
Channelization using RFNoC (GRCON 2017)

Phil Vallance PJVALLA@GMAIL.COM

Vallance Engineering LLC, 4235 Alta Vista Way, Knoxville, TN 37919 USA

Abstract

This document will review the derivation of the
M/2 channelizer structure found in (Harris F.,
2010). The document will then provide the
detailed FPGA implementation of the architec-
ture. The FPGA implementation is specific to the
Xilinx architecture since it utilizes the pipelin-
ing functionality of the DSP48 cores found in
7 series devices. The implementation is fully
pipelined to achieve maximum FMax perfor-
mance and achieves maximum throughput.

1. Channelizer Background
The Channelizer design is based on (Harris F., 2010). The
derivation begins with the classic Nyquist rate channelizer
shown in Figure 1. The fundamental relationship given
in (1). (Harris F., 2010) uses this structure to derive a chan-
nelizer / analysis filter bank that generates channel sample
rates at twice the Nyquist rate. The main advantages of this
channelizer are that it relaxes the filter transition bandwidth
requirements and that it allows perfect reconstruction of the
channels when using the synthesis filter bank (dual of the
analysis filter bank). Please refer to (Harris F., 2010) for a
detailed description of the synthesis filter bank.

Figure 1. M Down-sample Channelizer

H(N-1)

H(N-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

y(nM, k) =

M�1X

r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index

y(n)
x(n)

y(n, k) =
⇥
x(n)e�j✓kn

⇤
⇤ h(n)

=
N�1X

r=0

x(n � r)e�j✓knh(r)

H(N-1)

H(N-2)

H(0)

...

M-Point 
FFT y(n)

Noble Identities

N #

N "H(Z)

H(Z) H
�
ZN

�

H
�
ZN

�
N "

N #⌘
⌘

x(n)

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

y(n, k) =
[
x(n)e−jθkn

]
∗ h(n) (1)

=
N−1∑

r=0

x(n− r)e−jθk(n−r)h(r)

Figure 2 displays the impulse response for the M and M/2
down-sampled filter prototypes. Both filters exhibit the
correct cutoff frequency, fc, with the required 6.02 dB at-
tenuation required for reconstruction. However the M/2
down-sample channelizer can relax the transition band-
width of the filter yielding a significantly lower passband
ripple stop-band attenuation. Both filter prototypes were
designed for 16 sub-band channelizer using 24 taps per
phase for a total of 384 filter coefficients.

Figure 2. M/2 vs M Down-Sample Channelizer

The derivation of the new channelizer form is best shown
through the use of a simple M/2 downsampling filter
shown in 3. The functional polyphase filter relationship
is given in (2). This is equivalent to extracting only the DC
channel of the channelizer. It should be understood that
the IFFT block implements the bank of phase rotation and
summers to generate the full set of output channels.



Channelization using RFNoC

Figure 3. M/2 Downsampling Filter

Serpentine Shift

Z-1

h(k) h(k+M) h(k+2M) h(k+3M) h(k+4M)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1

Z-1

h(k+M/2) h(k+3M/2) h(k+5M/2) h(k+7M/2) h(k+9M/2)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1Z-1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Po
lyp

ha
se

 F
ilte

r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Aliased Regions Passband

...

M:1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

O
ut

pu
t D

at
a 

Bu
ffe

r

+

M
-P

oi
nt

 F
FT

H(z) = h(0) + h(M + 0)Z�M + h(2M + 0)Z�2M +
h(1)Z�1 + h(M + 1)Z�(M+1) + h(2M + 1)Z�(2M+1) +
h(2)Z�2 + h(M + 2)Z�(M+2) + h(2M + 2)Z�(2M+2) +
h(3)Z�3 + h(M + 3)Z�(M+3) + h(2M + 3)Z�(2M+3) +

...
...

...
...

...
...

h(M � 1)Z�(M�1) + h(2M � 1)Z�(2M�1) + h(3M � 1)Z�(3M�1) +

· · ·
· · ·
· · ·
· · ·

· · ·

H(Z) =
N�1X

n=0

h(n)Z�n

= h(0) + h(1)Z�1 + h(2)Z�2 + · · · + h(N � 1)Z�(N�1)

H0(Z)

H1(Z)

HM�2(Z)

HM�1(Z)

Z�1

Z�(M�2)

Z�(M�1)

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index
This is the DFT for frequency index k. This summation could be done for any index.

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index.
Channelizer outputs samples from each frequency bin at a rate of fs/M

An M/2 channelizer outputs samples from each frequency bin at a rate of 2fs/M.
To accomplish this the IFFT is run every M/2 input samples starting at port (M/2) - 1 and
progressing up the stack to Port 0. The M/2 addresses to which the new M/2 inputs
samples are delivered are first vacated by their former contents. There is a serpentine
shift through a bu↵er.
The input bu↵er is then filtered by the polyphase filter bank on the new bu↵er contents.
This data shifting into the polyphase filter stages causes a frequency - dependent phase shift
✓ (!) = �t!
✓ (!k) = nTk 1

M
2⇡
T = nk

M 2⇡
✓ (!k)|n=M = nk

M 2⇡
��
n=M

= k2⇡

✓ (!k)|n=M/2 = nk
M 2⇡

��
n=M/2

= k⇡

From this we see that the odd indexed frequency terms experience a phase shift of ⇡ radians for
each successive M/2 shift of input data.
Must compensate for this phase shift by applying the appropriate phase correction to the spectral
data. For an M/2 channelizer, the correction is a circular shift of the filter output data.

The new form of the M/2 Channelizer incorporates the sample rate conversion
directly into the polyphase filter bank.
Normal polyphase filter representation

H (Z) =
M�1P
r=0

Z�rHr

�
ZM

�

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

2X Filter Representation

H (Z) =
M/2�1P

r=0
Z�rHr

�
ZM

�
+ Z�(r+M/2)Hr+M/2(Z

M )

where

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

H(M-1)

H(M-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

H(M-1)

H(M-2)

H(0)

...

+

ej0k 2⇡
M

ej(M�2)k 2⇡
M

ej(M�1)k 2⇡
M

y(nM, k)

n + 31

n

n � 1

n � 32

n � 33 n � 97 n + 63 n � 1 n � 65

n � 65 n + 31 n � 33 n � 97n � 129

n � 96 n � 180 n n � 64

n � 64

n � 128

n � 128 n + 32 n � 32 n � 96

yr

+

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

M/2:1

...
...

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

...
...

M/2:1

M/2:1

M/2:1

M/2:1

...

+

Z-1

...

Z-(M/2-1)

Z-1

...
...

M/2:1

M/2:1

M/2:1

M/2:1

Z-(M/2-1)

Z-1Z-1
M/2:1

M/2:1

...

+

...

H0

�
ZM

�

H1

�
ZM

�

HM/2�1

�
ZM

�

HM�1

�
ZM

�

HM/2�1

�
Z2

�

H1

�
Z2

�

H0

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM�1

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM/2+1

�
Z2

�

HM/2

�
Z2

�

HM�1

�
Z2

�

HM/2

�
Z2

�

HM/2+1

�
Z2

�

HM�1

�
Z2

�

y(n)

y(n)

x(n)
y(n)

Top Half

M/2 Channelizer

H (Z) =

M/2−1∑

r=0

Z−rHr

(
ZM

)
+ Z−(r+M/2)Hr+M/2(ZM )

where

Hr

(
ZM

)
=

(N/M)−1∑

n=0

h (r + nM)Z−nM (2)

The derivation of the 2fs/M channelizer is performed by
successively applying the Noble Identity to Figure 3. The
Noble Identities are given in Figure 4. The filter derivation
is shown in Figure 5.

Figure 4. Noble Identities

H(N-1)

H(N-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

y(nM, k) =

M�1X

r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index

y(n)
x(n)

y(n, k) =
⇥
x(n)e�j✓kn

⇤
⇤ h(n)

=
N�1X

r=0

x(n � r)e�j✓knh(r)

H(N-1)

H(N-2)

H(0)

...

M-Point 
FFT y(n)

Noble Identities

N #

N "H(Z)

H(Z) H
�
ZN

�

H
�
ZN

�
N "

N #⌘
⌘

x(n)

The derivation results in the two PFB structures shown in
Figure 6. The translation of these filter structures to the
Xilinx DSP48 architecture will be discussed in 2. An M/2
channelizer outputs samples from each frequency bin at a
rate of 2fs/M . To accomplish this, the IFFT is run every
M/2 input samples. Note that the new PFB filter architec-
ture performs data shifting ofM/2 samples. This is seen by
the Z−1 delay present in the bottom-half of the filter arms.
Since each filter arm is fed a new sample every M/2 sam-
ples, this generates a M/2 sample shift. This data shifting
into the polyphase filter stages causes a frequency depen-
dent phase shift that is summarized in equation set (3).

Figure 5. PFB Derivation

Serpentine Shift

Z-1

h(k) h(k+M) h(k+2M) h(k+3M) h(k+4M)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1

Z-1

h(k+M/2) h(k+3M/2) h(k+5M/2) h(k+7M/2) h(k+9M/2)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1Z-1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Po
lyp

ha
se

 F
ilte

r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Aliased Regions Passband

...

M:1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

O
ut

pu
t D

at
a 

Bu
ffe

r

+

M
-P

oi
nt

 F
FT

H(z) = h(0) + h(M + 0)Z�M + h(2M + 0)Z�2M +
h(1)Z�1 + h(M + 1)Z�(M+1) + h(2M + 1)Z�(2M+1) +
h(2)Z�2 + h(M + 2)Z�(M+2) + h(2M + 2)Z�(2M+2) +
h(3)Z�3 + h(M + 3)Z�(M+3) + h(2M + 3)Z�(2M+3) +

...
...

...
...

...
...

h(M � 1)Z�(M�1) + h(2M � 1)Z�(2M�1) + h(3M � 1)Z�(3M�1) +

· · ·
· · ·
· · ·
· · ·

· · ·

H(Z) =
N�1X

n=0

h(n)Z�n

= h(0) + h(1)Z�1 + h(2)Z�2 + · · · + h(N � 1)Z�(N�1)

H0(Z)

H1(Z)

HM�2(Z)

HM�1(Z)

Z�1

Z�(M�2)

Z�(M�1)

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index
This is the DFT for frequency index k. This summation could be done for any index.

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index.
Channelizer outputs samples from each frequency bin at a rate of fs/M

An M/2 channelizer outputs samples from each frequency bin at a rate of 2fs/M.
To accomplish this the IFFT is run every M/2 input samples starting at port (M/2) - 1 and
progressing up the stack to Port 0. The M/2 addresses to which the new M/2 inputs
samples are delivered are first vacated by their former contents. There is a serpentine
shift through a bu↵er.
The input bu↵er is then filtered by the polyphase filter bank on the new bu↵er contents.
This data shifting into the polyphase filter stages causes a frequency - dependent phase shift
✓ (!) = �t!
✓ (!k) = nTk 1

M
2⇡
T = nk

M 2⇡
✓ (!k)|n=M = nk

M 2⇡
��
n=M

= k2⇡

✓ (!k)|n=M/2 = nk
M 2⇡

��
n=M/2

= k⇡

From this we see that the odd indexed frequency terms experience a phase shift of ⇡ radians for
each successive M/2 shift of input data.
Must compensate for this phase shift by applying the appropriate phase correction to the spectral
data. For an M/2 channelizer, the correction is a circular shift of the filter output data.

The new form of the M/2 Channelizer incorporates the sample rate conversion
directly into the polyphase filter bank.
Normal polyphase filter representation

H (Z) =
M�1P
r=0

Z�rHr

�
ZM

�

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

2X Filter Representation

H (Z) =
M/2�1P

r=0
Z�rHr

�
ZM

�
+ Z�(r+M/2)Hr+M/2(Z

M )

where

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

H(M-1)

H(M-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

H(M-1)

H(M-2)

H(0)

...

+

ej0k 2⇡
M

ej(M�2)k 2⇡
M

ej(M�1)k 2⇡
M

y(nM, k)

n + 31

n

n � 1

n � 32

n � 33 n � 97 n + 63 n � 1 n � 65

n � 65 n + 31 n � 33 n � 97n � 129

n � 96 n � 180 n n � 64

n � 64

n � 128

n � 128 n + 32 n � 32 n � 96

yr

+

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

M/2:1

...
...

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

...
...

M/2:1

M/2:1

M/2:1

M/2:1

...

+

Z-1

...

Z-(M/2-1)

Z-1

...
...

M/2:1

M/2:1

M/2:1

M/2:1

Z-(M/2-1)

Z-1Z-1
M/2:1

M/2:1

...

+

...

H0

�
ZM

�

H1

�
ZM

�

HM/2�1

�
ZM

�

HM�1

�
ZM

�

HM/2�1

�
Z2

�

H1

�
Z2

�

H0

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM�1

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM/2+1

�
Z2

�

HM/2

�
Z2

�

HM�1

�
Z2

�

HM/2

�
Z2

�

HM/2+1

�
Z2

�

HM�1

�
Z2

�

y(n)

y(n)

x(n)
y(n)

Top Half

M/2 Channelizer

θ (ω) = ∆tω

θ (ωk) = nTk
1

M

2π

T
=
nk

M
2π (3)

θ (ωk)|n=M =
nk

M
2π|n=M = k2π

θ (ωk)|n=M/2 =
nk

M
2π|n=M/2 = kπ

From this we see that the odd indexed frequency terms ex-
perience a phase shift of π radians for each successiveM/2
shift of input data. The channelizer must compensate for
this phase shift by applying the appropriate phase correc-
tion to the output of the IFFT. For an M/2 down-sampled
channelizer, the correction is a circular shift of the filter
output data.

Figure 6. Final Structures

Serpentine Shift

Z-1

h(k) h(k+M) h(k+2M) h(k+3M) h(k+4M)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1

Z-1

h(k+M/2) h(k+3M/2) h(k+5M/2) h(k+7M/2) h(k+9M/2)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1Z-1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Po
lyp

ha
se

 F
ilte

r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Aliased Regions Passband

...

M:1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

O
ut

pu
t D

at
a 

Bu
ffe

r

+

M
-P

oi
nt

 F
FT

H(z) = h(0) + h(M + 0)Z�M + h(2M + 0)Z�2M +
h(1)Z�1 + h(M + 1)Z�(M+1) + h(2M + 1)Z�(2M+1) +
h(2)Z�2 + h(M + 2)Z�(M+2) + h(2M + 2)Z�(2M+2) +
h(3)Z�3 + h(M + 3)Z�(M+3) + h(2M + 3)Z�(2M+3) +

...
...

...
...

...
...

h(M � 1)Z�(M�1) + h(2M � 1)Z�(2M�1) + h(3M � 1)Z�(3M�1) +

· · ·
· · ·
· · ·
· · ·

· · ·

H(Z) =
N�1X

n=0

h(n)Z�n

= h(0) + h(1)Z�1 + h(2)Z�2 + · · · + h(N � 1)Z�(N�1)

H0(Z)

H1(Z)

HM�2(Z)

HM�1(Z)

Z�1

Z�(M�2)

Z�(M�1)

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index
This is the DFT for frequency index k. This summation could be done for any index.

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index.
Channelizer outputs samples from each frequency bin at a rate of fs/M

An M/2 channelizer outputs samples from each frequency bin at a rate of 2fs/M.
To accomplish this the IFFT is run every M/2 input samples starting at port (M/2) - 1 and
progressing up the stack to Port 0. The M/2 addresses to which the new M/2 inputs
samples are delivered are first vacated by their former contents. There is a serpentine
shift through a bu↵er.
The input bu↵er is then filtered by the polyphase filter bank on the new bu↵er contents.
This data shifting into the polyphase filter stages causes a frequency - dependent phase shift
✓ (!) = �t!
✓ (!k) = nTk 1

M
2⇡
T = nk

M 2⇡
✓ (!k)|n=M = nk

M 2⇡
��
n=M

= k2⇡

✓ (!k)|n=M/2 = nk
M 2⇡

��
n=M/2

= k⇡

From this we see that the odd indexed frequency terms experience a phase shift of ⇡ radians for
each successive M/2 shift of input data.
Must compensate for this phase shift by applying the appropriate phase correction to the spectral
data. For an M/2 channelizer, the correction is a circular shift of the filter output data.

The new form of the M/2 Channelizer incorporates the sample rate conversion
directly into the polyphase filter bank.
Normal polyphase filter representation

H (Z) =
M�1P
r=0

Z�rHr

�
ZM

�

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

2X Filter Representation

H (Z) =
M/2�1P

r=0
Z�rHr

�
ZM

�
+ Z�(r+M/2)Hr+M/2(Z

M )

where

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

H(M-1)

H(M-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

H(M-1)

H(M-2)

H(0)

...

+

ej0k 2⇡
M

ej(M�2)k 2⇡
M

ej(M�1)k 2⇡
M

y(nM, k)

n + 31

n

n � 1

n � 32

n � 33 n � 97 n + 63 n � 1 n � 65

n � 65 n + 31 n � 33 n � 97n � 129

n � 96 n � 180 n n � 64

n � 64

n � 128

n � 128 n + 32 n � 32 n � 96

yr

+

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

M/2:1

...
...

...
+

Z-1

...
Z-(M/2-1)

Z-(M-1)

...
...

M/2:1

M/2:1

M/2:1

M/2:1

...

+

Z-1

...

Z-(M/2-1)

Z-1

...
...

M/2:1

M/2:1

M/2:1

M/2:1

Z-(M/2-1)

Z-1Z-1
M/2:1

M/2:1

...

+

...

H0

�
ZM

�

H1

�
ZM

�

HM/2�1

�
ZM

�

HM�1

�
ZM

�

HM/2�1

�
Z2

�

H1

�
Z2

�

H0

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM�1

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM/2+1

�
Z2

�

HM/2

�
Z2

�

HM�1

�
Z2

�

HM/2

�
Z2

�

HM/2+1

�
Z2

�

HM�1

�
Z2

�

y(n)

y(n)

x(n)
y(n)

Top Half

M/2 Channelizer

The final channelizer structure is presented in Figure 7.
This shows the input buffer, PFB, circular buffer, and the
IFFT module connected to create an analysis filter bank.



Channelization using RFNoC

The final implementation uses the block floating point op-
tion of the IFFT block from Xilinx. This option requires
the implementation of a final exponent shifting logic to nor-
malize and enforce amplitude consistency between succes-
sive IFFT blocks.

Figure 7. Final Structure

Serpentine Shift

Z-1

h(k) h(k+M) h(k+2M) h(k+3M) h(k+4M)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1

Z-1

h(k+M/2) h(k+3M/2) h(k+5M/2) h(k+7M/2) h(k+9M/2)

Z-1 Z-1 Z-1x(n)

+ + + +

Z-1 Z-1 Z-1 Z-1Z-1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Po
lyp

ha
se

 F
ilte

r

Ci
rc

ul
ar

 B
uf

fe
r

M
-P

oi
nt

 IF
FT

In
pu

t D
at

a 
Bu

ffe
r

Aliased Regions Passband

...

M:1

Po
lyp

ha
se

 
Fi

lte
r

Ci
rc

ul
ar

 B
uf

fe
r

O
ut

pu
t D

at
a 

Bu
ffe

r

+

M
-P

oi
nt

 F
FT

H(z) = h(0) + h(M + 0)Z�M + h(2M + 0)Z�2M +
h(1)Z�1 + h(M + 1)Z�(M+1) + h(2M + 1)Z�(2M+1) +
h(2)Z�2 + h(M + 2)Z�(M+2) + h(2M + 2)Z�(2M+2) +
h(3)Z�3 + h(M + 3)Z�(M+3) + h(2M + 3)Z�(2M+3) +

...
...

...
...

...
...

h(M � 1)Z�(M�1) + h(2M � 1)Z�(2M�1) + h(3M � 1)Z�(3M�1) +

· · ·
· · ·
· · ·
· · ·

· · ·

H(Z) =
N�1X

n=0

h(n)Z�n

= h(0) + h(1)Z�1 + h(2)Z�2 + · · · + h(N � 1)Z�(N�1)

H0(Z)

H1(Z)

HM�2(Z)

HM�1(Z)

Z�1

Z�(M�2)

Z�(M�1)

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index
This is the DFT for frequency index k. This summation could be done for any index.

y(nM, k) =
M�1P
r=0

yr(nM)ej 2⇡
M rk

k, is the channel selector index.
Channelizer outputs samples from each frequency bin at a rate of fs/M

An M/2 channelizer outputs samples from each frequency bin at a rate of 2fs/M.
To accomplish this the IFFT is run every M/2 input samples starting at port (M/2) - 1 and
progressing up the stack to Port 0. The M/2 addresses to which the new M/2 inputs
samples are delivered are first vacated by their former contents. There is a serpentine
shift through a bu↵er.
The input bu↵er is then filtered by the polyphase filter bank on the new bu↵er contents.
This data shifting into the polyphase filter stages causes a frequency - dependent phase shift
✓ (!) = �t!
✓ (!k) = nTk 1

M
2⇡
T = nk

M 2⇡
✓ (!k)|n=M = nk

M 2⇡
��
n=M

= k2⇡

✓ (!k)|n=M/2 = nk
M 2⇡

��
n=M/2

= k⇡

From this we see that the odd indexed frequency terms experience a phase shift of ⇡ radians for
each successive M/2 shift of input data.
Must compensate for this phase shift by applying the appropriate phase correction to the spectral
data. For an M/2 channelizer, the correction is a circular shift of the filter output data.

The new form of the M/2 Channelizer incorporates the sample rate conversion
directly into the polyphase filter bank.
Normal polyphase filter representation

H (Z) =
M�1P
r=0

Z�rHr

�
ZM

�

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

2X Filter Representation

H (Z) =
M/2�1P

r=0
Z�rHr

�
ZM

�
+ Z�(r+M/2)Hr+M/2(Z

M )

where

Hr

�
ZM

�
=

(N/M)�1P
n=0

h (r + nM)Z�nM

H(M-1)

H(M-2)

H(0)

...

M-Point 
FFT

r(nM, 0)

r(nM, M � 2)

r(nM, M � 1)

H(M-1)

H(M-2)

H(0)

...

+

ej0k 2⇡
M

ej(M�2)k 2⇡
M

ej(M�1)k 2⇡
M

y(nM, k)

n + 31

n

n � 1

n � 32

n � 33 n � 97 n + 63 n � 1 n � 65

n � 65 n + 31 n � 33 n � 97n � 129

n � 96 n � 180 n n � 64

n � 64

n � 128

n � 128 n + 32 n � 32 n � 96

yr

+

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

M/2:1

...
...

...

+

Z-1

...

Z-(M/2-1)

Z-(M-1)

...
...

M/2:1

M/2:1

M/2:1

M/2:1

...

+

Z-1

...

Z-(M/2-1)

Z-1

...
...

M/2:1

M/2:1

M/2:1

M/2:1

Z-(M/2-1)

Z-1Z-1
M/2:1

M/2:1

...

+

...

H0

�
ZM

�

H1

�
ZM

�

HM/2�1

�
ZM

�

HM�1

�
ZM

�

HM/2�1

�
Z2

�

H1

�
Z2

�

H0

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM�1

�
Z2

�

H0

�
Z2

�

H1

�
Z2

�

HM/2�1

�
Z2

�

Z�1HM/2+1

�
Z2

�

HM/2

�
Z2

�

HM�1

�
Z2

�

HM/2

�
Z2

�

HM/2+1

�
Z2

�

HM�1

�
Z2

�

y(n)

y(n)

x(n)
y(n)

Top Half

M/2 Channelizer

2. Hardware Implementation
This section provides implementation details for each block
in Figure 7. The level of detail provided is adequate to
directly translate the design to FPGA resources. The im-
plementation of each block shown in Figure 7 will be re-
viewed and a logical block diagram will be presented. The
block diagrams include all important pipelining and logical
operations. All modules produce and consume 16 bit I/Q
samples. Rounding and truncation is performed by the PFB
and IFFT modules. Finally, the number of sub-bands, M ,
of the channelizer is run-time configurable. This capabil-
ity requires that all blocks include logic to handle the vari-
able block sizes and that software is responsible for load-
ing new coefficients. The one restriction on the number of
sub-bands is that only powers of 2 are valid with an upper
bound of 512. The 512 limit is simply due to the prototyp-
ing nature of the current development. Depending on the
available resources, the upper limit is bound to the Xilinx
FFT module (currently 65536 is the upper bound).

2.1. Input Buffer

The input buffer implemented in logic performs three func-
tions. First, it utilizes AXI flow control to ensure data re-
liability and to conform to the interface provided by the
RFNoC infrastructure. Second, it provides a ping-pong
buffer interface so that read data is not corrupted by new
input data. Finally, the input buffer reads each dual-port
RAM twice. This produces the time domain sequence re-
quired by the PFB as shown in Figure 5. The current logic
implementation is shown in Figure 8.

Figure 8. Input Buffer

In
pu

t D
at

a 
Bu

ffe
r

Dual Port
RAM
Z�3

Dual Port
RAM
Z�3

Z�1 Z�1x(n) y(n)Count Items
Z�3

Read Logic
Z�1

AXI Throttle Logic
Z�1tready

The muxing shown allows the input buffer to read one dual
port ram while the other is being written. The fixed coun-
ters provide the appropriate addressing for both reading and
writing RAMs. Note that the input data rate must be <= 1

2
the clock rate. The current design ensures this data rate
by including a half-band filter before the input buffer. The
output of the input buffer does not implement the AXI in-
terface. This was done to reduce logic complexity and to
treat the entire channelizer as one single block with AXI in-
terfaces on both master and slave ports. To ensure data reli-
ability a FIFO is used internally that gates the slave tready,
s tready, signal of the input buffer with the almost full flag.
This ensures that the channelizer is able to ingest another
block of samples from the input buffer after the s tready is
asserted.

2.2. Polyphase Filter Bank

The mathematical filter derivation is shown below in (4).
Notice that the second column must be offset in both sam-
ple and coefficient addressing to ensure y(n) is computed
correctly. This is a consequence of the systolic imple-
mentation. The delay registers at the top of Figure 9 per-
form the offsetting operation. Adding columns to the filter
arm simply requires duplicating the column structure. The
DSP48s and the memory architectures utilize a large de-
gree of pipelining to grant the Place and Route (PAR) tools
enough flexibility to ensure success.

The logic shown in Figure 9 has been mapped to the Xilinx
architecture. This represents a fully pipelined design that
maximizes the potential FMax. The references next to the
delay registers indicate the current sample, x, and coeffi-
cient, h. The subscript for x indicates the corresponding
phase or arm of the filter bank and n represents the nth
input sample loaded into the relevant arm. The first sub-
script for the h value represents the phase arm value and
the second subscript represents the column position within
the arm. These coefficient values correspond to those given
in Figure 6. It is important to understand that filter arms
are loaded sequentially. This is referenced in the diagram
by the incremental changes in the phase subscript through
each subsequent delay register. The nth index is only up-
dated once per revolution of the filter bank.

Reads are always 2M samples behind the writes into the



Channelization using RFNoC

sample memories. This ensures that there are no collisions
between reads and writes of memory. Addressing is also
delayed between successive columns of the PFB architec-
ture to align correctly align samples with the pipelining
of the follow-on DSP48 logic. Each sample buffer shown
must be 4M words long.

Also note on the control logic in upper-left of the figure.
This logic performs the extra delay operation required by
the bottom-half of the PFB. A single PFB implementation
is used for both the top and bottom-half filters referenced
in Figure 6.

H(z) =
((
x0(n)h0,0z

−2
)
z−2 +

(
x255(n− 3)h255,3z

−2
)
z−1
)
z−1

=
(
(x254(n− 1)h254,1) z−2 + (x253(n− 3)h253,3) z−1

)
z−1

= (x252(n− 1)h252,1 + x252(n− 3)h252,3) z−1

= x251(n− 1)h251,1 + x251(n− 3)h251,3 (4)

The actual implementation is 24 taps per PFB arm. This
yields a filter that has relatively narrow transition band-
widths, good passband ripple, and significant stop-band at-
tenuation.

2.3. Circular Buffer

The implementation of the Circular Buffer is shown below
in Figure 10. The design is similar to the input buffer in
that the block is able to ping-pong between different mem-
ories. Again, this allows full streaming operation without
risk of data corruption from simultaneous reads and writes.
The offset counter logic offsets the read pointer by M/2
samples every other block of M samples. The counter is
still modulo M resulting in a circular shift of the data input
to the follow on IFFT block.

Figure 10. Circular Buffer Implementation

C
irc

ul
ar

 B
uf

fe
r

Z�1 Z�1 y(n)

Dual Port
RAM
Z�3

Dual Port
RAM
Z�3

O↵set Logic
Counter

Z�3

+
Z�2

Muxing only the 
write enables

x(n)

phase

Z�5

Z�2

Z�1

Z�1

2.4. Exponent Shifter

The output of the IFFT block produces a block of sam-
ples and the common exponent of the samples is passed
through the status interface. The Exponent Shifter mod-

ule averages the exponent of 64 consecutive IFFT frames.
The entire block of samples is then shifted by the integer
difference between the current exponent and the moving
average. The sample block is also scaled by the remain-
der to linearly interpolate the difference. The module also
enforces a fixed offset of the exponent to allow for head-
room for loud and bursty transmissions. This ensures that
signal amplitude differences are captured and not removed
by the block-floating point operation of the IFFT module.
The flowgraph of the module is shown below in Figure 11.
Finally, an AXI FIFO block is used to implement the flow
control of the AXI master interface.

Figure 11. Exponent Shift Implementation

EXP Shifter

C
o
rr

R
O

M
Z

�
3

�
Z

�
1

�
Z

�
1

x
(n

)

Re
f

Z
�

3

Z
�

1

S
h
if
te

r
Z

�
1

⇥
Z

�
3

Z
�

1

A
X

I
F
IF

O
Z

�
3

y
(n

)
B

o
x

C
ar

64
T
ap

s
sh

if
t

va
lu

e

3. Filter Generation
The filter generation is based on the work of Wessel Lub-
berhuizen found in (Lubberhuizen, 2010). Using root
raised erf functions to perform filter coefficient calculation
has two distinct advantages over the commonly used Re-
mez algorithm. First, the algorithm is stable even for very
narrow filter bandwidths. This makes it an effective tool



Channelization using RFNoC

Figure 9. PFB Implementation

Du
al

 P
or

t
RA

M
 Z

-3

+
Z-1 P6

P6

Z-1
M5

Z-1

Z-1
M5

Z-1
A4

Z-1
A4

Z-1
A3

Z-1
A3

Du
al

 P
or

t
RA

M
 Z

-3

Si
ng

le
 P

or
t

RO
M

Z-2

Si
ng

le
 P

or
t

RO
M

Z-2

Ph
as

e

Z-1
B4

Z-1
B3

Z-1
B4

Z-1
B3

y
(n

)

Z
�

1

Du
al

 P
or

t
RA

M
 Z

-3

Z-3Z-3
Z-1

Z-1

x
0
(n

)Z-1

h
0
,0

h
2
5
5
,1

h
2
5
4
,1

x
2
5
5
(n

�
1)

x
2
5
4
(n

�
1)

x
2
5
3
(n

�
1
)h

2
5
3
,1

x
2
5
2
(n

�
1)

h
2
5
2
,1

x
2
5
2
(n

�
3)

h
2
5
2
,3

x
2
5
1
(n

�
1)

h
2
5
1
,1

+
x

2
5
1
(n

�
3)

h
2
5
1
,3

x
2
5
3
(n

�
3)

x
2
5
4
(n

�
3)

x
2
5
5
(n

�
3)

h
2
5
3
,3

h
2
5
4
,3

h
2
5
5
,3

H
(z

)
=

��
x

0
(n

)h
0
,0

z
�

2
� z

�
2

+
� x

2
5
5
(n

�
3)

h
2
5
5
,3

z
�

2
� z

�
1
� z

�
1

=
� (x

2
5
4
(n

�
1)

h
2
5
4
,1

)
z
�

2
+

(x
2
5
3
(n

�
3)

h
2
5
3
,3

)
z
�

1
� z

�
1

=
(x

2
5
2
(n

�
1)

h
2
5
2
,1

+
x

2
5
2
(n

�
3
)h

2
5
2
,3

)
z
�

1

=
x

2
5
1
(n

�
1)

h
2
5
1
,1

+
x

2
5
1
(n

�
3
)h

2
5
1
,3

x
(n

)



Channelization using RFNoC

for calculating filters for channelizers with large numbers
of sub-bands. The second advantage is the ease of com-
putation. The outline of the procedure is shown below in
Algorithm 1.

Algorithm 1 Channelizer Filter Coefficient Generation
function TAPEQUATION(M , K)

. Create normalized frequency vector

. Error function is created in the frequency domain
and then

. transformed in the time domain
F = range(M ∗ taps per path)
F = F/len(F )
x = K ∗ (M ∗ F − .5)
A =

√
0.5 ∗ erfc(x)

N = len(A)
idx = range(N/2)
A[N − idx− 1] = conj(A[1 + idx])
A[N//2] = 0
. this sets the appropriate -6.02 dB cut-off point re-

quired for the channelizer
db diff = −6.02− 10 ∗ log10(.5)

exponent = 10
−db diff

10.

A = Aexponent

b = ifft(A)
b = fft shift(b)
. normalize filter magnitude to 0 dB passband
Return b/sum(b)

end function

Notice that there are two arguments to the procedure, M
and K. M is the number of channelizer sub-bands. K is a
shaping constant of the procedure. IncreasingK results in a
low-pass filter with narrower transition bandwidth with the
trade-off of increased pass-band ripple and stop-band at-
tenuation. The complete tap generation procedure includes
a hill-climbing routine to iteratively increment K until the
desired transition bandwidth is achieved. The relaxed tran-
sition bandwidth used by the M/2 down-sampled channel-
izer results in a filter with extremely low pass-band ripple
(¡.01 dB) and very good stop-band attenuation (¡ -150 dB
to nearest adjacent sub-band).

4. GNURadio Software Component
There are three components to the GNURadio based con-
troller for the channelizer. The first component is the block
controller, chanmux. The module chanmux is an RFNoC
block controller. It utilizes the gr ettus library to pass both
data and parameters between the GNURadio and RFNoC
infrastructure. Specifically, it updates the FFT size of the
channelizer, accepts a message containing the filter coef-
ficients and then passes them to the FPGA resources, and

Figure 12. Test System Diagram

provides the basic mechanism for moving data from the
FPGA to the GNURadio infrastructure.

The second component is a pure python module,
tap update. This block generates the fixed point PFB co-
efficients based on the user specified FFT size. The PFB
coefficients are computed in floating point, then translated
to fixed point representation ensuring that the slicing and
rounding settings of the PFB module are consistent across
all FFT sizes. Finally, the fixed point coefficients are
passed to the block controller, chanmux, via a message in-
terface.

The final component is a traditional GNURadio block writ-
ten in C++. This module, poly channelizer, is responsible
for consuming blocks of samples from chanmux and then
de-interlacing each sub-band and appending the sub-band
samples to the corresponding output port. The user spec-
ifies a mask of bins that they want returned. This mask
determines the number of output ports. The mask is a sim-
ple integer vector that where each integer corresponds to
the desired sub-bands. The mask does not have to be in as-
cending sub-band order and repeated sub-band values are
allowed.

5. Real Time Results
The GNURadio Companion flow graph is shown below
in Figure 12. The input stages are omitted to save space.
This setup is using a 256 channel channelizer. There are
four sub-bands specified in the mask vector argument to
the poly channelizer block. The tap update python block
and chanmux block controller are functionally required.

Figure 13 shows the PSD plot of the channelizer input. The
are three narrow-band pulse shaped QAM16 waveforms
present. The four sub-band mask values extract the three
channels plus another unoccupied sub-band. The PSD plots
of these sub-bands are shown below in Figure 14.



Channelization using RFNoC

Figure 13. Input Spectrum

Figure 14. Output Spectrums

6. Future Work
There are two significant tasks that should be worked mov-
ing forward. First, the output of the channelizer requires
word sizes larger than 16 bit I/Q samples. This is driven
primarily by the fact that the Exponent Shifter module is
scaling the output of the IFFT module to avoid clipping
strong bursty signals. This reduces the effective dynamic
range of the system since the upper bits are left unoccu-
pied during normal operation. Narrow-band signals would
also benefit from increased dynamic range. A system de-
sign may use a large channelizer to simultaneously extract
many narrow-band signals. In the instance, the bit growth
associated with the filtering operation could be significant.
The current system is effectively discarding a large portion
of these gains. These gains would be recovered by moving
to a channelizer with larger output word size.

The second task is to convert the python code found in the
tap update module in to C++ and include it in the chan-
mux block controller. This would simplify the setup of the
channelizer and remove ambiguity as to when the coeffi-
cients may be updated on startup.

References
Harris F., McGwier R., Egg B. A versatile multichannel

filter bank with multiple channel bandwidths. In Crown-
Com 5th International Conference on Cognitive Radio
Oriented Wireless Networks and Communications, pp.
1–5, Cannes, France, 2010.

Lubberhuizen, Wessel. Near perfect reconstruction
polyphase filterbank. http://www.mathworks.
com/matlabcentral/fileexchange/
15813-near-perfect-reconstruction-
polyphase-filterbank, 2010.


