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Abstract
Consider a communication scenario where sev-
eral users share a band of frequencies dynam-
ically. To share the band efficiently, it is de-
sirable to obtain as much information as possi-
ble about its use in real time. Of vital impor-
tance for most digital communication systems
and for the distinction between analog and dig-
ital communication signals is the determination
of the baud or symbol rate FB . We propose a fre-
quency domain method that determines the band
occupancy and the symbol rates for all signals
in a frequency band simultaneously, without the
need to first separate individual transmissions in
the band. In a second step, specific signals of
interest can then be converted back to the time
domain with an appropriately lowered sampling
rate to determine such parameters as the modula-
tion method and the signal constellation. Overall,
the proposed method reduces the computational
effort by about an order of magnitude compared
to conventional time domain methods for finding
FB .

1. Introduction
The topic of this paper was motivated by one of the hur-
dles for participation in DARPA’s Spectrum Collaboration
Challenge (SC2)(DARPA, 2016). The general goal of SC2
is to find ways to share the finite radio frequency (RF) spec-
trum dynamically and collaboratively among many users.
The task of the ”RF Environment Understanding” hurdle
is to ”Develop a classifier that can identify the occupied
range and type of six simultaneous non-overlapping signals
within a 3 MHz bandwidth channel.” In the noiseless case,
the power spectral density (PSD) of the signal set might
look as shown in Fig. 1.

The PSD in Fig. 1 was obtained from 3 seconds worth of
complex-valued data (I and Q samples) sampled at a rate
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Figure 1. PSD of Noiseless Signals in a 3 MHz Band

of Fs = 3.0 MHz. The graphical display is averaged over
100 blocks of length N = 90000. Some of the signals in
the band are analog and some are digital. The goal is to
be able to say, for instance, signal X0 is a 8-PSK signal
with center frequency fc0 = −1200 kHz and symbol rate
FB0 = 15 kHz, signal X1 is a 16-QAM signal with fc1 =
−650 kHz and FB1 = 60 kHz, signal X2 is a FM signal
with fc2 = −80 kHz, etc. The identification of the signals
ideally takes place in real time, so that a user wishing to
transmit in the band can identify opportunities to transmit,
e.g., because it is known that some of the digital signals
are mostly transmitted in bursts. The situation gets a little
more complicated when there is noise, as shown in the PSD
of Fig. 2 for a signal to noise ratio (SNR) of about 10 dB.

Figure 2. PSD of Signals with SNR approximately 10 dB in a 3
MHz Band

In the following we will use the noiseless signal set for clar-
ity of exposition and the noisy signal set to explore limita-
tions.
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2. Conventional Method
The first action item is the determination of the (approx-
imate) locations of the center frequencies and the band-
widths of the active signals. A well known method that can
be used is Welch’s modified periodogram method (Welch,
1967). For the noiseless case we may see a graph simi-
lar to the one shown in Fig. 3 which was created from a
discrete Fourier transform (DFT) of length N = 30000
(corresponding to 10 ms of data in the time domain).

Figure 3. Determination of bands and center frequencies, noise-
less case

Labeling the signals from left to right as X0, X1, . . ., X5,
we obtain the following approximate values for the center
frequencies fc and the bandwidths BW .

Signal fc [kHz] BW [kHz]

X0 −1250 100
X1 −750 73
X2 −300 120
X3 160 76
X4 650 105
X5 1200 120

A well known technique to obtain the symbol rate of a dig-
ital signal is to pass the time domain signal through a non-
linearity and then to look at the spectrum of the result, see
for instance Chapter 16 in (Barry et al., 2004). Let x(t)
denote the signal set consisting of 6 simultaneously trans-
mitted signals. We can write

x(t) =

5∑
i=0

si(t) e
j(2πfcit+θi), (1)

where si(t) are the baseband signals, fci are the carrier fre-
quencies and θi are the carrier phases. Taking the PSD of
|x(t)|2 = x(t)x∗(t), where ∗ denotes complex conjugate,
yields the graph in Fig. 4.

Because the complex-valued signal x(t) is magnitude-
squared (and not just squared), the carrier frequency and
phase information drops out and Fig. 4 shows the super-
position of all baseband signals (magnitude-squared). The

Figure 4. Spectrum of Noiseless Signal |x(t)|2

spectral lines in the graph show the superposition of all
symbol rates in the signal set x(t) (at 50, 70, and 90 kHz).
Thus, this looks like an elegant method to determine all
symbol rates of the signals present in a band of frequencies.
However, if the signal x(t) is noisy, the situation deterio-
rates rapidly as shown in Fig. 5 for a SNR of approximately
10 dB.

Figure 5. Spectrum of Noisy Signal |x(t)|2, SNR approximately
10 dB

In the realistic case of observing a noisy signal set it is
therefore necessary for the ”magnitude-squaring followed
by PSD” method to filter out each indivdual signal before
squaring. Fig. 6 shows the result when one of the noisy sig-
nals (X5, for example) is filtered first (e.g., by multiplying
with exp(−j2πfcit) followed by lowpass filtering) before
taking the PSD of the magnitude-squared result.

Figure 6. Spectrum of Filtered Noisy Signal X5 after Magnitude-
Squaring, SNR approximately 10 dB
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Thus, even in the noisy case, it is possible to obtain the
symbol rates of the signals in a frequency band, but it re-
quires to operate on each signal individually.

3. Frequency Domain Method
To avoid the inefficiencies associated with operating on in-
dividual signals contained in a band of frequencies, we pro-
pose to work with the Fourier transform (FT) X(f) of the
composite signal x(t) to obtain the FT of the magnitude-
squared signal |x(t)|2 = x(t)x∗(t) as follows.

∫∞
−∞ x(t)x∗(t) e−j2πft dt =

=
∫∞
−∞ x(t)

∫∞
−∞X∗(ν) e−j2πνt dν e−j2πft dt

=
∫∞
−∞X∗(ν)

∫∞
−∞ x(t) e−j2π(f+ν)t dt dν

=
∫∞
−∞X(f + ν)X∗(ν) dν

(2)

Note that, even though we talk about the (continuous time
and continuous frequency) FT here, in practice the signal
x(t) is sampled with some sampling rate Fs and the FT is
approximated for the frequencies of interest using a DFT
or FFT (discrete or fast Fourier transform). As can be seen
from eq. 2, the magnitude-squaring operation in the time
domain corresponds to a (auto)correlation function in the
frequency domain. The crucial observation is that for each
signal xi(t) in the signal set x(t) only a finite range of fre-
quencies, whereXi(f +ν) andX∗i (ν) overlap, needs to be
included in the correlation integral. This is shown graphi-
cally for f = 50 kHz in Fig. 7.

Figure 7. Component Spectra for Frequency Domain Correlation

As f in eq. 2 is increased from 0 to max(FBi) (the maxi-
mum of all symbol rates), the local integrations over the in-
dividual signal overlaps should result in local peaks when
f = FBi for the i-th signal. Define

CW (fx, FBT ) =

fx−FBT /2+W/2∫
fx−FBT /2−W/2

X(FBT + ν)X∗(ν) dν ,

(3)

where FBT is a specific symbol rate to be tested. The quan-
tity CW (fx, FBT ) is a bandlimited correlation of band-
width W around center frequency fx, in the frequency do-
main with frequency shift FBT . The parameter W can be
varied to trade off precision in spectral line location ver-
sus robustness to noise. A good starting point for W is the
bandwidth of the signal at frequency fx. If the parame-
ter FBT is set to 0 then CW (fx, 0), −Fs/2 ≤ fx ≤ Fs/2,
yields the band occupancy graph shown in Fig. 8 for a noisy
signal x(t) and W = 80 kHz. The blocklength of the DFT
used for the figure is N = 30000.

Figure 8. Determination of bands and center frequencies, noisy
case

As FBT is increased, a 3-dimensional plot can be obtained
with x-axis fx, y-axis FBT , and z-axis CW (fx, FBT ). For
the noiseless signal set, bandwidth W = 80 kHz, and DFT
blocklength N = 30000, the result is shown in Fig. 9.

Figure 9. Combined Determination of Bands and Symbol Rates,
Noiseless Case

On the x-axis the spectral peaks occur at fci − FBi/2 and
on the y-axis the spectral peaks occur at FBi. The grey
peaks visible at the front of the graph show the band oc-
cupancy (scaled back by a factor of 10 to not obscure the
rest of the graph). Thus, with one DFT and some bandlim-
ited correlations in the frequency domain, it is possible to
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obtain the band occupancy as well as the symbol rate data
for the digital signals in the signal set. In Fig. 9 it is clearly
visible that signalsX0,X2,X4 andX5 (indexing from left,
starting with index 0) are digital signals. Signal X0 has the
lowest symbol rate, and signalsX2 andX5 have both about
the same (highest) symbol rate. The symbol rate of X4 lies
roughly halfways in between. It is also easy to see that
signals X1 and X3 have no spectral peaks beside the band
occupancy at FBT = 0 and therefore they can be classified
either as analog or as (digital) constant envelope signals.

If the blocklength of the initial DFT is chosen large enough,
then the frequency domain method with the bandlimited
correlations is quite robust in the presence of noise. Fig. 10
shows CW (fx, FBT ) for the noisy signal set with SNR ap-
proximately 10 dB and all other parameters set as for Fig. 9.

Figure 10. Combined Determination of Bands and Symbol Rates,
SNR approximately 10 dB

The added noise is clearly visible in Figs. 8 and 10, but the
spectral peaks extend well above the noise floor.

4. More Modulation Parameters
Not all modulation parameters can be determined in the fre-
quency domain. To obtain the constellation of a signal in
the IQ (in-phase/quadrature) space, for example, the imagi-
nary (quadrature) part needs to be displayed versus the real
(in-phase) part of the time domain signal. If the FTX(f) is
already available and the center frequencies fci and band-
widths BWi of the individual signals

Xi(f) ⇐⇒ xi(t) = si(t) e
j2πfcit (4)

in x(t) are known, then a specific si(t) can be generated
efficiently from X(f) as follows. Select Xi(f) which is
equal to X(f) for fci − BWi/2 ≤ f < fci + BWi/2 and
shift it to baseband to obtain Si(f) = Xi(f − fci). The
result is shown in Fig. 11 for signal X5 (the far right signal

in Fig. 1).
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Figure 11. Fourier Transform of Signal X5, Isolated and Shifted
to f=0

If the baud rate FBi of the i-th signal is already known,
then there is no need to take an inverse FFT (IFFT) over the
full original bandwidth used for the composite signal x(t).
Thus, the bandwidth can be reduced, e.g., corresponding to
3.33 samples per symbol in the time domain (equivalent to
downsampling by a factor of 10 in the time domain for the
parameters used here) as shown for signal X5 in Fig. 12.
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Fourier Transform of X5 at f=0, Bandwidth Reduction by 10
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Figure 12. Fourier Transform of Signal X5 at f=0, Bandwidth Re-
duction by 10

In terms of a DTFT (discrete-time FT), Fig. 11 shows one
period of the spectrum of a DT signal sampled at Fs1 = 3
MHz whereas Fig. 12 shows the spectrum of a (downsam-
pled) DT signal at Fs2 = 300 kHz. After conversion back
to the time domain, the IQ plot shown in Fig. 13 for signal
X5 with the sampled signal points rendered as red circles
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results. Note that, even though the figure shows the noise-
less case, intersymbol interference (ISI) is vsible because a
lowpass filter instead of a matched filter was used to receive
the RRCf (root raised cosine in frequency) signal.
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Signal X5 Constellation, 3.33 Samples per Symbol

Figure 13. Signal Constellation of noiseless X5, 3.33 Samples per
Symbol

But it is clearly visible that signal X5 is a 16-QAM signal
and that remains true even if the signal is more noisy, as
depicted in Fig. 14 with an SNR of about 20 dB.
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Signal X5 Constellation, 3.33 Samples per Symbol, SNR= 20 dB

Figure 14. Signal Constellation of noisy X5, 3.33 Samples per
Symbol, 20 dB SNR

5. Computational Effort Comparison
Let Fs be the sampling rate of the composite complex-
valued (after IQ downconversion) signal x(t) and let ∆f

be the desired frequency resolution for the baud rate deter-
mination. Then a blocklength of N ≥ Fs/∆f is needed
for conversion between time and frequency domains using
a DFT or FFT. Also, let BW denote the “typical” band-
width of the individual signals contained in x(t). In our
example computations we used Fs = 3 MHz, ∆f = 100
Hz, and N = 30000.

For both, the conventional and the frequency domain meth-
ods, we assume that an initial DFT/FFT of length N is
performed to determine the approximate center frequencies
fci and the approximate bandwidths BWi of the individ-
ual signals in x(t). The computational effort, measured in
multiply-accumulate (MAC) instructions or units, for this
step is about N log2N and is roughly the same for both
methods.

The next steps for the conventional method are to (numbers
in parentheses are for the example computations)

• shift each individual signal to baseband by computing
x(t)e−j2πfcit

• lowpass filter the result for each individual signal
with a filter of bandwidth BW/2 to obtain si(t), re-
quiring a (FIR) filter of order n approximately equal
to 2N∆f/(BW/2). This uses about 4N2∆f/BW
MACs. (n=120, 3.6e6 MACs)

• square each si(t) and compute the DFT/FFT of the
result, using about N log2N MACs (4.5e5 MACs)

For the six signals in the example file used here, the grand
total to obtain all baud rates (or their absence) using the
conventional method is on the order of 2.5e7 MACs.

For the frequency domain method eq. 3 needs to be eval-
uated for each fx = fci and for each trial baud rate FBT .
A good rule of thumb for W in eq. 3 is to use W = BW .
From the examination of the initial DFT/FFT, the range of
values for fx and FBT that need to be evaluated for finding
the actual FBi (or recognizing their absence) can be signif-
icantly reduced. Note that RRCf based signals will have
FBi ≈ BWi. Under the above assumptions, each (discrete
frequency) evaluation of eq. 3 requires BW/∆f MACs.
Letting fx = fci ± 0.1BW and FBT = BWi ± 0.1BW ,
eq. 3 needs to be evaluated 1.2BW/(5∆f) times for each
xi(t), thus requiring 0.24 (BW/∆f)2 MACs. Note that
the factor of 1.2 results from extending the range of fx in
the integration limit by ±10%. For the numerical example
values used here, this results in a computational effort of
1.44e6 MACs for obtaining all baud rates (or their absence)
when the frequency domain method is used. This is an im-
provement by a factor of almost 20 when compared to the
conventional method.
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6. Limitations
The conventional as well as the frequency domain methods
do require about one hundred or more data symbols and
enough frequency resolution to accurately determine the
symbol rate of a digital communication signal. To analyze
a whole band of, say 10 (non-overlapping) signals, at least
2 × 10 = 20 samples per symbol are required. For a 100
Hz resolution, a time segment of length 10 ms is needed.
The latter constraint is typically more dominant, resulting
in the computation of FFTs of blocklengths N ≈ 0.01Fs
(N=30000 for Fs = 3 MHz).

One important conceptual difference between the conven-
tional and the frequency domain method is that the for-
mer produces a spectral line at the actual symbol rate FBi,
whereas the latter produces a spectral line at fci + FBT /2
only if the trial symbol rate FBT is close enough to the
actual rate FBi.

Constant envelope modulation schemes, such as CPM
(continuous phase modulation), CPFSK (continuous phase
frequency shift keying), or GMSK (Gaussian minimum
shift keying) produce complex-valued baseband signals of
the form

s(t) = Aej(2πfct+φ(t)) , (5)

where A is some constant amplitude and φ(t) is either di-
rectly a waveform containing the (digital) data to be trans-
mitted (for phase modulation), or an integral of such a
waveform (for frequency modulation). Clearly, taking the
magnitude squared of such a signal will be equal to A2

which does not contain any timing information.

To illustrate this case, we look at the “samples 011” signals
(generated at random according to DARPA’s hurdle2 for
SC2) that consist of a mix of 6 FM, QPSK and GMSK
signals at a SNR of approximately 20 dB. The PSD of this
signal set is shown in Fig. 15.
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Figure 15. PSD of ”samples 011” Signals, 20 dB SNR

Labeling the signals from left to right as
X110, X111, . . . , X115, we find that

Signal fc [kHz] BW [kHz]

X110 −1400 100
X111 −1000 230
X112 −400 100
X113 50 70
X114 650 200
X115 950 70

Using the frequency domain method of Section 3 yields the
3D Occupancy/Symbol Rate graph shown in Fig. 16.
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Figure 16. Band Occupancy and Symbol Rates for ”samples 011”
Signals, SNR approximately 20 dB

Signals X111, X113, X115 have spectral lines at
200, 50, 50 kbaud, respectively (all three are QPSK
signals). But signals X110, X112, X11, 4 have no dis-
tinctive spectral lines that could be interpreted as symbol
rates. From the PSD in Fig. 15 we suspect that X110
and X112 are analog FM signals (because of the spectral
line at fc that comes from silence or pauses in the analog
modulating signal). To obtain more information about
X114, the signal at fc4 = 650 kHz is filtered out and
shifted to baseband (all operations are directly performed
on the intital FT) and then transformed back to the time
domain to obtain the complex baseband signal s4(t). To
obtain the symbol rate of this (still constant envelope)
signal, compute [Re{s4(t)}]2, where Re{.} denotes taking
the real part, and then look at the PSD of the result which
is shown in Fig. 17.

Now it can be seen that FB4 = 107.14 kbaud. To verify
that this is indeed correct and that the signal is a GMSK
signal, plot the imaginary part of s4(t) versus its real part.
This is shown in Fig. 18 with the actual sampled symbols
plotted as red circles.

Thus, signal X114 is confirmed as a GMSK signal with
FB4 = 107.14 kbaud.
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Figure 18. Signal Constellation for GMSK Signal X4 from ”sam-
ples 011” Signals, 20 dB SNR

7. Python Code
The Python code below shows how to generate the 3D
plot shown in Fig. 9 using the frequency domain method.
To keep the code simple, it has not been optimized
for speed and/or computational efficieny. The data files
and a Jupyter notebook can be found on GitHub at
https://github.com/mathys2000/..

..BandOccupancyAndModulationDetection

from pylab import *
%matplotlib notebook
rc(’text’, usetex=True)
from mpl_toolkits.mplot3d import Axes3D
rt = fromfile(’mysamples03_SNR60dB.dat’,\

dtype=complex64,count=-1)
SNR = 60
L = length(rt)
Fs = 3000000 # Sampling rate
tt = arange(L)/float(Fs) # Time axis
deltaf = 100 # Frequency resolution
FBTmax = 100000 # Max trial baud rate
# Select short signal segment

x0t0 = 1.0 # Start time
x0tlen = 1/float(deltaf) # Duration
ixx0 = where(logical_and(tt>=x0t0,\

tt<x0t0+x0tlen))[0]
N0 = len(ixx0) # Blocklength
x0t = rt[ixx0] # Signal segment
tt0 = arange(N0)/float(Fs) # t-axis for x0t
# Compute "FT" of x0t
X0f = fft(x0t)/float(Fs) # FT for x0t
XX0f = hstack((X0f,X0f)) # Extnd -Fs...Fs
fff0 = (Fs/float(N0))*arange(-N0,N0)
ixf0 = where(logical_and(fff0>=-Fs/2.0,\

fff0<Fs/2.0))[0]
X0f = XX0f[ixf0] # FT for -Fs/2...Fs/2
ff0 = fff0[ixf0]
# (Auto-) Correlation in frequency domain
w0 = 80000 # Freq domain window in Hz
h0f = ones(w0/float(deltaf))
f0corr = 0 # Offset 0 correlation
ixf0corr = where(logical_and(\
fff0>=f0corr-Fs/2.0,fff0<f0corr+Fs/2.0))[0]
X0corr = XX0f[ixf0corr]*conj(X0f)
X0corrBF = [0.1*abs(convolve(X0corr,h0f,\

’same’))]
FBTs = arange(0,FBTmax,1000) # Trial FB’s
for f0corr in FBTs[1:]:

ixf0corr = where(logical_and(\
fff0>=f0corr-Fs/2.0,\
fff0<f0corr+Fs/2.0))[0]

X0corr = XX0f[ixf0corr]*conj(X0f)
X0corrBF = vstack((X0corrBF,\

abs(convolve(X0corr,h0f,’same’))))
mx = amax(X0corrBF.flatten())
x = ff0 # Frequency axis
y = FBTs # Symbol rate axis
X, Y = meshgrid(x, y)
my_col = cm.hot(X0corrBF/(0.35*mx))
f3 = figure(figsize=(12,6))
af31 = f3.add_subplot(111,projection=’3d’)
af31.plot_surface(X/1000, Y/1000,\

X0corrBF, facecolors = my_col)
af31.set_xlabel(’freq [kHz]’)
af31.set_xlim(-1500,1500)
af31.set_ylabel(’Baud Rate [kHz]’)
af31.set_ylim(0,FBTmax/1000)
af31.set_zlim(0,mx)
af31.ticklabel_format(style=’sci’,\

axis=’z’, scilimits=(0,0))
af31.set_zlabel(’Xcorr’)
af31.set_title(’SNR = {:d} dB, N = {:d},\

$\Delta f$ = {:d} Hz’.\
format(SNR,N0,deltaf))

af31.view_init(30, 262)
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