
RFNoC & Vivado HLS Challenge
Team Rabbit Ears: ATSC Receiver

Andrew Valenzuela Lanez ANDREW.LANEZ@NAVY.MIL

United States Navy

Sachin Bharadwaj Sundramurthy, Alireza Khodamoradi {SABHARAD, ALIREZAK}@ENG.UCSD.EDU

Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093 USA

Abstract
Creation of custom RFNoC (RF Network-on-
chip) blocks that process a received ATSC (Ad-
vanced Television Systems Committee) signal
is presented. The development workflow of
RFNoC blocks may be perceived as complex
and intimidating to some. Management of that
workflow starting from Vivado HLS (High-Level
Synthesis) 2015.4 and proceeding through the
RFNoC framework is clarified with procedural
steps. Coding and high-level synthesis optimiza-
tion techniques that were used are discussed.

1. Introduction
The original digital television ATSC library was a con-
tributing factor in the legal founding of GNU Radio. As
interesting as it would be to delve into that historic mo-
ment, this paper instead details the effort put forth to
evolve the venerable ATSC library as GNU Radio evolves
with RFNoC. Real time playback of a live ATSC signal
processed through the gr-dtv ATSC receiver is possi-
ble on high-performance computers but not on most com-
modity computers (Corgan, 2014). This makes ATSC re-
ceiver blocks ideal candidates for porting into RFNoC.
Computation intensive tasks can be offloaded to FPGA
(field-programmable gate array) logic while applying high-
level synthesis optimization techniques to improve receiver
throughput. This can bring GNU Radio ever closer to
achieving real time ATSC playback on a typical commodity
computer.

2. Contribution
RFNoC blocks that have been developed under the
atsc rx module and verified to run on FPGA hardware
are as follows:

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

• RFNoC: ATSC RX Filter

• RFNoC: ATSC Receiver FPLL

• RFNoC: DC Blocker

• RFNoC: AGC

• RFNoC: ATSC Viterbi Decoder

• RFNoC: ATSC Deinterleaver

• RFNoC: ATSC Reed-Solomon Decoder

• RFNoC: ATSC Depad

• RFNoC: ATSC RX Filter-FPLL

• RFNoC: DC Blocker-AGC

All blocks above were built with these integrated features:

– Vivado HLS Source & Testbench

– HDL Testbench

– FPGA Integration

– UHD Integration

– GNU Radio Integration

There are versions of some blocks with partial integration
of the Settings Register Bus. There are also versions of
blocks optimized for higher throughput. FPGA implemen-
tation of these in-progress blocks could not be completed.
More specifics on these extra versions will be touched upon
throughout this paper.

Source code repository:

http:
//github.com/Xilinx/RFNoC-HLS-ATSC-RX

Video submission for RFNoC and Vivado HLS Challenge:

https:
//www.youtube.com/watch?v=iFYgbdf7smg

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

3. Design
The aforementioned blocks are functional counterparts of
existing blocks in the gr-dtv library. The rationale for
porting those blocks is explained in the following.

Figure 1. Example flowgraph of ATSC receiver blocks from
gr-dtv. The four frontend blocks were among those chosen
to port into RFNoC.

The Ettus Research USRP X310 packaged with a Xil-
inx Kintex-7 XC7K410T FPGA was used for this design.
RFNoC allows for up to ten user-specified CEs (computa-
tion engines or RFNoC blocks) to be programmed onto the
XC7K410T. The decision on which blocks to port onto the
FPGA hinged on two factors:

Frontend proximity. Porting frontend blocks from
software into hardware increases deterministic pro-
cessing before the datastream falls under the whim of
an operating system scheduler. RX Filter, FPLL, DC
Blocker, and AGC were selected as shown in Figure 1.
RX Filter minimizes unwanted ISI (intersymbol in-
terference) then oversamples and interpolates the sig-
nal, FPLL (frequency and phase locked loop) is used
for carrier acquisition, DC Blocker removes unwanted
DC components, and AGC (automatic gain control)
adjusts amplitudes to a reference value within a de-
sired range.

Bottlenecks. Blocks that have higher consumption of
runtime resources or cause buffers to fill are ideal can-
didates for porting. Figure 3 shows the top runtime
consumer is from Viterbi Decoder and secondary con-
sumer is from Reed-Solomon Decoder so those blocks
were targeted. The top buffer consumer in Figure 2 is
from RX Filter.

Deinterleaver was selected to close the link between the
Viterbi (or trellis) Decoder and Reed-Solomon Decoder.
Those blocks undo forward error correction encoded by the

Figure 2. Average buffer usage of gr-dtv ATSC receiver blocks
captured by ControlPort Performance Monitor.

Figure 3. Average runtime usage of gr-dtv ATSC receiver
blocks captured by ControlPort Performance Monitor.

transmitter. Depad was targeted for its simplicity and to be
tried as the first block to complete the RFNoC workflow. It
strips extraneous bytes leaving an MPEG video file as the
final output.

Two key parameters in this receiver that drive sample rate
requirements for all blocks are the 6.25 MHz sample rate
coming out of the DDC (digital down coverter) at the
receiver frontend and the oversampling ratio of the first
block, RX Filter. It was decided that the 6.25 MHz input
rate should not be modified to pass in a 6 MHz bandwidth
(Figure 4) ATSC channel. Reasonable oversampling ratio
values were found to range between 1.1 to 2 for the ATSC
receiver software implementation to accumulate enough
data to output video for playback. For an initial pass at
implementing on hardware, it was decided to define target
sampling rates based on the oversampling ratio of 1.1 to
make implementation less constrained. Then, time permit-
ting, iterate from there by increasing target rates and fine
tune sample rates to match between blocks.

4. Implementation
For each block, workflow started in Vivado HLS 2015.4
then proceeded into RFNoC. When ready, blocks were
built into an FPGA image by running the make
X310 RFNOC HLS HG command which called upon Vi-
vado to synthesize the C++ code into a Verilog package

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

Figure 4. Spectrum of live ATSC broadcast signal received by a
1byone (Figure 14) antenna and USRP X310. Captured at the
frontend between the DDC and RX Filter. 8VSB (Vestigal Side
Band) modulation with 6 MHz bandwidth and pilot tone approx-
imately 309 Khz above lower edge (Advanced Television Sys-
tems Committee, 2011).

and build a bitstream file. The bitstream file would then
be programmed to the FPGA using uhd image loader.
Finally, a development iteration ended with testing in GNU
Radio (Figure 5).

Workflow in the RFNoC framework is already well docu-
mented at (Ettus Knowledge Base, 2017). The following
discussion focuses on design implementation using Vivado
HLS 2015.4 proceeded by challenges faced during imple-
mentation.

4.1. Workflow in Vivado HLS

DEVELOPING HLS SOURCE

Signal processing source files were written in C++ to
be synthesizable. Some of the Vivado HLS optimiza-
tion directives that were used include #pragma HLS
PIPELINE, #pragma HLS UNROLL, #pragma HLS
RESOURCE, and #pragma HLS ARRAY PARTITION.
The tradeoff between optimizing to increase throughput
versus optimizing to reduce utilization were kept in consid-
eration. Detailed guidance on optimization techniques can
be found at (Xilinx, 2015). Synthesizability was checked
using csynth design (C Synthesis in Vivado HLS).
Timing could be checked using /tt export design (RTL Ex-
port in Vivado HLS) with the Evaluate Verilog option en-
abled (though this last step can be time consuming and bet-
ter left as a final step before FPGA integration in RFNoC).

Figure 5. High-level progression of workflow.

DEVELOPING HLS TESTBENCH

A testbench was written in C++ to send input data to the
DUT and compare the output against a golden output using
csim (C Simulation in Vivado HLS) in the C++ domain.
The golden output was captured as a binary file using File
Sink on the output of the counterpart or reference block in
GNU Radio. Input was captured in a similar fashion with
the original input source being a live ATSC signal fed from
UHD: USRP Source as shown in Figure 6. In the testbench,
multiple function calls to the DUT per test run is encour-
aged to check the boundaries between returned output data
sets and accumulate initiation interval statistics.

Figure 6. Input and golden output binary files were captured for
use in HLS testbench.

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

If csim showed passing results and csynth design
showed the block to be synthesizable, then cosim (C/RTL
Cosimulation in Vivado HLS) was run to translate the
C++ code into RTL (Verilog, VHDL, and/or SystemC)
and apply the testbench input stimuli and output checking
in the RTL domain. To synthesize the input port of the
RX Filter block, for example, into the AXI Stream inter-
face used in RFNoC, the #pragma HLS INTERFACE
axis depth=64 port=in was used on the top level
function of the block. The depth parameter has no bear-
ing on synthesis. Instead, it is a control parameter for the
cosim testbench to know how to size its input FIFO so
it matches the RX Filter input array size which does have
bearing on synthesis. As a final step before moving on
to FPGA integration, Vivado HLS export design with
the Evaluate Verilog option enabled was used to check if
the design met timing requirements.

Extra sanity checks were sometimes made after modifying
the HLS testbench to dump DUT output values into a bi-
nary file. The binary output file was then used in a File
Source block at the appropriate location in the GNU Ra-
dio ATSC receiver example. For example, if the binary
file was generated from the RX Filter DUT and its HLS
testbench, the UHD: USRP Source and RX Filter blocks
in GNU Radio were replaced by a File Source block point-
ing to that binary file. This way, GNU Radio could perform
more checks against the DUT output and report meaningful
information such as sync errors. This also tested whether
the quality of the binary data was sufficient for decoding
into video. Effectively, a block completed this early on in
HLS could momentarily bypass RFNoC for basic testing in
GNU Radio.

Figure 7. The HDL testbench uses Vivado Simulator or
XSIM. The GUI as shown can be enabled using make
noc block [BLOCK NAME] tb GUI=1. The logic analyzer
feature was used here to observe DC Blocker settings bus signals.

ITERATING BETWEEN HLS AND RFNOC

After a block passed cosim and met timing in
export design, it was ready to test against the RFNoC
HDL testbench. The C++ source files that were fed into
export design got converted into Verilog and Xilinx
XCI IP source files. Those files were used as the DUT in
the RFNoC HDL testbench. The binary input and golden
output files used in HLS were converted to ASCII repre-
sentations using MATLAB (Python would have worked as
well) which were then used as input and golden output ar-
ray variables in the SystemVerilog HDL testbench. If the
DUT had bugs revealed by the HDL testbench (Figure 7)
or by running its FPGA implementation in GNU Radio,
it was debugged in HLS or HDL testbench, re-packaged
with export design, then retested. This process was
repeated until the RFNoC block implementation functioned
as desired in GNU Radio.

4.2. Challenges

The scheduler is a noteworthy feature of GNU Ra-
dio dataflow that is not accessible to RFNoC blocks.
The software implementation of RX Filter uses the
set history() function to recall samples from the pre-
vious set of inputs. If not for this feature, the polyphase FIR
filterbank–theory from (harris, 2004)–in RX Filter would
output starting transients whenever a new set of samples
is filtered. set history() prepends the incoming sam-
ples with trailing samples from the previous input. Filter-
bank phase arms are adjusted such that the starting transient
overlaps in phase with the previous ending transient. The
overlapping transients are then not sent to output (overlap-
and-discard method). The RFNoC: ATSC RX Filter block
cannot access set history() so previous input sam-
ples (specifically the last 18) must be stored internally in
FPGA logic then fed into the filterbank before the next
set of input samples arrive. Considerations like this must
be made when porting existing GNU Radio blocks into
RFNoC.

An peculiarity was found while testing the RFNoC: ATSC
Receiver FPLL block in GNU Radio. All samples were be-
ing output with a gain of 3.276700480546441× 104 ap-
plied over the expected output values. This almost looked
like a 15-bit shift left operation and did not manifest when
running the HLS testbench nor the HDL testbench. To re-
solve this, the FPLL HLS source file was modified to sim-
ply divide all outputs by that gain. Of course, the HLS and
HDL testbenches had to be updated to multiply that gain
back onto the outputs before checking them. The source of
this mysterious gain was never found.

The GNU Radio implementation of DC Blocker has a de-
fault setting of processing 4,096 samples in and out and
using a ”long form” of nested loops in its moving aver-

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

ager. Using these parameters in the initial HLS implemen-
tation, the DUT would pass csim but cosim would time-
out after running for more than 24 hours. This may be due
to the enormous estimated maximum initiation interval of
251,969,541 clock cycles reported by csynth design.
The target initiation interval II in clock cycles can be cal-
culated as

II = bfCE CLK

fs
× nc (1)

where fCE CLK is the computation engine clock rate, fs
is the sample rate, and n is the number of samples pro-
cessed. Given the CE clock is fCE CLK = 214 MHz, the re-
quired output sample rate determined from studying the re-
ceiver in Figure 1 is fs = 11.8385× 106 MS/s (megasam-
ples per second), and the number of output samples per
function call to DC Blocker is n = 4, 096, applying these
values to equation 1 the target initiation interval becomes
II = 2, 314 clock cycles. To minimize clocks, it was
decided to reduce the delay line length and not use ”long
form” so that less nested loops were used with two de-
lay lines instead of four in the moving averager. The DC
Blocker software implementation could still synchronize
with and decode a live ATSC signal with minumum de-
lay line length 128 (which changed the II target to 2,315)
and ”long form” disabled. After applying these changes
to the HLS source code, initiation interval reduced to
207,365 clock cycles. Optimization directives #pragma
HLS ARRAY PARTITION with cyclic factor=16
applied to both delay lines and #pragma HLS UNROLL
factor=16 applied to nested loops brought initiation in-
terval down to 31,671 clock cycles. The optimizations were
still not enough to meet the target initiation interval. Setting
the unroll and cyclic factor parameters to 64 reduced initi-
ation interval to 6,543 with no errors or warnings in HLS.
However, image build resulted in a critical warning on tim-
ing and the RFNoC implementation functioned erratically
in hardware. This was a recurring issue and further discus-
sion on this is in Section 5.

The Viterbi block underwent a similarly radical improve-
ment in optimization. An earlier implementation of the
Viterbi algorithm relied on many loops and nested loops.
It had a 2,659,376 clock cycle initiation interval though the
target was 163,124 clock cycles. Vivado HLS was found to
not be unrolling loops that greatly would benefit from be-
ing pipelined. Calls to the same function within the loops
may have been a reason the loops could not be unrolled.
These functions were copied many times and numbered to
match loop iterations and loops were manually unrolled.
This enabled more pipelining and reduced initiation inter-
val to 138,920 which met the target.

RFNoC: FIFO blocks were used (Figure 13) to compensate

Figure 8. CHDR (compressed header, an Ettus-specific protocol)
packets pass between AXI Wrapper, NoC Shell, and Crossbar and
between User IP and NoC Shell. Information and image retrieved
from (Ettus Knowledge Base, 2017).

for mismatching data rates from hardware to software. As
more RFNoC blocks were developed, more RFNoC: FIFO
instances were needed, pushing total block count closer to
the 10 CE limitation on the USRP X310. A solution was
to combine blocks at the HLS level. RX Filter arbitrarily
outputs either 60 or 61 pairs of float (IQ) samples at a time.
FPLL requires one pair of float samples in to output a single
float at a time. Hence, no dynamic FIFO was needed in be-
tween when combining the two into one RFNoC: ATSC RX
Filter-FPLL block. DC Blocker, however, requires a rigid
128 samples in and out. AGC only requires one sample in
and out so it was combined with DC Blocker at the HLS
level to implement RFNoC: DC Blocker-AGC. Combining
blocks at the HLS or User IP level to increase available CE
slots came at the cost of a slight decrease in overall sample
rate but overhead incurred from packetization (Figure 8)
was eliminated.

Figure 9. AXI Stream signals. Image retrieved from (Ettus
Knowledge Base, 2017).

Implementation of the settings register bus would be re-

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

Figure 10. Settings Bus signals. Image retrieved from (Ettus
Knowledge Base, 2017).

quired to make parameters such as the oversampling ra-
tio in RX Filter or delay line length in DC Blocker pro-
grammable by the user. Provisions for this bus were im-
plemented in HLS source, HLS testbench, NoC block,
HDL testbench, and GNU Radio and UHD integration.
Values were not observed to be propagating to the set-
tings registers in Vivado Simulator (Figure 7). It was
questionable whether the settings bus ports were get-
ting synthesized correctly from HLS source files. Guid-
ance for synthesizing AXI Stream interface ports is well
documented in (Xilinx, 2017). The #pragma HLS
INTERFACE axis directive is used to synthesize ports
that match the AXI stream signals used by RFNoC in
Figure 9. Similar documentation for synthesizing the
settings bus signals shown in Figure 10 could not be
found. The #pragma HLS INTERFACE ap stable
and #pragma HLS INTERFACE ap none directives
described in (Xilinx, 2015) were experimented with to at-
tempt synthesis of the set addr, set data, set stb
settings bus ports from HLS source files. They are data port
interface directives, however, have no associated I/O proto-
col. Regardless, the settings registers were implemented
on FPGA and tested in GNU Radio and did not function as
desired. This is why settings bus is marked ”with partial
integration” in Section 2.

5. Results
This section presents the resulting BRAM (Block RAM),
DSP, FF (flip-flop), and LUT (lookup table) utilization and
sample rates of the RFNoC blocks. Live performance of the
RFNoC blocks running in GNU Radio is then discussed.

In some instances, the RFNoC image build process resulted
in a critical warning for timing not being met. This was
despite Vivado HLS 2015.4 giving no indication of tim-
ing not being met from csynth design, cosim, nor

Figure 11. RFNoC block percent utilization based on values from
Table 1.

export design with the Evaluate Verilog option en-
abled. Reed-Solomon v2 was one such block that exhib-
ited this behavior. It was significantly optimized to exceed
its target throughput. No issues were reported from Vivado
HLS 2015.4 but the image builder reported critical warn-
ings on timing and the block functioned erratically on hard-
ware (junk data). This was despite HDL testbench showing
passing results. For blocks behaving like this, sometimes
one optimization had to be removed at a time between im-
age builds to isolate the offending optimization responsi-
ble for the critical warning or erratic behavior. This put
an invisible limit on allowable optimizations and made tar-
get sample rates in a working hardware implementation un-
reachable. However, before iterating back optimizations, it
was always worth testing an image on hardware; on a few
fortunate ocassions the image functioned as desired despite
critical warnings.

Synchronization and decoding into playable video (Fig-
ure 12) and audio was achieved but, because target sample
rates were unmet (Table 2), video playback was not ap-
proaching real time as originally desired. Placing RFNoC:
FIFO blocks in front of RFNoC blocks as shown in Fig-
ure 13 allowed for processing of a live ATSC signal into
playable video and audio but with five to ten times more
latency than the pure software version of the receiver and
with chunks of samples being dropped. A couple seconds
of audio and video would render from a decoded output
data size ranging anywhere between 20 to 50 megabytes.

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

Table 1. RFNoC block utilization area reported by Vivado HLS
C Synthesis in terms of units. These blocks were verified to
function properly in hardware.

For the sake of finding new avenues to improve sample
rates, very brief experimentation was done with Vivado
HLS 2017.1. Optimizations to RX Filter that failed to meet
timing in version 2015.4 were passing in version 2017.1. A
single afternoon of further optimizing RX Filter in version
2017.1 netted a ten-fold improvement in sample rate over
the 2015.4 optimized version. That huge leap in improve-
ment was accomplished in an extremely short time span
relative to the month spent optimizing RX Filter in ver-
sion 2015.4 to net only a 40% improvement. Optimizing
DC Blocker in Vivado HLS 2017.1 netted similar improve-
ments. AGC was below its target sample rate in 2015.4 but
exceeded its target by a factor of three in 2017.1. This all
made Vivado HLS 2017.1 seem very promising. However,
attempting to build an image with Vivado 2017.1 linked to
RFNoC failed because RFNoC did not support the Xilinx
IP generated by Vivado 2017.1 HLS. Regardless, this find-
ing shows great promise if future revisions of RFNoC were
to support newer and seemingly improved versions of Vi-
vado HLS. It seems to be common opinion that coding in
pure Verilog is the best way to meet timing and through-
put requirements. That gap appears to be closing rapidly as
improved versions of Vivado HLS are released.

6. Lessons Learned
A shotgun approach to this project was used by selecting
many blocks to port into RFNoC with hopes of hitting the
bullseye. With Viterbi being the largest resource consumer
and bottleneck and its RFNoC implementation working and

Table 2. RFNoC block sample rates were calculated by applying
initiation intervals reported by Vivado HLS Cosimulation and
the 214 MHz CE clock value to equation 1 without the floor
operator and solving for fs. Target output rates were calculated
by multiplying the 6.25 MHz receiver input rate with a factor
determined by the internal functionality of each respective block.
RX Filter samples per output is an average of its arbitrarily
resampled output and an irrational number. Blocks denoted
with ”v2” were optimized for higher throughput. Vivado HLS
export design with the Evaluate Verilog option enabled
showed RX Filter v2, DC Blocker v2, and AGC v2 did not meet
timing (Reed-Solomon v2 did) and all functioned erratically on
hardware.

meeting the target throughput, it can be considered that a
bullseye was hit. Multiple other blocks struck right around
the mark. Simpler blocks such as Deinterleaver and Depad
far surpassed target sample rates and only came about to be
developed during times when little to no progress could be
made on more challenging blocks such as RX Filter, DC
Blocker, and Viterbi. This approach may have been inef-
ficient at times with efforts being spread thin across many
blocks. It is uncertain whether a more focused, sniper ap-
proach on fewer blocks would have yielded better results.

Image builds took two to three hours on higher perfor-
mance workstations in the UCSD SeaLab. But with the
majority of build attempts being done from home on an HP
laptop, it took about seven hours per build. It wasn’t until
the final weeks of the project that a novice Linux user dis-
covered the indicator-cpufreq package for Ubuntu.
Build times were then reduced to about five hours. It also
helped to convert a Windows Surface Pro 3 tablet to dual
boot with Ubuntu 16.04.1 so two images could be built si-
multaneously. Further, multiple instances of Vivado HLS
2015.4 could be running on both machines while both were
also building images. Resourceful tricks to streamline pro-

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

Figure 12. Screenshot of video from a live 195 MHz ATSC signal
(ABC San Diego KGTV Channel 10) that was processed through
implemented RFNoC blocks.

Figure 13. Flowgraph with RFNoC blocks implemented and
RFNoC: FIFO blocks and a Throttle block were placed to mit-
igate dropping of samples. To reduce losses, it is advisable to
capture the DDC output first to a file, then feed that to the rest of
the receiver.

ductivity are fruitful for projects of this nature.

Initial difficulties with getting any signal in the primary test
location was resolved by changing from a 25-mile adver-
tised range Mohu Leaf to a 50-mile advertised range 1by-
one antenna. The latter came bundled with an amplifier
but performed better with the amplifier switched off. There
was one specific position on the window (Figure 14) and
one channel (ABC Network) at 195 MHz where the re-
ceived signal (Figure 4) was acceptable. Testing had been
done very early on in the project in a different location
with a higher grade antenna resulting in higher reception
quality signified by a smaller receiver output file playing
back a longer duration of video. But access to that location
was very limited and those tests had been done before any
RFNoC blocks were developed. More testing in the better
location with better antenna is a future action item.

Figure 14. Top: Mohu Leaf antenna connected to a USRP X310.
This antenna was eventually returned to the vendor due to poor
reception. Bottom: 1byone antenna had consistent reception of
the 195 MHz-centered ATSC channel at this specific position on
the window and was used for primary testing.

It was realized partway through the project that real time
playback was an ambitious stretch goal. Although real time
playback was not achieved in this iteration of development,
HLS optimizations made it possible for several blocks to
meet their respective targets and for all blocks to process
data into playable video. As more mature versions of Vi-
vado HLS become supported by RFNoC, synthesis and re-
porting will improve to help realize real time processing
and playback of an ATSC signal assisted by RFNoC.

References
Advanced Television Systems Committee, ATSC.

Doc. a/53 part 2:2011. In ATSC Digital Tele-
vision Standard Part 2: RF/Transmission Sys-
tem Characteristics, pp. 9, 24. Advanced Televi-

RFNoC & Vivado HLS Challenge - Team Rabbit Ears: ATSC Receiver

sion Systems Committee, Retrieved from http:
//www.atsc.org/wp-content/uploads/
2015/03/a_53-Part-2-2011.pdf, 2011.
[Online; accessed 30-June-2017].

Corgan, J. M. Johnathan Corgan on Twitter: ”Real
time, over-the-air, pure software ATSC digital
television reception with #usrp and #gnuradio.
http://t.co/t46BPG28gB”. Retrieved from
http://twitter.com/jmcorgan/status/
491702698052296705, 2014. [Online; accessed
30-June-2017].

Ettus Knowledge Base, Ettus Research. In Getting
Started with RFNoc Development, Retrieved from
http://kb.ettus.com/Getting_Started\
_with_RFNoC_Development, 2017. [Online;
accessed 30-June-2017].

harris, f. In Multirate Signal Processing for Communica-
tion Systems, chapter 7.5. Prentice Hall, Inc., Upper Sad-
dle River, NJ, 2004.

Xilinx, Inc. Ug902 (v2015.4). In Vivado Design
Suite User Guide: High Level Synthesis, Retrieved
from http://www.xilinx.com/support/
documentation/sw_manuals/xilinx2015\
_4/ug902-vivado-high-level-synthesis.
pdf, 2015. [Online; accessed 30-June-2017].

Xilinx, Inc. Ug1037 (v4.0). In Vivado De-
sign Suite: AXI Reference Guide, Retrieved
from http://www.xilinx.com/support/
documentation/ip_documentation/
axi_ref_guide/latest/
ug1037-vivado-axi-reference-guide.
pdf, 2017. [Online; accessed 30-June-2017].

