
RFNoCTM — RF Network-on-Chip

Martin Braun, Jonathon Pendlum, and Matt Ettus
{MARTIN.BRAUN, JONATHON.PENDLUM, MATT}@ETTUS.COM

Ettus Research / National Instruments
4600 Patrick Henry Dr, Santa Clara, CA 95054 USA

Abstract
RFNoCTM (RF Network-on-chip) is an open
source framework for developing data process-
ing applications which can run on the FPGA as
well as a host computer. Similar to GNU Ra-
dio, which facilitates the development of signal
processing applications, RFNoC boosts develop-
ers’ productivity by handling the majority of non-
processing related tasks which are necessary for
such a framework, such as data movement, ex-
posing settings APIs, routing, flow control etc.
RFNoC works standalone, but is particularly use-
ful in combination with GNU Radio, in which
it is well integrated. It has been developed for
USRP devices, and is part of the USRP Hardware
Driver (UHD).

1. Introduction
What if your software-defined radio application could run
components on FPGAs just as easily as it can run them
on a GPP? With RFNoC (RF Network-on-Chip), that’s
what we set out to do. Using RFNoC, it’s simple to dis-
tribute processing components on various hardware plat-
forms (GPP or FPGA), depending on what is most suitable
for your application. This turns an SDR device such as
a USRP X310 into more than just an adapter to RF fre-
quencies for software, but makes it a platform for arbitrary
processing chains.

As an example, consider a modem written in an SDR
framework such as GNU Radio. Parts of the modem’s PHY
might include signal processing components such as FIR
filter or equalizers, which are great algorithms to deploy on
FPGAs, but can tie up a lot of processing power when run
on a GPP. Many SDR devices will allow modifying the
FPGA to do this processing, but typically, that means those
components leave the modular configuration of the GNU
Radio application. With RFNoC, it does not matter where

Proceedings of the 6 th GNU Radio Conference, Copyright 2016
by the author(s).

signal processing components are deployed, applications
stay modular and composable.

In Section 2, we lay out what motivated us to develop
RFNoC. Section 3 lays out the architecture of RFNoC and
explains which components interact to make RFNoC pos-
sible. The development process for using and extending
the framework is described in Section 4. We conclude with
Section 6.

2. Motivation
Consider the USRP N210: For a long time, this was the
most popular Ettus Research USRP device, and it has been
deployed in all kinds of scenarios and use cases. UHD
made it very easy to use it in any kind of software, since it
abstracted away all the low-level details going on inside the
device. If the USRP was instructed to receive on a certain
center frequency, UHD would internally figure out how to
apply those settings, automatically and transparently con-
verting the frequency into a series of hardware commands,
which would in turn configure synthesizers or other compo-
nents until the device was actually receiving on the desired
center frequency.

While this made software development for UHD-controlled
devices very simple, it also hid away the signal processing
chains internal to the device and made it difficult to add
functionality to the FPGA. UHD did support inserting cus-
tom logic into the FPGA, but it could only be placed into
a certain spot in the signal processing chain, and there was
no way to dynamically enable or disable custom modifica-
tions.

With the release of the third generation of USRPs (specif-
ically, the E310 and the X-Series), it became obvious that
were was a dire need to make FPGA development for US-
RPs easier. The USRP X310 and X300 devices ship with
a fairly large FPGA (a Kintex 7 by Xilinx), and it would
be wasteful to not use that FPGA. The USRP E310 on the
other hand, as an embedded device, simply does not have
the computational power to run complex signal processing
software on its CPU (a dual-core ARM Cortex A9), and
thus must be able to simply off-load processing onto the



RFNoC — RF Network-on-Chip

FPGA (the E310 ships with a Zynq processor, combining
FPGA and CPU on the same die).

To address these issues, RFNoC was created as a novel way
to control and program the FPGAs on these devices. Un-
like before, it not only gives more fine-grained control over
components on the FPGA, but it also allows to insert user-
defined, custom-built modules into the FPGA and control
them through generic interfaces.

Developing for FPGAs can be a daunting task for begin-
ners, but even experienced FPGA developers will testify
that a lot of time spent developing doesn’t necessarily go
into the target algorithms, but also into housekeeping tasks
such as setting up clocking, configuring transports, etc. A
primary goal of RFNoC was to take away all the develop-
ment work unrelated to implementing algorithms, and max-
imize the time spent on the actual problem at hand. This
includes both the FPGA side (i.e., as little code as possi-
ble should be required to connect up custom IP) as well as
the software side (no heavy host-side software development
should be necessary to enable or configure custom IP).

Even without loading custom FPGA IP, RFNoC can be a
useful tool, by using the IP that ships with RFNoC. An ex-
ample is the implementation of Welch’s spectral analysis
algorithm (Stoica, Petre G. and Moses, Randolph, 2005)
using GNU Radio shown in Fig. 1: While correct in theory,
it won’t be particularly useful, for multiple reasons: First,
data needs to be streamed from the device at the full rate,
which means the maximum bandwidth of the spectral anal-
ysis is limited by the transport. The actual signal process-
ing is simple: A window function, an FFT, a magnitude-
square operation and an averaging function. The averaging
is followed by a decimation, which reduces the data rate.

A more efficient implementation would be to move the sig-
nal processing blocks onto the FPGA instead of running
them on the GPP. Since the final data rate is heavily re-
duced, even a slow link between the FPGA and host com-
puter would allow to display a high-bandwidth spectrum,
without being a heavy burden on the CPU.

With RFNoC, this is not only possible to do easily, but it
also maintains the modularity of the original spectral esti-
mation application. In fact, the final GNU Radio applica-
tion looks mostly like the original, host-based flow graph
— and yet, signal processing components are seamlessly
moved from the CPU to the FPGA (cf. Section 5.1).

3. Architectural Overview
At its core, RFNoC is a method to modularize signal or data
processing components on an FPGA and efficiently access
them. Processing is split into blocks (or computation en-
gines), and data is passed between blocks. These blocks

Figure 2. Data flow for a simple FFT processing application

are connected to a crossbar, which allows arbitrary rout-
ing of packets between any block. RFNoC takes care of
passing data between blocks, routing, and configuring the
blocks from software. Data can also be passed back and
forth between RFNoC blocks and software.

A block can be anything from a simple DSP algorithm such
as FFTs or FIR filters to more complex algorithms or even
full packet demodulators. The question of how much func-
tionality to put into a single block depends on many factors;
having more fine-grained blocks allows for more flexibility,
but having more integrated, monolithic blocks may lead to
more efficient implementations overall. Typically, a block
will perform one kind of DSP algorithm, e.g., an FIR filter
would be a single block instead of multiple adders and mul-
tipliers, but a full demodulator might split up tasks such as
forward error correction, equalization, synchronization etc.
into multiple blocks.

Any block in an RFNoC configuration can be configured
to communicate with any other blocks. There are two ba-
sic types of communication: Command/control, and data.
Fig. 2 shows how data from the radio can be routed to an
FFT block before going back to the host PC. The same
figure also shows another aspect: All data between blocks
is packetized. Since we’re using packet data, it’s an easy
matter to route those packets not only to other blocks on
the same crossbar, but by using Ethernet interfaces, we can
send those packets to any device that’s on the same net-
work.

Internally, all blocks consist of a common framework in-
terface called the Noc-Shell. This allows connecting any
kind of AXI-Stream compliant IP into an RFNoC network.
Noc-Shell takes care of packetization and depacketization,
routing, flow control, and any kind of settings that are com-
mon between blocks.

Common settings are mostly for housekeeping tasks, and
the user does not need to care about those in most cases
(although all settings are made available through software
APIs). The other responsibilities make sure that data is cor-
rectly passed between blocks. By setting appropriate rout-



RFNoC — RF Network-on-Chip

Figure 1. A simple spectrum visualization application in GNU Radio using Welch’s algorithm

Figure 3. Components of Noc-Shell

ing information, Noc-Shell will correctly address all out-
going packets, so they can reach their intended destination.
Flow control is a feature which guarantees that blocks can
only send data to another block if it’s in a state that allows
receiving data. By putting this mechanism into Noc-Shell,
custom IP doesn’t need to manage when and where to send
data.

3.1. Limitations

Using RFNoC makes using FPGAs almost as flexible and
viable as using GNU Radio, but there are some limitations:

• The number of available blocks per application is lim-
ited by the blocks available on the FPGA, unlike a
pure software implementation, where any number of
blocks can be added at any time. This affects the to-
tal number of blocks per FPGA (which are limited by
FPGA resources) and the currently available blocks
(which must be chosen a-priori at build time).

• Synthesizing new FPGA images is time-consuming1.
It is currently not feasible to modify the FPGA con-

1There are multiple investigations and efforts on their way to
improve the build time for FPGA images, and this is likely to
improve significantly in future versions of RFNOC.

tents at runtime.

3.2. Comparison and relation to GNU Radio

GNU Radio and RFNoC have a lot of similarities: Both
are frameworks to create signal processing applications,
and both take care of a bulk of housekeeping tasks. Both
frameworks allow the developer to focus entirely on devel-
oping processing algorithms, and provide means to connect
with other blocks in the same framework. A typical GNU
Radio development cycle starts off by connecting existing
blocks provided by the GNU Radio framework (or third-
party extension modules for GNU Radio, known as out-
of-tree modules in the GNU Radio community). In many
cases, existing blocks will get developers quite far before
they need to extend GNU Radio with their own blocks. At
this point, GNU Radio provides tools and tutorials to make
the addition of blocks as simple and painless as possible.
In GNU Radio, blocks are software components, typically
written in either C++ or Python. Tools such gr modtool
help developers by making sure as little non-relevant code
as possible needs to be written manually. Block authors
have a variety of tools at their disposal for a smooth inte-
gration into the framework, and GNU Radio provides a unit
testing framework to quickly develop tests for new blocks.

RFNoC is very similar, the biggest difference being that
blocks are developed for FPGAs instead of in software.
Like GNU Radio, there are tools available to aid in the de-
velopment of blocks, such as a gr modtool-based tool to
create boilerplate code, a testbenching infrastructure to ver-
ify blocks’ functionality (automatically or GUI-based dur-
ing development). The framework provides all the code
requirement to connect blocks, initiate data streaming and
pass data from one algorithm to the next.

RFNoC and GNU Radio are separate projects, and RFNoC
does not require GNU Radio work. However, the two
frameworks dovetail well, and the large amount of blocks
available in GNU Radio can be a real boon for devel-
oping applications in RFNoC. The integration of RFNoC
into GNU Radio is very complete, and from within the
GNU Radio Companion, it is very simple to seamlessly
pass data from GNU Radio blocks to RFNoC blocks and
vice versa. For RFNoC developers using GNU Radio, this
makes things a lot easier, since now tools from both frame-



RFNoC — RF Network-on-Chip

Figure 4. The RFNoC development stack

works are immediately available in the same GUI. For ex-
ample, a developer might choose to develop a signal pro-
cessing algorithm in software first (e.g., in Python) where
development cycles are very fast. GNU Radio has a wide
range of signal generation and visualization components
which are excellent at testing new blocks. Then, when
the developer chooses to move to FPGA development, the
same test applications can be used from GNU Radio to test
blocks on the FPGA. This way, data is passed through real
hardware, but with no additional development overhead.
Furthermore, it avoids having to test algorithms in com-
bination with analog hardware, which can be an additional
source of errors.

A tabular comparison of features is given in Table 1.

4. Development Process
Fig. 4 shows the components of an RFNoC block including
its integration into GNU Radio. In a nutshell, there are
three layers that require some development work:

1. The actual FPGA IP. This is where the vast majority
of the development happens.

2. Block control. In order to control the block from soft-
ware, some host code needs to be written.

3. GNU Radio integration (or integration into other
frameworks). This may not be required, depending
on the application.

RFNoC is designed such that development of anything non-
FPGA-related is kept to a minimum. This means that even
if RFNoC is only used as a development tool and not for de-
ployment, the amount of overhead that needs to be invested
exclusively for RFNoC is negligible.

These three layers of development are elaborated on in the
rest of this section.

4.1. FPGA Development

There is no single required way to develop the actual IP
that runs inside an RFNoC block. Developers can write
straight up Verilog or VHDL, integrate IP from Xilinx or
other vendors, or use other FPGA development tools. The
only requirement is that the logic uses AXI-stream for its
inputs and outputs.

See Fig. 3, which shows the internals of an RFNoC block.
Several converters connect the AXI stream-compliant IP to
the rest of the network. To configure the connection, sev-
eral things need to be defined:

• Input and output data streams

• Settings and readback registers

As an example, consider the FFT block. It has one in-
put stream, which is data pre-FFT, and one output stream,
which is data post-FFT. There are at least three settings
that need to be exposed: The FFT size, the FFT direction
(inverse vs. forward FFT), and the output format (complex,
magnitude, or magnitude-squared).

4.2. Block control

The block controller is the software component that repre-
sents the digital logic on the software side. It handles the
following tasks:

• Declare input and output data streams

• Declare configurable properties

• Provide custom code to be run when properties change

Many of these responsibilities are purely declarative in na-
ture, and don’t require writing C++ code. These declara-
tions are done through an XML file, which we call the block
descriptor file.

In many cases, the block descriptor file is all that is re-
quired. If no custom block control code exists, a default
block controller is instantiated which will parse the con-
tents of the XML file and configure the system accordingly.
If more specific actions on the host side are required, code
needs to be written to handle this. Example: In the FFT
block mentioned above, the FPGA fabric expects a control
word which depends on the base-2 logarithm of the FFT
size, the FFT direction and other miscellaneous settings. To
know how to configure this control word, studying the Xil-
inx documentation for the FFT IP is required. This is not a
desirable situation, so rather than having the user write the
control word, we ask for the actual FFT size (not its loga-
rithm) and the direction, and compute the control word in
software before committing that setting.



RFNoC — RF Network-on-Chip

Feature GNU Radio RFNoC
Handles data movement between
blocks:

Yes. Data is passed via circular
buffers.

Yes. Data is framed and passed via
AXI-Stream interfaces.

Handles data routing: Yes. Connections imply data paths. Yes. Packets are transparently for-
warded to blocks locally or over the
network.

Provides Test Infrastructure: Yes. Via cppunit and Python unittest. Yes. Provides hooks for ModelSim
and Xilinx xsim.

Provides development tools: Yes. gr modtool, and others. Yes. Provides rfnocmodtool, a
gr modtool variant.

Table 1. Feature comparison between GNU Radio and RFNoC

If block control code is required, it can be written in C++,
but we also provide a domain-specific language (DSL)
called Noc-Script to enable some custom logic on the soft-
ware side without having to write any C++. Noc-Script
is also parsed and interpreted from the block description
file at runtime, so no recompilation (or setting up of a C++
toolchain) is required to use Noc-Script, resulting in even
less development overhead.

4.3. GNU Radio Integration

As mentioned before, GNU Radio is not required to run
RFNoC. However, in many cases, users might want to pull
RFNoC designs into GNU Radio, or other frameworks. In
this case, some additional amount of work is required.

To make RFNoC available in GNU Radio, Ettus Research
provides the gr-ettus out-of-tree module2. For most use
cases, this provides all the code required to run RFNoC
blocks, be it standard blocks provided by Ettus or cus-
tom blocks. Should authors of custom blocks want to run
those blocks inside the GNU Radio Companion (GRC),
they would simply have to provide a GRC bindings file.

More complex designs might require writing custom GNU
Radio blocks (typically in C++). This is typically neces-
sary when changing a setting on the block requires actions
inside GNU Radio, that can’t be handled by UHD. There
are tutorials for both writing GRC bindings and GNU Ra-
dio blocks (GNU Radio).

4.4. RFNoC Modtool

In order to write an RFNoC block, including testbenches
and the initialization of Noc-Shell, there is a certain amount
of boilerplate code that needs to be instantiated. To min-
imize the time spent on tasks that are not related to the
actual digital logic, Ettus Research provides a tool called

2In the long term, the functionality provided by gr-ettus
will be moved into gr-uhd and be provided by default GNU
Radio.

rfnocmodtool, which is derived from GNU Radio’s
gr modtool3. A full introduction to this tool is provided
as a separate tutorial (Ettus Research).

This tool will instantiate, upon request, the following files:

• Skeleton code for the FPGA implementation (includ-
ing an instantiation of Noc-Shell)

• A template for testbenches

• Templates for the block definition and block controller
classes

• Templates for GNU Radio files (C++ block and GRC
bindings)

The templates and skeleton files are marked up to make it
easy to modify and to add own functionality.

5. Examples and Use Cases
5.1. Example applications provided by gr-ettus

By downloading and installing the gr-ettus out-of-tree
module, a selection of examples are made available. One of
these examples is shown in Fig. 5, which shows an imple-
mentation of Welch’s algorithm (as discussed in Section 2).
Data coming from the radio is passed through a series of
blocks which perform the windowing, FFT, and averaging
before sending a low-data-rate signal back to the host for
plotting (in this example, the logarithm and modulus are
calculated on the host computer, but could also be moved
to the FPGA).

Connections between blocks are colour-coded to indicate
the domain in which they are processed. Green arrows in-
dicated on-chip connections, whereas black arrows indicate

3In future versions of GNU Radio, gr modtool might
be modified to work with 3rd-party plugins, in which case
rfnocmodtool would be superseded by an extension to
gr modtool.



RFNoC — RF Network-on-Chip

Figure 5. RFNoC example: Welch’s algorithm, implemented on the FPGA

Figure 6. RFNoC example: Moving average in software and FPGA

connections handled by GNU Radio. Dashed lines indi-
cate domain crossings, i.e., where data is passed from the
RFNoC domain into the GNU Radio domain.

Fig.6 shows an example on how to test and develop us-
ing RFNoC. A signal is generated in GNU Radio, then
sent through the same processing paths twice, once on the
FPGA, and once within GNU Radio. Assuming that the
GNU Radio implementation is functional, this is an easy
way to verify if the FPGA implementation is producing the
same output data. It is also a more comprehensive test than
relying on testbenches, since this will actually require a full
instantiation of the block in hardware, and will utilize all
the components of a USRP. At the same time, it allows
providing user-defined signals, instead of relying on ana-
log signals coming from the radio, enabling reproducible
tests.

5.2. Default UHD

Starting with UHD version 3.10, even default images for
the X-Series devices actually use RFNoC. This is hidden
away by some abstraction layers, but Fig. 7 shows a mock-
up of the flow graph that gets instantiated under the hood
when a regular session is instantiated (an X310 or X300 de-
fault FPGA image has a total of four receive and two trans-
mit channels, which are not shown in this picture). On the
transmit side, a large FIFO (using the DRAM on the X310

motherboard) is the first block to receive all the data from
the host. From there, samples go to a digital upconverter
(DUC), which performs sample rate conversion, and then
to the radio block. The receive side is similar, using a dig-
ital downconverter, and no FIFO is required on the device
for this data path.

5.3. Using RFNoC to test or validate existing IP

RFNoC is a viable framework for deployment, but it’s also
a powerful development tool and can be used purely for
development purposes. As an example, consider a modem
implemented fully in an FPGA, which needs to be verified.
For verification, it would help to inject custom signals, as
well as plot output signals, or even implement automated
tests running on the hardware.

Since the overhead to pull existing designs into RFNoC
is so small compared to the actual development, using
RFNoC is even an option if there are no plans to use
RFNoC in the final deployment. In the same manner, GNU
Radio can be a useful development/debugging tool, even if
it is not intended for use in final designs.

6. Conclusion and Preview
RFNoC is a very powerful extension of SDR tools such as
GNU Radio, and can also be used stand-alone to build mod-



RFNoC — RF Network-on-Chip

Figure 7. Mock-up of a default X310 configuration. Null sources and sinks are used as placeholders for the host side.

ular SDR applications running on FPGAs. In conjunction
with other SDR frameworks such as GNU Radio we can
get the best of both worlds (GPP-based and FPGA-based
platforms) for better and faster development.

In the coming months, RFNoC will become more and more
complete. Already, regular Ettus Research products are us-
ing RFNoC as drivers under the hood, and RFNoC will be
the one and only architecture for future USRPs. For now,
RFNoC is available as a separate feature branch available
through the Ettus Research repositories, but will become
part of regular UHD in the future.

References
Ettus Research. Getting Started with RFNoC Development,

2016. URL kb.ettus.com/Getting_Started_
with_RFNoC_Development.

GNU Radio. GNU Radio Guided Tutorials, 2016.
URL gnuradio.org/redmine/projects/
gnuradio/wiki/Guided_Tutorials.

Stoica, Petre G. and Moses, Randolph. Spectral analysis of
signals. Pearson Prentice Hall, Upper Saddle River, NJ,
2005. ISBN 0-13-113956-8.

kb.ettus.com/Getting_Started_with_RFNoC_Development
kb.ettus.com/Getting_Started_with_RFNoC_Development
gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorials
gnuradio.org/redmine/projects/gnuradio/wiki/Guided_Tutorials

