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Abstract

Received Signal Strength Indicator (RSSI) based
large scale positioning systems are beginning to
gain traction as coarse positioning systems when
GPS is unavailable. In this paper we present a
system for automatic positioning of an unmanned
aerial system using broadcast FM radio. Our
method is data driven, and uses machine learn-
ing techniques to improve its accuracy. The tech-
niques are easy to extend to other terrestrial static
radio transmitters. Using our algorithms, we can
localize with a minimum error of 172 meters and
mean error of less than 3000 meters.

1. Introduction

Localization using ambient wireless signals have gener-
ated a lot of interest recently, both for indoor, as well as
outdoor localization (Chu & Jan, 2007; Popleteev, 2011;
Krumm et al., 2003). Use of wireless signals have been ex-
tensively studied for indoor localization (Popleteev, 2011;
Zheng et al., 2016; Martin et al., 2010) and the achievable
accuracy continues to improve with time. Though there are
no accepted standards for indoor localization, WiFi based
localization is most common (Martin et al., 2010) and other
methods continue to be studied in detail, examples of other
modalities being GSM (Varshavsky et al., 2007) and FM
(Chen et al., 2012). For outdoor localization, however the
state of the art is GPS (Misra & Enge, 2006). Though GPS
has been in use for a long time and is the de-facto stan-
dard for large scale outdoor localization, there are situa-
tions where GPS becomes unreliable or is unavailable al-
together (Cameron, 2016; gps, 2016). As a result, there
is a need for research into augmenting the existing GPS
systems with external assistance. Assisted GPS (LaMance
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et al., 2002) and differential GPS (Zhao et al., 2014) are ex-
amples of systems that aim to augment and assist existing
GPS systems for accurate and reliable positioning. They
assume that though the GPS signal is degraded, it is still
available and can be augmented and used. This is not al-
ways the case and hence there is need for alternative meth-
ods of positioning.

Several different techniques have been used to implement
radio frequency (RF) based localization systems. Some of
these techniques include anchor based approaches (Srini-
vasan & Wu, 2007; Popleteev, 2011; Fang et al., 2009; Ot-
sason et al., 2005; Savvides et al., 2001), those using Time
of Arrival (TOA) (Fuller, 2009), Time Difference of Ar-
rival (TDoA) (Cong & Zhuang, 2001), and Angle of Ar-
rival (Savvides et al., 2001). However one of the most com-
mon approach for building very large scale localization sys-
tems using FM and other electromagnetic waves is based
on the analysis of the received signal strength (RSS) (Ku-
mar et al., 2015; Mukherjee et al., 2017).

Received Signal Strength Indicator (RSSI) at the receiver
is dependent on the hardware of the receiver (Zheng et al.,
2016), the location and power of the transmitter, and the
ambient medium. Given a transmitter ¢, the RSSI at the
receiver, which is at a distance d from the transmitter, is
given by

rd =T, —ﬁIOg(di)‘Fﬁd (1
0

where 74 is the noise at the location, which is at a dis-
tance d from the transmitter. This equation assumes that
a RSSI measurement of rgo is available at a reference lo-
cation, at a distance dy from the transmitter. (Rappaport
et al., 1996). Under the model, 1y has a Gaussian distribu-
tion with zero mean and an unknown variance and models
the uncertainty in the environment. RSSI based localiza-
tion is easy to implement, since the RSSI can be read di-
rectly from the hardware, and the computation complexity
is low. On the flip side, the accuracy of such methods are
usually low if the RSSI is used directly for the localization.
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This is primarily because the RSSI is affected by the state
of the ambient medium, the quality of the device used for
measurements and the multi-path. Thus, for improving the
accuracy, RSSI based systems require careful feature engi-
neering (Popleteev, 2011; Zheng et al., 2016; Kumar et al.,
2015; Mukherjee et al., 2017).

Large scale RSSI based FM localization systems have been
shown to have errors of around 4 miles on average, when
used in conjunction with estimated FM signal maps (Ku-
mar et al., 2015; Mukherjee et al., 2017). However the ex-
periments reported in (Kumar et al., 2015; Mukherjee et al.,
2017) were conducted with data collected from a moving
vehicle, traveling on a highway at high speeds and over a
very large area without explicitly modeling the noise. It
is known that wireless signals are affected by multi-path,
which can alter the distribution of the RSSI and hence if
the effect of the multi-path is not factored in or eliminated,
the localization accuracy can suffer. In this work we ex-
plore the effects of the latter, that is, the effect of eliminat-
ing the multi-path, as much as possible, on the positioning
accuracy. To that effect we collect data high up in the air,
where there is line of sight with the FM transmitters and
the multi-path is low because of lack of reflecting surfaces.
In this paper we report the data collection methods, a su-
pervised learning approach for FM signal estimation at a
location and the positioning algorithms that use the esti-
mated FM signal for localization. We report the results of
using our localization algorithms on data collected in and
around Tallahassee.

Notation: We denote locations (and vectors) in any region
by lowercase bold letters as X, y. Bold lowercase Greek let-
ters like 7/ are used for the power spectrum and its subsets.
Scalars including indexes are represented by lowercase let-
ters like 4, 5 and k.

Next we briefly discuss the previous attempts to tackle sim-
ilar problems.

2. Previous Work

In this work we are concerned with absolute positioning
techniques. In particular, we focus on the problem of find-
ing the absolute coordinates of a point in a fixed reference
frame. Absolute positioning can be done using two meth-
ods. The first approach relies on communications with
a Global Positioning System (GPS) whereas the second
achieves its objective without any such communication.
Traditional GPS based localization (Misra & Enge, 2006)
uses GPS receivers to communicate with several GPS satel-
lites. The received data is used to compute the distance of
the object from at least four known GPS satellites using the
idea of time of arrival (TOA) (Fuller, 2009). The final posi-
tion is found using trilateration. GPS based systems suffer

from several limitations, namely, lack of precision (Khat-
tab et al., 2015), jamming (Waterman, 2012), disruption
and spoofing (Psiaki & Humphreys, 2016). To get around
these problems researchers have used the idea of assisted
GPS (Djuknic & Richton, 2001) and differential GPS (Ka-
plan, 1996). More recently, work has been done in order to
achieve centimeter level accuracy with GPS (Farrell et al.,
2000; Talbot et al., 1996; Parkinson et al., 2000; OConnor,
1997; Zhao et al., 2014).

Apart from GPS based positioning methods, there are
absolute positioning techniques that do not depend on
GPS. These methods are usually called GPS-free local-
ization techniques. One of the most common forms of
GPS-free positioning is called Network based Geoloca-
tion (Djuknic & Richton, 2001; Gustafsson & Gunnars-
son, 2005; Borkowski et al., 1996). These methods are
almost exclusively based on technologies that depend on
wireless networks and use signal processing heavily. They
use techniques such as time of arrival, time difference of ar-
rival, angle of arrival, timing advance and multipath finger-
printing (Vander Stoep, 2009; Fuller, 2009; Savvides et al.,
2001; Oguejiofor et al., 2013; Mao et al., 2007; Ibrahim
& Youssef, 2012). Examples include AM based localiza-
tion (McEllroy et al., 2001) and Locata (Barnes et al., 2003)
which uses a type of Network based geo-location.

Fingerprint based localization systems have been exten-
sively studied for indoor (Yang et al., 2012) as well as out-
door localization. The fingerprints can be received signal
strengths for WiFi based localization (Atia et al., 2013;
Chen et al., 2013; Haeberlen et al., 2004) or FM based
localization (Kumar et al., 2015; Mukherjee et al., 2017).
They can also be readings obtained from inertial sensors,
which may have unique characteristics at given locations
(Abdelnasser et al., 2015). These methods has been exten-
sively used for building indoor localization systems (Otsa-
son et al., 2005; Chen et al., 2012; Abdelnasser et al., 2015;
Chen et al., 2013).

Smartphones are being increasingly used for building lo-
calization systems. Laoudias et al. (Laoudias et al., 2012;
Li et al., 2012) built such a system using WiFi fingerprints
collected from smartphones. A crowdsourced version of a
similar system was implemented by Petrou et al. (Petrou
et al., 2014). Konstantinidis et al. have studied privacy pre-
serving indoor localization using smartphones (Konstan-
tinidis et al., 2015). Azizyan et al. and Aly et al. have also
used cell phones for fingerprint based localization (Azizyan
et al., 2009; Aly & Youssef, 2013). Abdelnasser et al. (Ab-
delnasser et al., 2015) implemented a system for indoor lo-
calization with fingerprints constructed from different sen-
sor data, on a mobile phone.

An important variation of network based geolocation, is
called signals of opportunity (SOO) based localization
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(Counselman IIT & Hall, 2002; Yang et al., 2014). FM fin-
gerprint based localization in a small area using correlation
as a distance metric was studied in (Fang et al., 2009). In
general SOO based positioning systems use all the different
types of available RF signals in the environment, to create
a fingerprint database. Different types of RF signals such
as the Global System for Mobile Communications (GSM)
(Otsason et al., 2005; Varshavsky et al., 2007), WiFi sig-
nal (Ocana et al., 2005; Martin et al., 2010), FM (Chen
et al., 2012; 2013; Moghtadaiee et al., 2011) or TV sig-
nals (Engelbrecht & Weinberg, 1996) can be used for the
positioning. Unlike GPS, these systems can be used for in-
door localization and are known to give errors of less than
3m (Moghtadaiee et al., 2011; Martin et al., 2010).

One challenging aspect of RSS fingerprint based localiza-
tion systems is the fact that the RSS distribution changes
over time and with devices. Hence there is need for de-
vice calibration and regular updates of the underlying fin-
gerprint database, over time. These are usually laborious
processes. To alleviate these problems, Transfer Learning
methods have been studied for RSS fingerprint based sys-
tems (Zheng et al., 2016; 2008b;a).

3. Data Collection

Our data collection system consists of a modified DJI
S1000+ octocopter, fitted with a Pixhawk autopilot running
PX4 1.6.5 firmware, 3DR GPS module, an i7 NUC com-
puter, a bluetooth speaker, and a Logitech ¢920 camera. A
RTL-SDR dongle is connected to the NUC and is used for
FM RSSI data acquisition. Our FM Antenna is mounted
vertically on the top of the octocopter. Figure 1 shows our
octocopter while ascending. We would like to mention that
when mounted horizontally, the results of localization were
considerably bad, and hence we chose to fix the orientation
of the antenna to be vertical.

The NUC is connected to the Pixhawk autopilot (Meier
et al.,, 2011) using the telemetry port. The NUC runs
Ubuntu 16.04 LTS and connects to the Pixhawk using
mavlink protocol (Meier et al., 2013). Using this proto-
col, we can read and control the octocopter. Our code is
written in Python and uses multiple libraries and tools like
redis, pymavlink, mavproxy and espeak.

The data collection system is autonomous. Once armed, it
first checks the accuracy of the GPS. If the GPS error is tol-
erable, it makes an automatic RSSI reading on the ground
and then lifts off to 120 meters in the air, stays there till
another RSSI reading is collected. Once this is done, the
octocopter lands autonomously. For interested readers, a
demonstration of this process is shown in the video avail-
able on YouTube at: https://www.youtube.com/
watch?v=DYP22RmxbQ8

Figure 1. A picture of our assembled drone in the air.

We collected 30 data points at a height of 120 meters in Tal-
lahassee. A plot of the GPS coordinates of these locations
is shown in Figure 2. Note that the preparation needed to
take one aerial reading is upwards of an hour because of the
time it takes to charge batteries, wait for suitable weather
conditions and get permissions for flying in an area.

Before moving on to describe our algorithm for position
estimation, we describe in a nutshell the work of (Mukher-
jee et al., 2017; Kumar et al., 2015), which forms the first
step of the learning algorithm. This is important as our al-
gorithm bootstraps on earlier methods (Kumar et al., 2015;
Mukherjee et al., 2017).

4. Bootstrapping Method

Our positioning algorithm is based on two phases: the first
phase uses the methods described in (Kumar et al., 2015;
Mukherjee et al., 2017) for computing a coarse position
from the observed data, which is improved upon in the sec-
ond phase of the algorithm. The first phase of computing
the coarse location consists of three sub-phases:1) Model
Estimation 2) Feature Extraction and 3) Coarse Localiza-
tion. As with any learning based method (Bishop, 2006;
O’Shea & West, 2016) the model estimation phase creates
a model for the expected FM spectrum for the entire con-
tiguous United States (COTUS). This model is used for
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Figure 2. Thirty locations where aerial measurements were taken
in Tallahassee, FL.

computing the coarse location of a point of interest based
on the observed FM spectrum at that point. Given the
observed FM spectrum, the next step in determining the
coarse location consists of computing the dominant chan-
nel descriptor (DCD) features, which are finally used for
coarse positioning. We now describe each of these steps in
short. Interested readers are referred to the original papers
for more detailed descriptions and analysis of the methods.

4.1. Model Estimation

Here the goal is to be able to learn a model that predicts the
expected power across the FM channels at a point of inter-
est X based on the knowledge of nearby FM transmitters,
the power at which they are transmitting and the descrip-
tion of a region around the transmitter that receives a fixed
power from the transmitter. Informally, to estimate the ex-
pected FM power spectrum in the region of interest, the re-
gion is divided into geohashes (Fox et al., 2013) of a fixed
precision. The data for estimating the expected FM spec-
trum consists of information about FM transmitters in the
region of interest. More specifically the algorithm assumes
that it knows the geo-location of the transmitter denoted by
t, the radius of its influence denoted by r , and the p-dbu
contour plot for the transmitter denoted by p. Typically,
this contour plot is a star polygon (O’Rourke, 1998) with
360 vertices. Given this information, for every transmit-
ter, the algorithm can estimate the expected power at all
geohashes within the radius of influence of the transmit-
ter. For points that are in the radius of influence of several
transmitters, it gets the total estimated power by adding up

contributions from each transmitter affecting the area. For
a given transmitter t and a point X in the circle centered at t
of radius r the algorithm first computes the intersection of
the line joining the points x and t with the p-dbu polygon
p- This intersection can be computed using a line sweep al-
gorithm (De Berg et al., 2000). After this step, the problem
reduces to that of interpolating or extrapolating the power
at x, using the value of the power at the intersection, which
is known. It must be noted that this step is analogous to
the training phase of a learning algorithm (Bishop, 2006).
The training data, in this case, is the information about the
transmitters. For more information about the different ways
of creating the so called “fingerprint” databases please refer
to (Kjergaard, 2007).

4.2. Feature Extraction

Given a point of interest X that is to be localized, the algo-
rithm starts by looking at the RSS values of the FM signals
received at that point. Using the observed RSS values for
the 101 channels directly might be problematic. The data is
very high dimensional, the observed RSSI may be different
from device to device, on the same device under different
environmental conditions and finally the observed RSSI is
corrupted by noise which is uncalibrated. All of these pre-
cludes the use of the observed RSSI directly. Intuitively,
to find the DCD features the extraction algorithm looks for
channels that significantly “dominate” its local neighbor-
hood, thereby making sure that these channels are signifi-
cantly above the noise level and also have enough received
power to be discriminative for location inference.

Given the observed spectra denoted by 1p, the i** observed
value is selected as a DCD feature if and only if it satisfies
the condition:

min(; — Pi_1,%; — Yig1) > v

fori € [2,..., 4| — 1] and for some constant v > 0, that
should ideally depend on the data and the device used for
sensing the spectrum. Note that there are two boundary
cases: the first one occurs when ¢ = 0 and the second one
occurs when ¢ = |1p|—1. In case, when ¢ = 0, the algorithm
checks whether ¥; — ;41 > v. Similarly for the case
where i = || — 1 it checks ¥; — 1b;_1 > v to determine
whether 1, is a DCD feature or not.

4.3. Coarse Localization

Given the observed FM spectrum at a given point of inter-
est, the algorithm first extracts the DCD features and then
finds candidate locations in the COTUS where there is a
high probability of observing the pattern of the observed
DCD features. This is done using a subset filtering mecha-
nism which is based on the well known subset query prob-
lem (Charikar et al., 2002). Finally the coarse location is
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computed using an Euclidean nearest neighbor search in
the space of DCD features amongst these selected candi-
dates.

Given this background, we are now ready to describe our
algorithm, which takes the coarse location obtained from
this first phase and attempts to compute a more accurate
position using the estimated model and the DCD features.

5. Positioning Algorithm

Our positioning system bootstraps by invoking the al-
gorithms discussed in the work of (Kumar et al., 2015;
Mukherjee et al., 2017), on the spectra acquired by the
unmanned aerial vehicle (UAV) at a height of 120 meters.
This results in the first approximation to the unknown loca-
tion of the UAV. The system assumes that we have a priori
knowledge of the transmitted power and location, of all FM
transmitters across the region of interest. For every trans-
mitter ¢ at location t, it needs the radius of influence r» and
the p-dbu polygon p. Given this information, it computes a
model that can take a FM power spectrum and output an ap-
proximate localization using an Euclidean nearest neighbor
search in the Dominant Channel Descriptor (DCD) feature
space as described in Section 4.

We had access to both the ground and aerial spectra for
each of the data points. As a result we compared the ac-
curacy of the first level approximate positioning for the
ground spectra vs aerial spectra. The average localization
errors for aerial spectra were much better than the ground,
and hence we chose to use localization of the aerial spectra
as our first step in the algorithm. For example, the local-
ization of the 30 ground data points has a mean error of
31.6 miles whereas the average error for the aerial data is
3.74 miles for the same location. The main reason for this
discrepancy is the fact that one of the places where we col-
lected data had a different distribution of noise in the FM
channels, than that assumed by the approximate localiza-
tion system of Kumar et al. (Kumar et al., 2015). Hence
the number of DCD features (Mukherjee et al., 2017) ob-
tained were nominal, resulting in low positioning accuracy
(Mukherjee et al., 2017).

For this work, we assume that our UAV can be anywhere in
the continental United States. After we use the approximate
localization system (Kumar et al., 2015) to compute a posi-
tion for the aerial FM spectra, we consider a 16 km? region
around this position, and then construct a grid over this re-
gion with one grid cell every 100 meters. Each grid cell
is a candidate for the second level fine grained positioning
system. Thus, using this process we generate 160 x 160
candidates from which we need to select one as the final
position. We denote each candidate by g;, ¢ € [160 x 160].
Before we describe the algorithm for selecting a candidate

for final positioning, we explain a supervised learning algo-
rithm for estimating the distance of a location from a given
FM transmitter, using RSS values at the receiver and infor-
mation about the transmitter.

5.1. Distance Estimation for Positioning

As mentioned above, for the aerial FM spectrum, we first
use an approximate localization system from Kumar et
al (Kumar et al., 2015). This involves the computation of
DCD features (Mukherjee et al., 2017). The first step of our
algorithm is to determine for each of the computed DCD
features, the transmitter responsible for generating the fea-
ture. This is done using a hierarchical algorithm. The in-
tuition driving this algorithm is the fact that the channel
selected as a DCD feature must be the result of the nearest
transmitter, to the approximate position, transmitting at the
DCD channel frequency. In cases where there is ambiguity
with regards to the transmitter, we refrain from processing
the corresponding DCD feature. This simple heuristic iden-
tifies a set of transmitters that, with high probability, ex-
plains the observed DCD features at the location of interest.
Let these transmitters be denoted by t;,Vi € {1,...,k}.
Now, given the information about the transmitters, one
can easily use the free space path loss model (Rappaport
et al., 1996) to convert RSSI for each of the DCD feature,
in the observed spectrum, to a distance estimate from the
transmitter, whose location is known a priori in GPS co-
ordinates.

We would like to point out that for getting the initial ap-
proximation to the position using the algorithms from (Ku-
mar et al., 2015), we use a large scale map estimate that
predicts the expected FM spectrum at each location in the
continental United States. However the map that we have
used was generated in March 2017, and hence the estimates
are old. This step for estimating the distances, in essence
updates this map and can be interpreted as a transfer learn-
ing (Pan & Yang, 2010) step.

Instead of using the free space path loss model, we learned
a model using supervised learning techniques (a random
forest) to estimate this distance (Liaw et al., 2002). This
worked consistently better than the free space path loss
model (Rappaport et al., 1996) for our problem, most likely
because of errors induced by the measuring instruments
and the fact that we were dealing with the speed of light
which can amplify small measurement errors. Our model
learns to estimate the distance to the transmitters from a
given location, given the transmitted power, the received
power at the location, the height of the receiver, and the
height above average terrain (HAAT) of the transmitter.
Using this model, we can estimate a vector of distances,
where each component corresponds to the channel fre-
quency of a DCD feature and gives the estimated distance
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of the location of interest from the corresponding transmit-
ter. Note that this vector might not have estimates for cer-
tain DCD features because of transmitter ambiguity. We
denote this vector by v € R*.

5.2. Positioning

Now we are ready to describe the process of selecting one
of the 160 x 160 candidates as a better approximate lo-
calization. For each candidate g;, we compute a vector
v; € R¥, each element of which is given by d(t;, g,)Vj €
{1,...,k}, where d() computes the distance between the
position of the transmitter and that of the candidate. The
distance function is implemented using Vincenty distance,
which uses an ellipsoidal model of the earth (from geopy
package). To compute the approximate position of the
UAV, we minimize the function m(v, v;, p = 0.75) where i
iterates through all candidates and v is the vector of dis-
tances between the approximate location obtained from
Kumar et al. (Kumar et al., 2015) and the transmitters
t;,i € {1,...,k} obtained from section 5.1. The candi-
date that minimizes this distance metric is returned as the
new approximate localization for the UAV. The metric m/()
is described in Algorithm 1.

Algorithm 1 Distance function m

Require: v,w € R”

Require: p € (0,1)
x sort(jv; — w;| Vi € [1,k])
return Z[k L x;

The model for estimating the distances had 4 parameters
that were optimized experimentally. The distance function
in Algorithm 1 makes sure that it only takes into account
the distances that are similar and throws away the distances
that do not match well from the prediction. Experimen-
tally we determined that the mean error (and max error)
was minimized at p = 0.75.

There are three more parameters from (Kumar et al., 2015)
that we optimized for our algorithm to bring the errors
down. The first was the m, c calibration parameters. We
took approximately 50% of the aerial data and minimized
the mean localization error, using various m, c values gen-
erated randomly in the range of (—1,2) and (—40, —75)
respectively. m, ¢ were optimized over a course of 1000
experiments. This gave us calibration parameters m =
0.634714, c = —47.175549, which we fixed for all our ex-
periments. This is a different method of calibration com-
pared to what was used on the ground in (Kumar et al.,
2015) and (Mukherjee et al., 2017). Another parameter that
we optimized was the threshold v that determines a DCD
feature. We set it to 16dB after extensive experiments to
minimize mean error, similar to the calibration parameters.

6. Experiments

We first show how the distribution of the errors in local-
ization for the fixed calibration parameters that we deter-
mined, using the algorithms in (Kumar et al., 2015) in Fig-
ure 3. The average of these errors is 2.54 miles, which is
considerably better than the average error of 4.98 miles re-
ported in (Kumar et al., 2015) and the average error of 3.4
miles reported in Mukherjee et al (Mukherjee et al., 2017).
Note that these are not fair comparisons since our experi-
ment has only 30 spectra whereas the others have upward of
900 and 100 spectra respectively. Nevertheless, it verifies
our intuition that the aerial spectra are better for localiza-
tion than the ground spectra.

Experlments
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(2]

D|stance (in Km)
w F=y

Figure 3. The error in localization for 30 aerial spectra collected
in Tallahassee using the algorithm of (Kumar et al., 2015), when
m, ¢, and v are optimized and fixed.

Next we show the distribution of calibration errors when
different m, c values are chosen for calibration in Figure 4.
Note that the m and c¢ values are between (—1,2) and
(—40, —75) respectively and that these bounds were deter-
mined experimentally.

N
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Experiments

Figure 4. The error in localization for 1000 randomly generated
m, c values. The value of m, ¢ for our experiments is fixed using

this experiment at m = 0.634714 and ¢ = —47.175549.

In Table 1 we show the effectiveness of our supervised
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learning model for the problem of predicting the distance
of a given location, from the FM transmitters, given the
received power. This table was obtained by using 604 se-
lected DCD features with the learner, with a test train split
of 30/70 respectively.

Errors SVM | Neural Random
(in meters) Network | Forest
Mean 8797 2246 2057
Median 5566 | 2022 1707
Min 109 1 0

Max 30937 | 8814 7075
Average % error | 55.9% | 15.1% 15.5%

Table 1. Errors for distance estimation

Our neural network (Demuth et al., 2014) implementation
was done using the Sequential model in Keras (Chollet
et al., 2015). After optimizing for the number of layers and
the number of nodes at each layer in the Sequential model,
we finally settled down on the following neural network ar-
chitecture 5 = 13 = 8 = 4 = 1. The optimization was
done using the Tensorflow backend (Abadi et al., 2016).
The loss function was chosen to be mean squared logarith-
mic error (Bishop, 2006) and the optimization algorithm
was rmsprop (Tieleman & Hinton, 2012). Both are built
into Keras. We chose to use random forests for all our fu-
ture experiments as it gave better results compared to neural
networks on two metrics: 1) Time for model computation
and 2) Median error. Both these metrics are important for
our algorithm.

Next we show the errors of our algorithm and compare it
with the results obtained from using the algorithm in (Ku-
mar et al., 2015). For this experiment we partition the 30
aerial data points into test train splits. We start with 15
data points in the training set and go up to 29 data points.
For each training set, we did 5 experiments, and calculated
the localization error using algorithms from (Kumar et al.,
2015), and then improved the results using our current al-
gorithm. The average improvements are shown in figure 5.

7. Conclusion & Future Work

In this work we have described a method for reducing
the localization error for a passive localization system us-
ing broadcast FM transmission, as compared to the re-
sults reported in (Kumar et al., 2015; Mukherjee et al.,
2017). Our algorithms scale to the entire continental United
States. However, even though the minimum possible error
is around 172 meters in air, the average error reported by
us is still around 3000 meters. One of the reasons for this
error is the fact that we are using a low cost RTL-SDR don-
gle for collecting the RSSI data and this introduces errors in
the measurements. In order to improve the accuracy of the

B Our method
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Figure 5. The improvements made by using our current algo-
rithm compared to directly feeding aerial spectra in (Kumar et al.,
2015)’s algorithm (after optimizing its parameters). The training
size for these experiments is 30 minus the size of the test set. As
the training size increases, the difference between the mean errors
reported tends to increase (training size = 5, %-age improvement
= 21.7%, whereas when training size = 29, %-age improvement
jumps to 38.5%.)

positioning system we need to use both properly calibrated
and high quality receivers for measuring the RSSI. To this
end we plan to use Ettus USRP B210 software defined ra-
dio as our receiver for experiments in the near future along
with better FM antennas. Increasing the total bandwidth
processed for localization is another avenue that we plan to
explore for getting better accuracies.
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