
Designing a RFNoC Block
implementing a SISO Processor using High-Level Synthesis

Andrea Guerrieri ANDREA.GUERRIERI.IT@IEEE.ORG

Processor Architecture Laboratory, EPFL, Lausanne, Switzerland

Abstract
RFNoC (RF Network on Chip) is an open-source
processing tool developed by Ettus ResearchTM.
SISO processor (Soft In Soft Out) is one of
the basic component used in modern FEC (For-
ward Error Correcting) techniques such as Turbo
Codes and LDPC Codes. This paper presents the
development of an RFNoC block (in-progress)
which implements a SISO Processor as an an-
swer to ”The RFNoC & Vivado HLS Challenge”
sponsored by Ettus Research and Xilinx.

1. Introduction
Nowadays the computation abilities of FPGAs are be-
coming the most effective solution for complex DSP
algorithms which are time expensive and power hungry if
executed in software using traditional CPUs (Nurvitadhi,
2016). Neverthless, the design effort and complexity of
FPGAs create a huge gap between the two design methods.
In the years, several approach at different levels have been
appointed to bridge this gap.
High-Level Synthesis is one answer at the EDA(Electronic
Design Automation)-level: it is able to produce a hardware
description starting from a software model, in general with
minimum effort (Camposano, 1990).
At device level, a working example of this trend can
be represented by RFNoC (Ettus, c). The goal of this
framework is to allow the user developers to create FPGA
applications using the same design flow for create standard
application using GNU Radio Companion tool (GNURa-
dioCompanion), moving the development effort to higher
level of abstraction.
One example of high-complexity and CPU-cycle-
expensive DSP processing is the Forward Error Correction
(FEC) technique, widely used in telecommunication sys-
tems. The performance of modern digital communication
systems is often restricted due to power limitation and
the presence of Additive White Gaussian Noise (AWGN).

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

The addition of FEC techniques to transmitted digital
waveforms overcomes these limitations. Turbo codes
(Berrou, 1993) is one of the FEC techniques used in the
standards 3GPP mobile telecommunication system, such
as UMTS, HSDPA, and LTE, but also in WiMax and DVB.
The SISO processor is one of the building block of the
Turbo Codes.

1.1. Motivation

This activity was started as answer to ”The RFNoC & Vi-
vado HLS Challenge” sponsored by Ettus Research and
Xilinx. The original call was (Ettus, a) :

”This challenge rewards engineers for creating innovative
and useful open-source RF Network on Chip (RFNoC)
blocks that highlight the productivity and development
advantage of Xilinx Vivado High-Level Synthesis (HLS)
for FPGA programming using C, C++, or System C.”

This design has been submitted to the challenge in early
December’16 and was one of the seven accepted proposal
(Xilinx, 2017)

1.2. Contribution

Previous work has been done related to the integration of
Turbo Codes in GNU Radio (Karra, 2012) and into USRP
devices (Talasila, 2010). However, this design is the first
attempt to create an RFNoC block implementing this type
of DSP processing. This paper shows the RFNoC Block
structure and its development environment, underling the
advantages coming from the use of the High-Level Synthe-
sis process to create digital hardware IPs. In detail, will be
show the early development stage of an RFNoC block rep-
resented by the High-Level Synthesis process of the DSP
algorithm. The mathematical model of the SISO processor,
as well as the algorithm model are not the main focus of this
paper. Neverthless, to provide a general overview of the
block’s complexity, we will report the mathematical equa-
tions that govern the information processing as well a prac-
tical hardware implementation structure. Furthermore, we
will be briefly illustrate how High-Level Synthesis works
with its internal operations and phases.

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

1.3. Paper Organization

The paper is organized as follows. Section 2 presents
the RFNoC purposes and its internal structure; Section 3
provides an overview of High-Level Synthesis; Section 4
shows the mathematical model as well the practical struc-
ture of the SISO Processor. Section 5 shows the High-Level
Synthesis of the original SISO Processor model, giving a
panoramic on the possible solutions and further optimiza-
tions; Finally, Section 6 concludes the paper with final con-
siderations and the future work.

2. RFNoC
RFNoC (Radio Frequency Network on Chip) is an open-
source processing tool focused on the development of het-
erogeneous applications on SDR(Software Defined Radio)
devices provided from Ettus ResearchTM, generally knows
as USRP (Universal Software Radio Peripheral).
The concept of NoC refers to a communication system inte-
grated into a single chip used for exchanging data and con-
trol between the internal PEs (Processing Engines). The
main difference with respect to a normal SoC (System on
Chip) is the flexibility in terms of heterogeneous capabili-
ties: in fact, the internal composition of PEs is abstracted
from the communication framework.

2.1. RFNoC Blocks

RFNoC is internally composed of RFNoC blocks, the PEs
implementing the DSP algorithms. To reduce the effort
of integrating digital signal processing IPs as PEs into an
RFNoC block, the design framework provides a pre-cooked
interface wrapper. The internals of a RFNoC block are in-
dependent from any other block and can be designed with
any language and tool that supports AXI stream interfaces,
including VHDL, Verilog, and Xilinx Vivado HLS.

2.1.1. NOC SHELL

We briefly report the structure of the RFNoC’s interface,
the NoC Shell. As explained previously, this wrapper rep-
resents the common part present in all blocks constituting
the RFNoC, independently of the respective internal DSP
algorithm. The role of the NoC Shell is to interface the in-
ternal PE with the rest of RFNoC, implementing a standard
registers and command interface to allow it to be integrated
within the RFNoC. It presents a user interface and an the
interface to the RFNoC AXI stream crossbar. The latest
expects a Compressed Header packets as defined in CHDR
(Ettus, b). Figure 1 shows the structure of the RFNoC
Block (Pendlum, 2014). To create this NoC Shell and all
the file system structure, Ettus has deployed a tool called
RFNoC Modtool. This tool creates a custom GNU Radio
OOT (Out of Tree) module as well the necessary files for

the RFNoC block development and simulation.

Figure 1. RFNoC Block Internal Structure (Ettus, c)

2.1.2. SIMULATION

As anticipated in the previous paragraph, RFNoC Mod-
tool creates the NoC Shell as well the testbench environ-
ment(M. Braun, 2015). Figure 2 shows a testbench archi-
tecture created by the RFNoC Modtool.
Several advantages are coming from this verification archi-
tecture: first of all, it permits the verification the PE oper-
ation in the same environment it will be placed in when it
is built into the RFNoC architecture, and it allows to test
multiple blocks with multiple streams.

Figure 2. RFNoC Testbench Structure(Ettus, c)

2.2. GNU Radio Integration

The main application of USRP devices are inside the GNU
Radio. The most efficient way to create a GNU Radio ap-
plication is using the GNU Radio Companion (GRC), the
GUI interface of the tool. The GNU Radio environment
has been made under the concept of blocks, in line on what
is done for RFNoC. With RFNoC the user can decide what
will be executed in the host machine (PC) and what will be
passed to the USRP (FPGA) simply by mapping the appli-
cation as a GNU Radio or as a RFNoC block.

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

2.2.1. RFNOC EXISTING BLOCKS

Usually, the RFNoC blocks are very similar to the re-
spective GNU Radio version, however the new blocks
generated for the challenge will be added to the library
of available open-source blocks to easily integrate into
an RFNoC application. A brief list of available exist-
ing blocks is reported in (Ettus, c). The ultimate goal
of this design is to add the SISO processor to this list.
Once completed, the SISO-RFNoC block will be avail-
able at https://github.com/Andrea-Guerrieri/SISO-RFNoC
under the MIT license.

3. High-Level Synthesis
3.1. Overview

In DSP algorithm design flows, the system architect models
the algorithm in a high-level language such as C or C++,
without worrying about implementation details. Histori-
cally, the RTL designer takes this algorithmic model and
tries to hand-code it while respecting the expected perfor-
mance/area tradeoffs. However, this manual coding is error
sensitive and overall time consuming (Fingeroff, January
2010).
High-Level Synthesis (HLS), is a new step in the design
evolution of a digital electronic circuit, which moves the
design effort to higher abstraction levels, improving design
productivity by automating the refinement from the algo-
rithmic level to RTL (Takach, 2016).

3.1.1. ADVANTAGES

HLS generates Verilog/VHDL code from C/C++ and Sys-
temC, providing several advantages in terms of:

• implementation degrees of freedom for low-power,
high-performance and small-area;

• reuse of existing code reducing the development ef-
fort;

• reduction of the verification effort;

3.2. How HLS works

The HLS process is essentially composed by three phases:
resource allocation, scheduling and binding (Coussy, 2009)
In the Resource Allocation phase, the tool tries to under-
stand how the algorithmic operation can be represented us-
ing hardware operators, such as adders, multiplier and con-
nectivity structures (multiplexer, ...).
The Scheduling is the most complex part of the process.
The tool insert the concept of clock cycle, in the design,
absent in the design’s entry model.
In the Binding phase, the resources allocated in the previ-
ous phase will be bound to algorithmic operators respecting

the cycles assigned during the scheduling phase.
The advantage of this approach consists in having differ-
ent possible outputs from the same algorithm. And these
differences are tuned using design directives.

3.2.1. DESIGN DIRECTIVES

Design directives are a set of configurations used by the
HLS tool to manipulate the micro-architectural implemen-
tation of the algorithmic code. Examples of these direc-
tives are: PIPELINING, UNROLLING, MERGE, FLAT-
TEN, INLINE, etc... (Xilinx, 2015). The simplest example
can be represented by a for loop that execute an array sum
function (Listing 1).

f o r (i =0 ; i <4; i ++)
{

y = x [i] + y ;
}

Listing 1. Array Sum Function

The same loop in hardware can be executed using a vari-
able numbers of clock cycles, depending on the parallelism
of the hardware resources. For example, setting the UN-
ROLL factor to 4 (full unroll), the loop will requires only
one clock cycle to complete. The drawback is the resources
required (4 adders) and the critical path, therefore limiting
then the maximum frequency achievable. Instead, by set-
ting the PIPELINE directive, the same loop can be executed
in two clock cycles using less resources (for example just 2
adders) and without increasing the critical path. Both solu-
tions are technically acceptable, with different implementa-
tion trade-offs. Several works on this topic have been done
in the past (Watanabe, 2012) and (Andrade, 2015) and in
practice, there is no golden rule to be applied always to all
designs. The right directives are related to the single use
cases and a single implementation goal. In some cases, for
the same loop or the same functions, different directives
could be applied depending on the overall context such as
the requirements specifications and design constraints.

3.3. Commercial Tools

Over the years the HLS tools are evolved from simple
software-to-hardware converters to a real industrial trend.
Historically, the evolution of high-level synthesis can be
divided into three generations (Martin, 2009). Examples of
state of art HLS tools include: Synphony(Synopsys), Cy-
berWorkBench(NEC), Stratus(Cadence), Catapult (Mentor
Graphics), Vivado HLS (Xilinx) and so on. Recently Intel
has announced the release of its HLS tool (Intel, 2017) for
FPGAs, now part of Intel’s portfolio after Altera’s acquisi-
tion.

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

3.3.1. VIVADO HLS

Vivado is the official High-Level Synthesis tool from Xil-
inx. It was originally developed by AutoESL, under the
name Autopilot. After the acquisition by Xilinx they re-
named it as Vivado HLS, in coherence with the new full-
featured EDA tool. Its output can be targeted into the stan-
dard Xilinx FPGAs as a traditional design flow.

4. SISO Processor
4.1. General Introduction

The encoding procedure of Turbo Codes is relatively sim-
ple to be implemented, while the decoding side presents
several complex mathematical statements. In the first pa-
per about turbo codes (Berrou, 1993), the MAP (maximum
a posteriori probability) algorithm is applied to the SISO
decoder to evaluate the soft values of each component’s
convolutional code.

4.2. Mathematical Model

4.2.1. MAP ALGORITHM

In Bayesian statistics, the MAP estimation consists of a
mode evaluation of the posterior distribution. Mathemat-
ically, it can be expressed as (1)

θ̂MAP = argMAX
f(x|θ)g(θ)∫

ϑ

f(x|θ)g(θ)dϑ
(1)

Where θ is an unobserved parameter on the basis of obser-
vations x, g is density function of θ and f(x) a sampling
distribution of x. The MAP algorithm referred in the first
publication was a modified version of the BCJR algorithm
(Bahl, 1974), the optimal symbol decoding algorithm that
minimizes the probability of a symbol error. It computes
the a posteriori probabilities (APPs) of the information bits
given the received sequence. The MAP algorithm, also
known as forward-backward algorithm, can be summarized
as the ratio between the conditional probability (2)

L(ûk) = log
P (uk = +1|y)

P (uk = −1|y)
(2)

To evaluate the probability over the sequence y, we need to
introduce the joint probability P (s′, s, y) defined as (3)

P (s′, s, y) = αK−1(s′) · γK(s′) · βK(s) (3)

Where αK and βK are the forward and backward metrics,
respectively computed as (4) and (5).

αK(s) =
∑
s′

γk(s′, s) · αK−1(s′) (4)

βK(s′) =
∑
s

γk(s′, s) · βK+1(s) (5)

In the above equations, γ is the state transition probability
and is computed as (6). In practice, is it the probability that
the received symbol is yk at time k and the current state is
Sk = s, knowing that the state from which the connecting
branch came was Sk−1 = s′ .

γK(s′, s) = P (s|s′)P (yk|s′, s) = P (uk)P (yK |uk) (6)

Then the a posteriori probability (APP) log-likelihood ratio
(LLR) of the information bits can be expressed as 7:

L(ûk) = log

∑
uk=+1 αK−1(s′) · γK(s′) · βK(s)∑
uk=−1 αK−1(s′) · γK(s′) · βK(s)

(7)

The probability α is being computed as the sequence y is
received, while β can only be computed after we have re-
ceived the whole sequence. This is the reason why this
algorithm is also know as forward-backward algorithm
(Abrantes, April 2004). However, due to the high imple-
mentation complexity of the MAP algorithm in hardware
in terms of memory requirements and related to the com-
putation of transcendental functions, several simplified im-
plementations like Log-MAP and Max-Log-MAP were de-
veloped.

4.2.2. LOG-MAP ALGORITHM

To avoid the complicated multiplications and solve the nu-
merical instability issues, it is possible to compute the MAP
algorithm in the log domain, but this requires the introduc-
tion the max∗ operator (8)

max∗(a, b) = log(ea+eb) = max(a, b)+log(1+e−|a−b|)
(8)

For the Log-MAP algorithm, a lookup table with high
accuracy can lead to the same performance as the MAP
algorithm, but it also results in the use of larger memory.

4.2.3. MAX-LOG-MAP ALGORITHM

A further simplification can be achieved by completely dis-
carding the lookup table. The correction term will be omit-
ted from the max∗ function (9)

max∗(a, b) = max(a, b) (9)

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

This approximation leads to the Max-Log-MAP algorithm
that involves only addition and the max function. How-
ever, the lack of correction term would make the LLR
calculation too optimistic and degrade performance. This
degradation can be compensated by a technique known as
extrinsic scaling, which consists in multiplying Le(uK) by
a scaling factor ζ (10).

L′e(uK) = ζ · Le(uK) (10)

Usually the value of ζ is between 0.5 and 0.75, depending
on the code’s structure and channel conditions.

Replacing the max∗ operator in (4) and (5) we obtain (11)
and (12):

αK(s) = maxsk+1{αK−1(sK−1) + γk(sK−1, sK)}
(11)

βK(s) = maxsk+1{βK+1(sK+1)+γk(sK+1, sK)} (12)

To obtain the extrinsic information, Λ(ûK) can be split in
three terms: extrinsic LLR Le(uK), a priori LLR La(uK)
and systematic LLR Lc(y

s
K) as (13)

Λ(ûK) = Le(uK) + La(uK) + Lc(y
s
K) (13)

4.3. Practical Architecture

Over the years several implementation techniques have
been developed in order to increase the computation effi-
ciency and reduce the complexity of the SISO processor.
These include such as the Sliding Windows, Early Stop-
ping, Parallel Architectures, In this section we present
a simple hardware implementation of the SISO processor
(Wong, 2014). Practically, the main processing elements

Figure 3. SISO Processor-Internal blocks

inside SISO processor are units which execute the BCJR
equations, usually expressed in logarithmic form (Ahmed,

2013). Basically, the processor is composed of the follow-
ing units:

• BMU Branch Metric Unit;

• α ACS and β ACS;

• LLR Unit;

• Buffers;

4.3.1. BRANCH METRIC UNIT

Is the unit that calculates the branch metrics γs′, combining
the LLRs and the apriori information. From the hardware
point of view, it is composed of adder modules.

4.3.2. ACS

The ACS (Add Compare Select) unit evaluates the for-
ward and backward metrics α and β. It compute the
max*() function executing sum, compare and selecting the
output(Fig.4). ACS operations, in general are the most
time-consuming and resource expensive of the SISO pro-
cessor.

Figure 4. ACS Unit-Internal blocks

4.3.3. LLR UNIT

This unit executes the elaboration of the extrinsic informa-
tion; It is composed only by adders.

4.4. Standard Applications

As mentioned early in the paper, the SISO processor is
the main functional component in Turbo Codes and LPDC
FEC techniques used in standard communication systems
such as 3GPP and DVB. Each standard has its own code
length and block size and in general, the hardware archi-
tecture is optimized for a specific standard. Since this de-
sign starts from the algorithmic model, the block size is

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

simply represented as a preprocessor #define in the source
code. In particular, the following synthesis tests have been
performed using LTE standard (ETSI, 2014).

5. High-Level Synthesis of SISO Processor
The first part in designing an RFNoC block consists in de-
signing the hardware module to be later encapsulated in
the NoC Shell. In this case, HLS will be used to obtain the
hardware model of the DSP processing engine.

5.1. Development Flow

5.1.1. TOOL SETUP

Since the goal of this design is to create an RFNoC block to
be used in USRP devices, the solution settings are tailored
following their hardware specifications (Table 1).

USRP Device X310 E313
FPGA [part number] XC7K410T XC7Z020

LEs [K Units] 406 85
Memories [Kb] 28620 5040
DSPs [Units] 1540 220

Frequency [MHz] 200 100

Table 1. USRP Specifications(Ettus, d)

5.1.2. DESIGN ENTRY

The algorithmic model of the SISO processor is described
in SystemC, a language supported by Vivado HLS. The
top level function takes care to load data into the array
memory passed as reference to the SISO function to be
processed. In order to be integrated into the RFNoC, the
top level module expose an AXI4Stream interface.

5.2. Preliminary Experimental Results

As described in Section 3, different RTL implementations
could be generated from the same source code. For this de-
sign, four different implementation approaches have been
tested: using default directives, maximizing performance,
minimizing resource utilization and mixing both perfor-
mance/resources directives.

5.2.1. FIRST SOLUTION

By default Vivado synthesize C functions into functional
blocks in the RTL hierarchy. Then, all instances of the
same function will be assigned to the same RTL hardware
resource. All the arrays will be synthesized as BRAMs into
the FPGA and all the loops are left rolled. This means that
synthesis creates the logic for one iteration of the loop, and
the RTL design executes this logic for each iteration of the

loop in sequence.

X310 E313
Resources Tot Use% Tot Use%

BRAMs 24 1 24 8
FFs 7520 1 6247 5

LUTs 42121 16 41616 78

Timing
Latency[clocks] 25029 18981

Table 2. Resource Utilization - Default directives

Table (2) reports the synthesis results for the two targets
without applying any specific synthesis directive.

5.2.2. PERFORMANCE OPTIMIZATIONS

Optimizing the performance of the SISO processor algo-
rithm, means improving the overall concurrent execution
of its internal operations. This can be achieved by intro-
ducing a level of parallelism for the forward and backward
metric computation and trying to provide minimum latency
and maximum throughput for the ACS unit.

X310 E313
Resources Tot Use% Tot Use%

BRAMs 24 1 24 8
FFs 38057 7 28955 27

LUTs 138071 54 128568 240

Timing
Latency[clocks] 23094 17974

Table 3. Resource Utilization - Performance optimizations direc-
tives

Table (3) shows a reduction of latency in exchange of an
increase in resource utilization with respect to the first so-
lution.

5.2.3. RESOURCES OPTIMIZATIONS

Optimizing for resource utilization is not simple and re-
quires a deep inspection of the original algorithmic model.
As a first analysis, one can investigate on the precision
needed (data width) for the variables used. When pre-
defined software data types of 8/16/32 bits are mapped
to hardware, any unused bit will result in wasted area re-
sources. Another option to improve resource utilization is
to apply the INLINE directive to functions that result in
very simple hardware module. In this way, some extra-
control logic will be avoided and some area could be saved.
Table (4) reports the synthesis results with the resource op-
timization directives.

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

X310 E313
Resources Tot Use% Tot Use%

BRAMs 21 1 21 7
FFs 4807 1 3872 3

LUTs 9256 3 8778 16

Timing
Latency[clocks] 25029 18981

Table 4. Resources Utilization - Resource optimization directives

5.2.4. MIXED OPTIMIZATIONS

As anticipated in Section 3.2.1, the HLS directives are pow-
erful methods for optimizing the solution towards one spe-
cific implementation metric and goal. However, the best
usage of these directives consists in mixing them to get
most of the advantages coming from the high-level synthe-
sis process. In fact, the best results were achieved by ap-
plying the right tradeoff between performance and resource
optimization directives.(Table 5).

X310 E313
Resources Tot Use% Tot Use%

BRAMs 21 1 21 7
FFs 33419 6 25578 24

LUTs 100600 39 85547 160

Timing
Latency[clocks] 23741 17981

Table 5. Resource Utilization - Mixed optimizations directives

5.3. Results Analysis

Figure (5) shows the results for E313 and X310 USRP de-
vices. The percentage of occupation area is expected re-
sults since the large difference between the two FPGAs.
The surprising results is the difference in latency (ex-
pressed in clock cycles) obtained just synthesizing for the
two targets.

5.3.1. CONSIDERATIONS

The different results in terms of latency are due to two main
reasons: The first is the different performance level of the
device and the second is the operating frequency used. Fur-
thermore, the solutions outgoing from the HLS process are
heuristic and not optimal. The resource utilization results
obtained show how the X310 can host multiple implemen-
tation versions. Neverthless, the E313 can be also used for
a limited subset. Particular focus have to be highlight in
the solutions exploration effort. In fact, all the solution pro-
posed have been performed in a few days instead of months
as in traditional RTL design exploration. Another relevant

 0

 50

 100

 150

 200

 250

 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000

A
re

a
[%

]

Latency [CC]

'E313_default.dat'
'E313_performance.dat'

'E313_resources.dat'
'E313_mixed.dat'

'X310_default.dat'
'X310_performance.dat'

'X310_resources.dat'
'X310_mixed.dat'

Figure 5. E313/X310 Solution-Area/Latency

element is constituted by the Vivado version. All the re-
sults showed in this paper has been obtained using version
2015.4 as required from the challenge. However, different
results have been obtained with recent versions of the same
tool.

6. Conclusion
In this paper, we introduced the design of an RFNoC block
implementing a SISO processor, using the High-Level Syn-
thesis process to create the hardware description starting
from the algorithmic model. The analysis of the laten-
cy/area tradeoffs show how the same model can be syn-
thesized in several different ways, sometimes causing in-
feasibility issues for specific devices. More specifically,
we have performed some benchmarks targeting the SISO
processor into two different USRP devices provided from
Ettus, the X310 and E313. We highlight the advantages
coming from the use of HLS tools for DSPs algorithms de-
sign exploration.

6.0.2. FUTURE WORK

At this stage the RFNoC block cannot be considered ready
to be used by the GNU Radio Community. A number of ex-
tensions to this preliminary activity are being investigated.
The first consists in the selection of a solution among the
ones we explored and continuing through the design flow
to obtain a complete RFNoC block. After that, it will be
possible to test the block’s functionality in the GNU Radio
environment. However, since the preliminary experimental
results are not particular promising in terms of area/latency,
an algorithmic code-restructuring cannot be ruled out.

References
Abrantes. From bcjr to turbo decoding: Map algorithms

made easier, April 2004.

Ahmed, Maurizio Martina, Guido Masera. Turbo decoder

Designing a RFNoC Block Implementing a SISO Processor using High-Level Synthesis

vlsi architecture with non-recursive max operator for
3gpp lte. In IEEE (ed.), SPACOMM 2013 : The Fifth
International Conference on Advances in Satellite and
Space Communications, pp. 40–45, 2013.

Andrade, Nithin George, Kimon Karras David Novo Vi-
tor Silva Paolo Ienne Gabriel Falcao. From low-
architectural expertise up to high-throughput non-binary
ldpc decoders: Optimization guidelines using high-level
synthesis. In IEEE (ed.), 25th International Conference
on Field Programmable Logic and Applications (FPL),
pp. 1–8, 2015.

Bahl, J. Cocke, F. Jelinek J. Raviv. Optimal decoding of
linear codes for minimizing symbol error rate. pp. 284–
287, 1974.

Berrou, Alain Glavieux, Punya Thitimajshima. Near shan-
non error-correcting coding and decoding - turbo codes.
In IEEE (ed.), Communications Technical Program, pp.
1064–1070, Geneva, Switzerland, 1993.

Camposano. From behavior to structure: high-level syn-
thesis. 1990.

Coussy, Daniel D. Gajski, Michael Meredith Daniel D.
Gajski Andres Takach. An introduction to high-level
synthesis. 2009.

ETSI. Lte: Evolved universal terrestrial radio access (e-
utra) multiplexing and channel coding. Technical report,
ETSI, 2014.

Ettus. https://www.ettus.com/sdr-software/detail/rfnoc-
vivado-challenge, a.

Ettus. https://files.ettus.com/manual/page rtp.html, b.

Ettus. https://kb.ettus.com/getting started with rfnoc development,
c.

Ettus. https://www.ettus.com/product, d.

Fingeroff. High-Level Synthesis Blue Book. Mentor Graph-
ics, 1nd edition, January 2010.

GNURadioCompanion. https://wiki.gnuradio.org/index.php/gnuradiocompanion.

Intel. https://networkbuilders.intel.com/blog/hardware-
programmers-achieve-design-goals-faster-with-intel-
high-level-synthesis-compiler-for-fpgas, 2017.

Karra. Implementation of turbo product codes in the fec-
api, 2012.

M. Braun, Jonathon Pendlum. Rfnoc: Rf network on chip.
GNU Radio Conference, 2015.

Martin, Gary Smith. High-level synthesis: Past, present,
and future. 2009.

Nurvitadhi, Jaewoong Sim, David Sheffield Asit Mishra
Srivatsan Krishnan Debbie Marr. Accelerating recur-
rent neural networks in analytics servers: Comparison
of fpga, cpu, gpu, and asic. In IEEE (ed.), 2016 26th
International Conference on Field Programmable Logic
and Applications (FPL), pp. 1–4, Lausanne, Switzer-
land, 2016.

Pendlum. Rfnoc deep dive: Fpga side, 2014.

Takach. High-level synthesis: Status, trends, and future
directions, 2016.

Talasila. Implementation of turbo codes on gnu radio,
2010.

Watanabe, Kondratyev Luciano Lavagno Mike
Meyer Yosinori. Exploiting area/delay tradeoffs in
high-level synthesis. pp. 1024 – 1029, 2012.

Wong, Hsie-Chia Chang. Turbo Decoder Architecture for
Beyond-4G Applications. Springer, 1nd edition, 2014.

Xilinx. Vivado design suite user guide - high-level synthe-
sis, 2015.

Xilinx. https://forums.xilinx.com/t5/xcell-daily-blog/
ettus-research-accepts-7-teams-to-compete-in-the-10k-
rfnoc-amp/ba-p/751761, 2017.

