tdata
packet. The interface tvalid was chosen because it indicates
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Figure 1. RFNoC Data Stream Structure

whether the data packet contains usable information or not.
Another advantage of this method is that this single-bit
stream interface propagates through the NoC block and will
provide a total picture of the latency effect of the RFNoC
architecture (Braun & Cuervo, 2017; Pendlum, 2014).

Incoming data packets arrive at CE blocks from previous
CE blocks, which are referred to as upstream, in terms of
their earlier address from the Crossbar switch. Likewise,
outgoing data packets coming from a CE block are sent to
downstream CE blocks (Braun et al., 2016; Malsbury &
Ettus, 2013). As seen in Fig. 5, the Crossbar feeds the
NoC Shell on a data packet’s incoming path and the NoC
Shell feeds the Crossbar for an outgoing data packet (Braun
etal., 2016; Braun & Cuervo, 2017; Pendlum, 2014). More
specifically, this incoming data packet is referenced by the
variable i_tvalid and the outgoing data packet is referenced
by o_tvalid (Malsbury & Ettus, 2013; Braun & Cuervo,
2017; Pendlum, 2014).

2.2. NoC Shell

As can be seen in Fig. 2, the NoC Shell contains a Clock
Crossing FIFO to change the clock frequency between the
Crossbar and CE block. It also contains a demultiplexer
to parse the incoming data packet into four different parts:
data, response, command, and flow control. Likewise, a
multiplexer combines these four different parts after they
have been processed to repackage the outgoing data packet
to be transmitted back out to the Crossbar switch. The
variables str_sink_tvalid for the incoming data packet and
str_src_tvalid for the outgoing data packet connect the NoC
Shell to the AXI Wrapper (Braun et al., 2016; Braun &
Cuervo, 2017; Pendlum, 2014).

2.3. AXI Wrapper

As shown in Fig. 3, the AXI Wrapper strips away the in-
coming data packet’s header information to either be dis-
carded or saved for later use, depending on the AXI stream-
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Figure 2. RFNoC NoC Shell Components

ing mode, and then resizes the input data. The outgoing
data packet is conversely created by resizing the output
data before it is framed and a header is appended back
onto the data stream. A settings bus coming from the
NoC Shell also goes through a control FIFO to feed con-
trol data into the User IP section of the NoC Block. The
incoming tvalid data interface is expressed by the vari-
able m_axis_data_tvalid as raw AXI stream data goes to
the User IP and the outgoing data packet is expressed
by s_axis_data_tvalid once it comes back from the User
IP (Braun et al., 2016; Braun & Cuervo, 2017; Pendlum,
2014).
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Figure 3. RFNoC AXI Wrapper Components

2.4. User IP

The User IP section of the NoC Block FPGA code is
where the user has a chance to implement signal process-
ing algorithms and/or manipulate settings registers to ac-
tually make usable signal processing blocks. The incom-
ing data is indicated by the m_axis_data_tvalid interface and
the outgoing data is represented by s_axis_data_tvalid. To
take the baseline data reading for latency results, a simple
pass-through was implemented where s_axis_data_tvalid =
m_axis_data_tvalid. Because this data was simply passed
from input to output without registering it, the latency
makes no significant contribution for the purposes of this
analysis. Obviously, for more complicated signal process-
ing algorithms that require more clock cycles to complete,
the latency at this step should increase. The AXI mode was
also set to simple, meaning that each data packet contains a
32-bit data payload, the first 16 bits for in-phase (I) data and
the second 16 bits for quadrature-phase (Q) data. This also
signifies that the header of the incoming data packet was
stored once it had been parsed in the AXI Wrapper and then
appended to the outgoing data packet. A larger data pay-
load could be realized by using an extended AXI format to
support 64 or 128 bits appended to a new header created
and sent from the User IP (Braun et al., 2016; Malsbury &
Ettus, 2013; Braun & Cuervo, 2017; Pendlum, 2014).

3. Approach

The GNU Radio Companion (GRC) signal flow that was
implemented, illustrated in Fig. 4, includes the Block 1
and Block 2 RFNoC blocks that were described before as
well as three other blocks to complete the design that was
used for this experiment. The Signal Source block resides
on the host computer and is used to start the data stream
so that the design is active and the #valid interface can be
followed. The Null Sink block also resides on the host
computer and just completes the signal path. Along with
Block 1 and Block 2, the DmaFIFO block also resides on
the FPGA layer of the USRP transceiver. This block is uti-
lized to buffer the Ethernet connection between the host
computer and the USRP so that the FPGA layer of the
transceiver can ingest data at a high enough rate to support
its internal clock frequency settings and prevent underruns
which would cause GRC to stop working (Braun & Cuervo,
2017).

4. Results

For the experiment, the host computer used was equipped
with an Intel core-i7 clocked at 2.60 GHz, 8GB RAM,
USB 2.0, and Gigabit Ethernet, running Ubuntu 16.04 LTS.
This was connected over Ethernet to a National Instruments
USRP-2953R which was equipped with a Xilinx Kintex-7
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Figure 4. GRC Design and Test Setup

FPGA (XC7K410T). For the software environment, GNU
Radio Companion ver. 3.7.11, GNU C++ ver. 5.4.0, and
Universal Hardware Driver (UHD) ver. 4.0 were used. An
Agilent Technologies DSO-X 3034A oscilloscope, featur-
ing 350 MHz bandwidth and a 4 GSa/s sample rate, was
directly connected to the USRP’s GPIO connection to take
these measurements at a trigger level of 1.5 Volts. Each
data collection point in the circuit was measured 100 times
to gather the mean and standard deviation and the intra-
block and block-to-block latencies were also measured 100
times to confirm the combined latency of all of these data
points.

For the purpose of clarifying the results that were found,
the latency will be viewed at each stage of the RFNoC ar-
chitecture in terms of an incoming data path and then in
terms of an outgoing data path. The incoming data path
will encapsulate a data packet entering a CE block from the
Crossbar and end at the point where it enters the User IP.
The outgoing data path will begin at the point of exiting the
User IP and end with the data packet leaving the current CE
block and transmitting back over the Crossbar to the next
downstream CE block. This process will be conducted on
both Block 1 and Block 2 to determine how consistent the
results are and to see if there is any impact because of the
upstream/downstream blocks that are used in the GRC sig-
nal flow. The latency between a data packet entering Block
1 and entering Block 2 will also be measured which will
give insight into the latency over the Crossbar from block-
to-block.

4.1. Incoming Data Latency

The respective latency results for the submodules on the
incoming data path are:

Table 1. Measured latency values for incoming data path

Measurements
RFNoC Layer || Mean (1) | Std. Deviation (o)
NoC Shell 93.02 ns 2.35ns
AXI Wrapper 13.01 ns 0.39 ns
User IP 1.85 ns 0.12 ns

4.2. Outgoing Data Latency

The respective latency results for the submodules on the
incoming data path are:

Table 2. Measured latency values for outgoing data path

Measurements
RFNoC Layer || Mean (u) | Std. Deviation (o)
AXI Wrapper 1707 ns 0.34 ns
NoC Shell 67.89 ns 2.35ns
Crossbar 65.39 ns 21.28 ns
4.3. Total Data Latency

There are two larger latency findings of interest from this
experiment. Within one CE block, the latency can be deter-
mined by the time difference between i_tvalid and o_tvalid.
This result, for both Block 1 and Block 2, was consistently
1.885 us (0 = 1.67 ns). The next important latency mea-
surement is latency between an incoming data packet arriv-
ing at two consecutive CE blocks off the Crossbar which
can be determined by measuring the time difference be-
tween the first block’s i_tvalid interface and the second
block’s i_tvalid interface. This time incorporates the first
result of 1.885 us along with the 65.39 ns it takes to send a
data packet over the Crossbar from the output of one block
to the input of the next block. This was measured to give
a complete block-to-block latency result of 1.948 us (o =
19.02 ns).

The latency amounts for the intrablock and block-to-block
paths were both calculated from the summation of the mean
of the individual RFNoC submodules as well as directly
measured with an oscilloscope in the manner previously
described. This complete breakdown, including both the
calculated mean (u_calc), measured mean (u-meas), and
measured standard deviation (o _meas), is shown clearly in
Table 3.

4.4. Interpretation of Results

From these results, we can determine that the baseline la-
tency for block-to-block data transfer is just shy of 2 us.
That means that each RFNoC block that is instantiated in
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Table 3. Calculated and measured total latency values

Total Latency Comparison
Measurement p-calc p-meas | o_meas
Intrablock 1.883 s | 1.885 us | 1.67 ns
Block-to-block || 1.948 s | 1.948 pus | 19.02 ns

the GRC signal flow chain will, at a minimum, add 1.948
us to the overall latency of the design. This will have an im-
pact of what types of designs can be supported by RFNoC-
enabled USRPs. Another interesting detail of these find-
ings is that the AXI Wrapper layer of the CE block’s out-
going data stream dominates the overall latency result. In
fact, it represents 90.6% of the latency of one CE block and
87.6% of the latency between two consecutive CE blocks.
If this number can be brought down and improved upon,
more RF applications could potentially be supported by the
RFNoC architecture. All of the other results were on the or-
der of nanoseconds which is a much more favorable result.
With the exception of the Crossbar, the variance of each
layer is also quite small and negligible to the mean latency
results. In context, the FPGA’s clock is said to run at an
overall rate of 200 MHz which corresponds to a clock cy-
cle of 5 ns. This means that the majority of RFNoC’s archi-
tecture layers require between 1 and 19 FPGA clock cycles
while the outgoing AXI Wrapper takes approximately 342
clock cycles to complete. The complete breakdown of the
measured latency values is shown overlaid on the RFNoC
block diagram in Fig. 5.
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Figure 5. RFNoC Latency Measurements

5. Conclusion

By completing multiple trials to characterize the variance
of the measured value, the latency of block-to-block data
transmission through the RFNoC architecture overhead has

been proven to an accurate figure. By customizing Verilog
code, including creating custom IP blocks, a consistent and
repeatable manner with which to categorize the AXI data
stream bus and share signals between Computation Engines
can be derived. Characterizing the timing and throughput
of signal flow between these CE blocks is useful to deter-
mine whether RFNoC is a compatible environment for a
multitude of different RF transmission and reception appli-
cations. Given this knowledge, we can get a more complete
understanding of the timing constraints that the RFNoC ar-
chitecture will introduce on an RF design.

From the result seen for the latency measurement, it can
be inferred that the RFNoC architecture adds enough delay
to block-to-block data transmission that certain real-time
RF applications would not be supported. As communica-
tion standards become more complicated, their signal pro-
cessing chains become longer and more computationally
intensive. This has the net effect of making each block in
the chain more complicated and thus takes more clock cy-
cles to complete the algorithms that they contain. Thus,
the latency results that were measured in this scenario must
be added to every block that is necessary to implement a
design. A recommendation for further study would be to
implement a more complicated CE block between Block 1
and Block 2 and measure the latency induced by a more
complex algorithm. Another further experiment would be
to implement a full signal processing chain for a specific
communication receiver and decoder to see if it could sup-
port the necessary timing needs.

As RFNoC is open source and constantly being improved,
the block-to-block latency may reduce over time as the
code base changes. Specifically, improvements to the out-
going AXI Wrapper path could yield very valuable de-
creases in overall latency within RFNoC. Hopefully, with
the aid of this latency analysis, these improvements can be
implemented so that the raw processing power of the FPGA
on the USRP can be optimized to the fullest extent possi-
ble. By reducing the latency number, RFNoC will become
more appropriate for a larger variety of SDR applications.
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