
RFNoC Neural Network Library using Vivado HLS

Edward J. Kreinar EJ@HE360.COM

Hawkeye 360, 196 Van Buren Street, Suite 450, Herndon, VA 20170

Abstract
The FPGA-based neural network library pre-
sented here provides an RF-Network on Chip
(RFNoC) out-of-tree (OOT) module for effi-
ciently deploying a trained neural network to
an FPGA. The neural network module, rfnoc-
hls-neuralnet (Kreinar, 2017), exposes a library
of pre-optimized C++ neural network build-
ing blocks designed for the Vivado HLS tool.
RFNoC provides a convenient input/output in-
terface between hardware and software that is
compatible with gnuradio. Ideally, the neural
network designer will be able to deploy neu-
ral networks and evaluate resource vs. through-
put tradeoffs without needing to develop and
maintain repetitive glue code in FPGA and soft-
ware. Presented examples demonstrate various
use-cases in a simulation environment and on the
E310, including image classification and mod-
ulation recognition, using both fully-connected
and convolutional layers.

1. Introduction
Neural networks are rapidly surpassing decades of expert
human experience across a wide variety of fields. In RF
communications, however, neural networks have histori-
cally been used primarily for classification tasks such as
modulation recognition (Yang et al., 2014) (Kawamoto &
McGwier, 2016), while more difficult tasks such as de-
modulation, error correction, channel coding, etc, have re-
mained firmly in the realm of “expert systems.” Within
the past year, researchers have begun to apply deep neural
networks to RF communications in an attempt to replace
the expert system with a machine-learned system that can
perform modulation and demodulation while achieving the
theoretical Shannon limit across a wide variety of operating
environments (O’Shea & Hoydis, 2017).

It is expected that the trend of neural network algorithms
will continue to grow in the field of RF communications

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

(e.g., the recent DARPA broad-agency-announcement at-
tempting to solve advanced RF challenges through machine
learning (DARPA, 2017)), creating a natural requirement
for hardware and software that can run neural network al-
gorithms on RF data with low size, weight, power, and
high processing throughput. Such requirements provoke a
tempting opportunity for FPGA acceleration.

Unfortunately, an FPGA neural network implementation
introduces several non-trivial challenges. In particular, a
neural network cannot be provided as a one-size-fits-all
solution; the neural network architecture (size, type, and
number of layers) is a major driver of performance, and
the variety of possible architectures is too large to create
a generic FPGA solution. Such a solution would either
consume too many FPGA resources or not achieve the de-
sired throughput. Using a software-only approach, chang-
ing neural net architecture is trivial; however, in hardware,
FPGA fabric cannot be arbitrarily reconfigured on the fly.
Therefore, the true strength of an FPGA-based neural net-
work is the ability for the designer to regenerate a resource-
efficient FPGA implementation in a short of amount of time
without needing to reinvent the wheel.

Based on these assertions, the goals of the RFNoC Neural
Network Library are as follows:

1. Provide an HLS library of common neural network
functions

2. Provide the FPGA architecture to wrap generated
HDL code into an RFNoC compute engine (CE)

3. Use RFNoC to expose a software interface for the CE

The remainder of this section will focus on the background
of Vivado HLS and RFNoC. The rfnoc-hls-neuralnet fea-
tures, examples, and results are discussed in Section 2. An
anecdotal workflow is presented in Section 3 in an effort
to highlight the expected use-case of rfnoc-hls-neuralnet.
Finally, follow-up actions are discussed in Section 4.

1.1. Vivado HLS

Vivado HLS is a Xilinx tool used to synthesize C, C++,
or SystemC code into verilog or VHDL code. The HDL
is produced according to “pragma” directives inserted into



RFNoC Neural Network Library using Vivado HLS

the C code (or into a separate directive file) that instruct
the HLS compiler exactly how to synthesize the algorithm.
Typical directives include actions such as how to unroll for-
loops, how to partition arrays, and how to pipeline various
segments of the source code.

In addition, Vivado HLS provides a fixed-point datatype
class that is interchangeable with floating-point datatypes.
Algorithms may be developed using floating-point, then
easily switched to fixed-point mode for synthesis; Vivado
HLS maintains all required fixed-point conversions during
synthesis. Such prototyping is a powerful workflow for dig-
ital signal processing tasks where HDL algorithms are of-
ten required to be equivalent to the floating-point reference
algorithm and bit-accurate between simulation and synthe-
sis.

Vivado HLS also includes a specialized GUI that allows
users to evaluate resource usage and algorithm throughput
by comparing synthesized results between multiple sets of
directives. In this way, a primary strength of Vivado HLS
lies in the rapid assessment of resources, throughput, and
performance tradeoffs.

1.2. RFNoC

The open source RFNoC FPGA architecture (Braun et al.,
2016) provides many benefits to an RF system designer.
First, RFNoC exposes a process to develop and integrate
FPGA “compute engines” with a standardized software in-
terface that allows input and output data to be routed any-
where in the system— data may be routed to or from the
processor, or to or from a different FPGA compute engine,
and the data path is reconfigurable at run time.

Second, RFNoC also provides a reliable and modular trans-
port layer between the FPGA and the processor. Two very
different hardware platforms, the Ettus E300 and the Ettus
X300 series radios, may use the exact same RFNoC FPGA
and software code, while RFNoC handles FPGA to the pro-
cessor interface. Furthermore, any aspect of the software
interface that is specific to a particular RFNoC compute
engine is dynamically attached to the correct FPGA com-
ponent, and is also reusable between hardware platforms.

The RFNoC architecture represents a significant amount of
“nuts and bolts” effort that is available to developers and
users of compatible hardware platforms.

2. The rfnoc-hls-neuralnet Module
The features of the rfnoc-hls-neuralnet module can be
roughly grouped into three areas aligned with the project
goals:

1. C++ HLS software: Implements the neural network.

Figure 1. rfnoc-hls-neuralnet architecture

Synthesized into FPGA code using Vivado HLS

2. Verilog infrastructure: Wraps the generated HLS out-
puts and interacts with the RFNoC architecture (AXI-
Stream interface, correct framing, etc)

3. Gnuradio-companion interface: Python/C++ software
that wraps the FPGA block with a software wrapper
compatible with UHD and gnuradio

The interaction between the provided features is illustrated
in Figure 1.

2.1. Provided Features

2.1.1. C++ HLS SOFTWARE

The rfnoc-hls-neuralnet module exposes a limited set of
HLS-optimized neural network building bocks. These soft-
ware components, when applicable, are roughly modelled
on the user interface of TensorFlow’s neural network mod-
ule. The HLS library of rfnoc-hls-neuralnet currently sup-
ports:

1. Fully connected layer: Performs different HLS opti-
mization options based on the size of the layer

2. IQ convolution layer. Multiple output channels. Ar-
chitecture optimized for streaming IQ data.

3. One-Dimensional convolutional layer. Multiple input
channels



RFNoC Neural Network Library using Vivado HLS

Table 1. Synthesized HLS resource usage of neural network library components in rfnoc-hls-neuralnet
Component Name Component Size Sample Interval BRAM18 DSP48 FF LUT

Fully Connected Layer
(Size In × Size Out)

10×40 9 0 8 658 1183
40×40 9 8 8 592 1128

784×10 1 8 10 510 843
784×256 36 193 8 647 1222

IQ Convolution
(IQ × Filter Size × Chan Out)

2×4×1 10 0 2 366 148
2×4×3 15 0 6 575 333

2×8×30 50 0 60 3374 2264
2×8×128 166 1 64 13440 37542

1-D Convolution
(1 × Filter Size × Channels)

1×4×2 4 0 4 333 70
1×8×8 10 0 4 874 304

1×16×64 16 16 4 1024 850
tanh 100 1 1 0 51 206

sigmoid 100 1 1 0 56 182
relu 100 1 0 0 12 45
relu6 100 1 0 0 15 50

maxpool (size 2, stride 2) 128×64 2 2 0 77 252

4. Various activation functions:

• relu

• relu6

• sigmoid

• tanh

5. Maxpool operation: size 2, stride 2

All neural network weights are currently required to be
hardcoded into an HLS header file, which is HLS’s pre-
ferred method for initializing and importing memory from
file. Programmable weights are discussion in Section 4
(Follow-Up Actions) as a potential future modification. As-
is, hardcoded synthesized weights implies that only pre-
trained networks may be deployed to FPGA using rfnoc-
hls-neuralnet.

Synthesized resource usage estimates are shown in Table
1, indicating nominal FPGA results at a few relevant com-
ponent sizes. While the BRAM usage runs high in the
fully-connected layer, the DSP48s blocks, Flip Flops (FF),
and Lookup Tables (LUT) achieve fairly low device uti-
lization overall. The sample interval represents how often
the HLS block can accept a new input sample (i.e., algo-
rithm throughput). The HLS neural network library uses
size-specific compiler directives that change the physical
hardware implementation for larger or smaller networks as
appropriate to achieve an acceptable tradeoff of through-
put vs resources. For specialized applications, HLS direc-
tives may be edited to specifically influence the synthesized
HDL architecture.

It is worth noting that these software components repre-
sent just a small subsection of the possible operations avail-
able to neural network designers using TensorFlow or other
state-of-the-art software toolkits. For the first pass through
HLS implementations, the rfnoc-hls-neuralnet library fo-
cuses on several of the most common neural network com-
ponents for FPGA synthesis. The fully-connected layers
and 1D convolutions are particularly useful for RF pro-
cessing and are sufficient to assemble a variety of networks
demonstrating proof-of-concept functionality.

2.1.2. VERILOG INFRASTRUCTURE

The verilog infrastructure wraps around the HLS-generated
output modules to interact safely with the RFNoC CE. In
most cases, the RFNoC component will not be considered
to be in “Simple Mode.” Simple Mode in RFNoC is an
easy-to-use paradigm where the number of inputs to the
RFNoC CE is equal to the number of outputs and the FPGA
packet size is constant.

Therefore, the rfnoc-hls-neuralnet library provides the
nnet vector wrapper.v to help convert input and output vec-
tor sizes to the desired length based on the size of the im-
plemented network. An RFNoC testbench can be generated
using the same stimulus used in the HLS C++ testbench to
verify the full rfnoc FPGA architecture is synthesized and
runs successfully.

2.1.3. GNURADIO-COMPANION INTERFACE

For most blocks, no specialized C++ drivers are required
because the interace between FPGA and processor uses the



RFNoC Neural Network Library using Vivado HLS

Table 2. Synthesized HLS resource usage of rfnoc-hls-neuralnet examples
Example Name Sample Interval BRAM18 DSP48 FF LUT

ex 1layer 1 8 10 516 849
ex modrec 9 29 42 2441 4885
ex 2layer 36 214 18 1226 2239
ex iqconv 33 106 102 14707 38470

default streaming interface. So, the RFNoC software in-
terface is implemented as a gnuradio companion (GRC)
xml file which declares an ettus.rfnoc generic object in the
python script. RFNoC handles the interface to the FPGA
and can be accessed using a GRC flowgraph or a dedicated
python application.

2.2. Examples and Results

There are four total examples in the rfnoc-hls-neuralnet
module designed to highlight several aspects of the li-
brary’s features. Two examples fully exercise the HLS,
RFNoC, and GRC implementatons. These two examples
have been tested successfully on the E310, running file in-
put through the RFNoC CE. The examples are: 1) A 1-layer
image classification network based on the Udacity “mach-
ing learning” online course (ex 1layer), and 2) An RF mod-
ulation recognition network that uses a set of expert fea-
tures to identify modulation type (ex modrec), discussed in
more detail in Section 3.

Two additional examples are provided as “HLS-only” ap-
plications which demonstrate use of the neural network
HLS library, but have not been implemented on hardware.
They are: 1) a more advanced two-layer image classi-
fication network (ex 2layer), and 2) a convolutional net-
work optimized for modulation recognization of stream-
ing IQ RF data rather than manually-extracted features
(ex iqconv). The ex iqconv example architecture consists
of two convolutional layers separated by maxpool oper-
ations and 4 fully-connected layers (O’Shea & Hoydis,
2017). The first convolutional layer consumes raw RF data.
The HLS testbench has been developed against fake weight
parameters; there does not currently exist a trained set of
network parameters available to use in the ex iqconv ex-
ample.

Synthesized resource estimates for the HLS code for all ex-
amples are shown in Table 2. The GRC flowgraph for ex-
ample 2 is shown in Figure 2.

3. Neural Network Design Workflow
The design workflow using the rfnoc-hls-neuralnet repo
largely follows the outline of the features illustrated in Fig-
ure 1. This walkthrough specifically focuses on the modu-

lation recognition (modrec) example based on the work of
(Kawamoto & McGwier, 2016).

1. HLS Floating-point Simulation: In the initial stage, the
developer first implements and simulates the desired neu-
ral network using floating point datatypes in C++ using
the provided code from rfnoc-hls-neuralnet. Review the
readme in the rfnoc-hls-neuralnet/rfnoc/hls folder to dis-
cuss how to create HLS code in the RFNoC framework.
The general goal in this step is to identically replicate the
performance of the selected neural network algorithm in
the HLS framework.

For the modrec example, a snippet of neural network
code is shown in Table 2.2, which is pulled directly from
ex modrec.cpp. In order to provide test input to the C++
block, a testbench calls the top-level neural network func-
tion with a set of data (ideally a dataset that has been veri-
fied with a known result). The testbench compares the cal-
culated output to the known result to confirm successful
operation.

Note that while the neural network code of Table 2.2 is
relatively straightforward, there two major differences be-
tween the HLS-optimized code and a typical C or C++
implementation. First, the input/output interface to each
function uses Vivado’s hls stream object, which provides a
FIFO buffer that helps developers program C++ code that
is naturally conducive to FPGA synthesis. Second, the neu-
ral network function library extensively uses template pro-
gramming. When working with Vivado HLS, template pro-
gramming allows the designer to specify a variety of useful
constants to the HLS compiler, including both datatypes
and network size. All of the layer sizes and weight/bias
datatypes are specified using predefined typedefs in the ex-
ample header.

2. HLS Synthesis: Next, the floating point data types of
Step 1 are then converted into fixed point data types. Vi-
vado provides a C++ class (ap fixed) that simplifies the
use of fixed point numbers. The “real world” value of
the fixed point number may be used interchangeably with
floating point; but the rounding, conversion, overflow, and
all arithmetic/multiplication operations are handled by the
HLS compiler. The designer will switch data types to fixed
point numbers, compare results to simulation, and then ad-
just the fixed point data type format as required to meet the



RFNoC Neural Network Library using Vivado HLS

Figure 2. GRC flowgraph with file-based test stimulus for “ex modrec” example

Table 3. C++ snippet of the 5-layer modulation recognition network ex modrec

// LAYER 1
hls::stream<layer1_t> logits1, hidden1;
nnet::compute_layer<layer0_t, layer1_t, weight_t, bias_t, accum_t, N_LAYER_IN, N_LAYER_1>

(data_trunc, logits1, w1, b1);
nnet::relu6<layer1_t, layer1_t, N_LAYER_1>(logits1, hidden1);

// LAYER 2
hls::stream<layer2_t> logits2, hidden2;
nnet::compute_layer<layer1_t, layer2_t, weight_t, bias_t, accum_t, N_LAYER_1, N_LAYER_2>

(hidden1, logits2, w2, b2);
nnet::relu6<layer2_t, layer2_t, N_LAYER_2>(logits2, hidden2);

[...]

// LAYER 5
nnet::compute_layer<layer4_t, layer5_t, weight_t, bias_t, accum5_t, N_LAYER_4, N_LAYER_5>

(hidden4, res, w5, b5);

test vector. The process repeats until the fixed point results
agree with the floating point results.

After the neural network is implemented in fixed point,
HLS synthesis may run to create HDL code. The HLS
directives in the neural network library have been opti-
mized to provide an acceptable tradeoff of resources versus
throughput results for a few network sizes– if necessary,
edit HLS directives to improve resource usage or algorithm
throughput.

3. RFNoC HDL Compute Engine and Testbench: After
HDL is generated, the resulting module is inserted into an
RFNoC CE. The RFNoC CE attaches to the RFNoC cross-
bar, which provides data routing throughout the rest of the
FPGA and to the procesor. For the current example, the CE
is noc block modrec.v. As discussed, the neural network
user logic does not typically contain the same number of in-
puts as outputs; therefore, simple mode of the axi wrapper
block must be set to zero, and the user connects the input
and output axi-stream buses to the nnet vector wrapper.
The nnet vector wrapper is a lightweight wrapping block

that simply frames the data according to the neural network
size from HLS.

Once the RFNoC CE is created, the user testbench can
be created to stimulate the CE. In the provided examples,
the test stimulus is chosen to be exactly the same as the
HLS testbench data; using the same test stimulus provides
a comforting knowledge that the synthesized FPGA code is
functionally equivalent to the simulated C++ code. In the
testbench folder, run the simulation to validate the CE func-
tionality. Refer to the included readme files for simulation
instructions. The RFNoC CE is now ready to be inserted
into an FPGA image.

4. Hardware Integration: Finally, the CE is built into
an FPGA image using the typical RFNoC image build-
ing workflow. At this point, the FPGA image can be pro-
grammed to the Ettus hardware of choice. The newly-
created RFNoC block does not require custom C++ drivers,
but it does need several xml definitions to be used in
GRC. The rfnoc-hls-neuralnet module provides some ba-
sic examples of how to interface with the generated block.



RFNoC Neural Network Library using Vivado HLS

Inside rfnoc-hls-neuralnet/grc, the xml file identifies the
block interface to GRC; this can be found in fpgan-
net exmodrec.xml. Once the GRC xml file is ready, the
RFNoC block can be inserted into a GRC flowgraph for
user input and output, and then run locally or on the E300
series embedded devices.

4. Follow-Up Actions
The rfnoc-hls-neuralnet OOT module remains a work in
progress. Several follow-up actions are currently queued
for further development. In order of decreasing priority,
the suggested improvements are:

1. Additional neural network layer types: While the
fully-connected layers and convolutional layers cover
many types of neural networks for RF processing, a
few more “building blocks” could be helpful as part
of the library, specifically 1) 2D convolutional layers,
2) recurrent neural networks, and 3) softmax operation
(while usually only needed on the output of a network
during training, it’s nevertheless a common structure
often used in software).

2. Test with live streaming data: The current repo
demonstrates example RFNoC neural network blocks
on hardware, but does not take the additional step of
integrating with live RF data. Live integration at a
high data rate would be an excellent demonstration ap-
plication for the rfnoc-hls-neuralnet library.

3. Programmable weights: Programmable neural net-
work weights were originally on the development
roadmap, but were eventually deemed too ambitious
for the proof-of-concept architecture presented here.
In order to maintain simplicity, weights are required
to be fixed in the current implementation; however,
programmable weights could become a higher prior-
ity improvement depending on demand.

4. Improve weight storage: The BRAM usage of Vivado
HLS generated code tends to be higher than expected.
This is due to HLS’s BRAM packing algorithms and
that HLS apparently uses BRAM18s while BRAM36s
may also be available. It is likely that most neural net-
works synthesized for the RFNoC architecture will be
memory-limited rather than computationally limited.

5. Provide alternate neural network architectures: Re-
searchers have shown that “binarized” neural net-
works can be very efficient on FPGAs while maintain-
ing high performance levels (Zhao et al., 2017). A bi-
narized neural network could efficiently store weights
and perform multiplications (which evaluate into ba-
sic binary operations for one bit values), but this man-

ifests as a slightly different HLS structure than as-
sumed here.

5. Related Work
At a high level view, the last few years have seen a resur-
gence in the popularity of FPGAs due to their customiz-
ability and power savings over GPUs for high-computing
tasks. Correspondingly, high level synthesis compilers,
which have existed since the 90s (Knapp, 1996), are be-
coming attractive tools to develop neural networks.

In 2015, a team of researchers published an analysis on the
structure of convolutional neural networks (CNNs) and ad-
vised on proper HLS synthesis directives for computation
and memory optimizations (Zhang et al., 2015). More re-
cently, a group at Cornell implemented and evaluated per-
formance versus power for a so-called “binarized” convo-
lutional neural network (CNN) in an FPGA using the Vi-
vado HLS and SDSoC tools (Zhao et al., 2017). SDSoC
provides the FPGA/software interface, while Vivado HLS
provides the C++ to HDL synthesis functionality. The ar-
chitecture shows promising results, though the software is
not available as open source.

Other researchers have implemented OpenCL-based so-
lutions that synthesize CNNs to HDL code (Suda et al.,
2016), or pure HDL solutions for neural networks. Per-
haps the closest comparison to this work is a Master’s the-
sis from 2016 (Gschwend, 2016) that presents ZynqNet,
a proof-of-concept project demonstrating FPGA accelera-
tion of CNNs on Zynq hardware using HLS and custom
userspace IO for the FPGA/processor interaction, and is
available via github. Many of the recent neural network
architectures targeting FPGAs perform 2D CNNs in a va-
riety of ways (typically for image processing applications),
which the rfnoc-hls-neuralnet library does not currently
support.

6. Conclusions
Overall, the work presented in the rfnoc-hls-neuralnet OOT
module represents a modest beginning along the path of de-
ploying real-time, high rate, low power, and useful neural
networks for RF communications research and prototyp-
ing. A few of the architectural kinks have been worked out,
including 1) HLS optimizations for both fully-connected
and 1D-convolutional layers, and 2) streaminglining the
RFNoC FPGA integration process for adding HLS outputs
into a user’s CE. The end result is a library that is capable
of synthesizing and interfacing some neural networks with
ease.

The unique contribution of the rfnoc-hls-neuralnet library
is an open source solution for efficiently developing neu-
ral networks to target FPGAs, specifically designed for RF



RFNoC Neural Network Library using Vivado HLS

communications research and prototyping. It is the author’s
hope that by providing the open source rfnoc-hls-neuralnet
module, community interest and effort might help guide
additional development in this area.

References
Braun, Martin, Pendlum, Jonathan, and Ettus, Matt.

Rfnoc: Rf network-on-chip. Proceedings of
the GNU Radio Conference, 1(1), 2016. URL
http://pubs.gnuradio.org/index.php/
grcon/article/view/3.

DARPA. The radio frequency spectrum + ma-
chine learning = a new wave in radio technol-
ogy, 2017. URL https://www.darpa.mil/
news-events/2017-08-11a.

Gschwend, David. Zynqnet: An fpga-accelerated embed-
ded convolutional neural network. Master’s thesis, ETH
Zürich, 2016.

Kawamoto, Darek and McGwier, Robert. Rigor-
ous moment-based automatic modulation classifica-
tion. Proceedings of the GNU Radio Conference, 1
(1), 2016. URL http://pubs.gnuradio.org/
index.php/grcon/article/view/7.

Knapp, David W. Behavioral Synthesis: Digital Sys-
tem Design Using the Synopsys Behavioral Compiler.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.
ISBN 0-13-569252-0.

Kreinar, E.J. Rfnoc-hls-neuralnet, 2017.
URL https://github.com/Xilinx/
RFNoC-HLS-NeuralNet.

O’Shea, Timothy J. and Hoydis, Jakob. An introduction
to machine learning communications systems. CoRR,
abs/1702.00832, 2017. URL http://arxiv.org/
abs/1702.00832.

Suda, Naveen, Chandra, Vikas, Dasika, Ganesh, Mo-
hanty, Abinash, Ma, Yufei, Vrudhula, Sarma, Seo, Jae-
sun, and Cao, Yu. Throughput-optimized opencl-based
fpga accelerator for large-scale convolutional neural net-
works. In Proceedings of the 2016 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Ar-
rays, FPGA ’16, pp. 16–25, New York, NY, USA,
2016. ACM. ISBN 978-1-4503-3856-1. doi: 10.1145/
2847263.2847276. URL http://doi.acm.org/
10.1145/2847263.2847276.

Yang, Faquan, Li, Zan, Li, Hongyan, Huang, Haiyan, and
Pan, Zhongxian. Method of neural network modulation

recognition based on clustering and polak-ribiere algo-
rithm. Journal of Systems Engineering and Electron-
ics, 25(5):742–747, Oct 2014. doi: 10.1109/JSEE.2014.
00085.

Zhang, Chen, Li, Peng, Sun, Guangyu, Guan, Yijin, Xiao,
Bingjun, and Cong, Jason. Optimizing fpga-based
accelerator design for deep convolutional neural net-
works. In Proceedings of the 2015 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Ar-
rays, FPGA ’15, pp. 161–170, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3315-3. doi: 10.1145/
2684746.2689060. URL http://doi.acm.org/
10.1145/2684746.2689060.

Zhao, Ritchie, Song, Weinan, Zhang, Wentao, Xing, Tian-
wei, Lin, Jeng-Hau, Srivastava, Mani, Gupta, Rajesh,
and Zhang, Zhiru. Accelerating binarized convolu-
tional neural networks with software-programmable fp-
gas. In Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Ar-
rays, FPGA ’17, pp. 15–24, New York, NY, USA,
2017. ACM. ISBN 978-1-4503-4354-1. doi: 10.1145/
3020078.3021741. URL http://doi.acm.org/
10.1145/3020078.3021741.


