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Abstract
The Internet of Things market has emerged over
the past decades and continues to grow. There-
fore, IoT devices have become omnipresent.
Many of these devices use a wireless connection
to send and receive data which are based on Low
Power Wide Area Network protocols. The most
used LPWAN technologies are Narrowband IoT
(NB-IoT), LoRaWAN, LTE-M, and Sigfox. Due
to the increasing amount of IoT devices, these
LPWAN protocols have become even more im-
portant. However, many of these protocols are
proprietary, and therefore, it remains unknown
how they exactly operate. We dive into the in-
ner workings of one of these LPWAN protocols.
More specifically, we investigate the PHY of the
DASH7 Alliance Protocol (D7AP). We present
a fully-fledged DASH7 communication system
by using GNU Radio. The software can be used
as a simulation instrument and can be applied in
real-world scenarios by using low-cost Software-
Defined Radios. In this way, it is possible to in-
vestigate a complete IoT transceiver system that
is open-source and easily adaptable. Further-
more, it can be used to build up, investigate, and
validate DASH7 data packets.

1. Introduction
The Internet of Things (IoT) is a concept that has been
evolving in the last decade to provide internet connectiv-
ity to objects that we use in everyday life. These objects
are very versatile and can be generic devices such as bi-
cycles, motors, home appliances, and devices such as tem-
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perature, humidity, air quality, or inertial measurement unit
sensors. These “things” are usually equipped with extra
hardware that constitutes mainly a processing unit and a
transceiver for digital communications. Consequently, this
hardware will enable the objects to communicate with one
another or to send information to the internet (Zanella et al.,
2014). The IoT concept also fosters interaction among ob-
jects to achieve a high operational efficiency (Centenaro
et al., 2016; Bni Lam, 2021a). Accordingly, the IoT con-
cept has been attracting the attention of many industries as
well where automation has a key role. Nowadays, appli-
cations can be found in home and industrial automation,
medical aids, energy management, automotive and smart
cities.

Moreover, Low Power Wide Area Networks (LPWAN)
have emerged to provide the communication means that
have enabled the IoT concept. Most LPWAN technologies
can provide connectivity to millions or even billions of ob-
jects. This communication revolution can be attributed to
the LPWAN capability of establishing long-range commu-
nication links that go up to several kilometers while using
low-power transceivers (BniLam et al., 2021b). Addition-
ally, due to the low production cost, LPWAN transceivers
are massively deployed in large-scale environments; i.e., on
the scale of cities or even countries. The most commonly
used LPWAN technologies today are LoRaWAN NB-IoT
and LTE-M (Janssen, 2023; Sinha, 2024).

During the last decades, Software-Defined Radio (SDR)
technology has also become a very popular and powerful
prototyping tool (BniLam et al., 2018; 2019). Before the
introduction of the SDR technology, researchers and man-
ufacturers were only relying on custom-made expensive
hardware and simulation tools. Simulation tools can be
very powerful in describing any physical behavior. How-
ever, they cannot include all the physical variables that are
associated with complex engineering problems. On the
other hand, the SDR technology can provide a physical
prototype that can be subject to testing scrutiny. In recent
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years, the SDR technology has been used as a final product
for many communication system technologies which is due
to the decreasing production cost.

In this work, we make use of the SDR technology to design
the physical layer for LPWAN communication systems.
The design steps are generic and can be deployed with any
LPWAN standard. However, we have adopted the DASH7
Alliance Protocol (D7A) (D7A, 2024). The DASH7 Al-
liance Protocol (D7A) originates from the ISO/IEC 18000-
7 standard which was ratified by ISO in 2004. This stan-
dard has been used by the U.S. Department of Defense
(DoD) for container inventory. In 2009, the DASH7 Al-
liance was established and repurposed to an open-source
standard for bi-directional Wireless Sensor and Actuator
Networks (WSAN). Nowadays the standard can be used
for commercial IoT applications (Schneider, 2010). This
communication standard has been selected to represent IoT
communication systems because its specification is freely
available (D7A, 2018), and an open-source software stack
is ready to use (Sub-IoT, 2024a). The proposed SDR im-
plementation of the DASH7 standard has been validated us-
ing simulation and experimental analyses. Furthermore, we
recorded a DASH7 data set during the deterministic testing
of a measurement setup.

The remainder of this paper is organized as follows. In
Section 2, the PHY layer of the DASH7 Alliance Protocol
is introduced. Section 3 explains the design of a DASH7
transmitter in GNU Radio while Section 4 discusses the
DASH7 receiver chain. Section 5 shows the working of
the full transceiver system through some experiments. Fi-
nally, Section 6 discusses the conclusions, and we have an
outlook on the future.

2. The DASH7 Alliance Protocol
Although the DASH Alliance Protocol (D7A) is repre-
sented by a complete stack, to grasp what is happening to
transmit or receive bits we need to unravel the ins and outs
of the physical layer. A detailed overview of the full stack
is shown in Figure 1.

2.1. The Physical Layer

At the PHY, the encoding types, modulation scheme, sup-
ported bands, and data rates are specified. DASH7 orig-
inally supported only the unlicensed 433MHz ISM/SRD
band; when the DASH7 Alliance adopted the protocol, the
868MHz and 915MHz band have been added. Each band
is split into a finite amount of channels. The number of
channels depends on the channel class that is used. Each
channel class of DASH7 has its specific channel spacing,
symbol rate, modulation index, and frequency deviation.
An overview of the available channel classes and bands can
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Figure 1. Overview of the full stack specification.

be found in Table 1 and Table 2.

By default, PN9 encoding is applied to the payload, which
scrambles the data using a 9-bit pseudo-random number. In
this way, the data gets whitened. Optionally, a 1

2 -Forward
Error Correction encoding can be used. In this case, the
data firstly is FEC encoded and afterwards, PN9 encoded.
The first stage of the FEC operation is the encoding us-
ing a 1

2 rate convolutional code with a constraint length
of four, and the second stage is a four-by-four matrix in-
terleaver that minimizes the impact of burst errors (Weyn
et al., 2013). Afterwards, this output is PN9 encoded.

Furthermore, the PHY also defines Clear Channel As-
sessment (CCA). CCA determines the current state of the
medium. This is a mechanism to access the channel and is
used when multiple transmitters are applied in a network.
However, we have not implemented this into the designed
system.

To assemble a packet, we first need to know which fields
define a DASH7 packet. D7A packets contain a preamble,
sync word, and a payload. The preamble is used for cal-
ibrating data rate circuits and time synchronization. This
sequence is a set of alternating ones and zeroes and can typ-
ically have 32 or 48 symbols. The sync word is a block of
16 binary symbols and is used to align the packet payload.
The packet payload is typically PN9 encoded, and a 16-bit
Cyclic Redundancy Check (CRC) is applied to it. A more
in-depth analysis is explained in the following section.

2.2. Packet structure

A DASH7 packet has a default frame structure, which is
shown in Figure 2. It consists of a preamble, a sync word,
and a payload preceded by a power ramp-up and succeeded
by a power ramp-down, which are needed to meet the band
stop channel requirements (Weyn et al., 2013; D7A, 2018).

The power ramp-up is the time that is needed before the
first symbol transmission. This means that the carrier fre-



Implementation of a Multi-Channel DASH7 IoT Communication System for Packet Investigation and Validation

Table 1. DASH7 Channel Classes specify the used channel spacing, symbol rates, modulation scheme, modulation index, and frequency
deviation.

Channel Channel Symbol Modulation Modulation Frequency
Class Spacing (c) Rate Scheme Index Deviation (∆f )

(kHz) (kbps) (kHz)
Lo-Rate 25 9.6 2-(G)FSK 1 ± 4.8
Normal 200 55.555 2-(G)FSK 1.8 ± 50
Hi-Rate 200 166.667 2-(G)FSK 0.5 ± 41.667

Table 2. DASH7 channel bands and their allowed channel indexes. The stars in the table indicate the following:
* Worldwide coverage with local regulatory limitations,
** EN 300 220 (Europe) with local regulatory limitations,
*** FCC part 15 in the United States of America.

RF band Lo-Rate (d) Normal and Hi-Rate (d) Start (MHz) (b) End (MHz)
433 MHz* 0, 1, ..., 68 0, 8, 16, ..., 56 433.06 434.785
868 MHz** 0, 1, ...., 279 0, 8, 16, ..., 216, 229, 239, 257, 270 863 870

915 MHz*** 0, 1, ..., 1039 0, 8, 16, ..., 1032 902 928

Table 3. DASH7 sync word classes and coding schemes. Cur-
rently, only CS0 and CS2 are used. CS1 and CS3 are reserved for
future use.

Sync Word Class Coding Scheme
CS0 CS1 CS2 CS3

0 0xE6D0 RFU 0xF498 RFU
1 0x0B67 RFU 0x192F RFU

quency is ramped from idle power to transmit power and
settles to a stable state. The reverse operation occurs when
ramping down. If this ramp-down is too fast, a part of the
encoded frame might be affected, and therefore, the packet
can become unrecoverable. Typically, these ramps have a
period of 8 symbols but can go up to 32 symbols. At the
Data Link Layer (DLL) of DASH7, we see two types of
frames defined: background frames and foreground frames.
Background frames have a static payload size of six bytes,
whereas foreground frames can have a length of up to 256
bytes.

The preamble is an unencoded structure of alternating bi-
nary symbols which can have a length of up to 128 bits.
This is used to settle the receiver by calibrating its data
rate circuits. The DASH7 specification defines a typical
preamble length of 32 bits for the Lo-Rate and Normal-
Rate channel class while recommending 48 bits for the Hi-
Rate channel class (Singh et al., 2020). The preamble is
followed by an unencoded sync word of 16 binary symbols
which is used to identify the start of the payload. Currently,
the physical layer supports two sync word classes which
depend on the type of frame that is used. An overview can

Figure 2. DASH7 frame structure.

be found in Table 3. Background frames use Sync Word
Class 0 while foreground frames use Sync Word Class 1. A
second categorization that makes up a specific sync word
is the type of encoding that is applied to the payload. Fi-
nally, the payload field, which can have a length between
5 and 256 bytes contains at least a length byte, a sub-
net byte, and a control byte (CTRL), the packet data, and
two CRC16/CCITT FALSE bytes. The CRC operation is
applied to the payload before the encoding process. Af-
terward, the payload is encoded using a PN9 scrambler
or a combination of a 1

2 Forward Error Correction code
(FEC) and PN9 scrambler depending on the chosen coding
scheme (Hoel, 2007).

3. DASH7 transmitter Design
To create a DASH7 transmitter, we need to convert our data
bits to a modulated wave. For convenience, we split this
entire process into four parts,

• packet assembly and data formatting
• data mapping
• symbol-to-waveform conversion
• baseband modulation

These parts will be discussed in the following sections.
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3.1. Packet Assembly and Data Formatting

To assemble a DASH7 packet in GNU Radio, we start by
implementing the structure as discussed in Section 2.2. The
unencoded preamble is followed by an unencoded sync
word. The sync word identifies the start of the payload,
how it is encoded, and ultimately defines what kind of pay-
load frame is used. Background frames use Sync Word
Class 0 (SWC0) while foreground frames use Sync Word
Class 1 (SWC1). Additionally, DASH7 uses two types
of coding schemes. Table 3 shows the currently imple-
mented coding schemes, i.e. Coding Scheme Zero (CS0)
and Coding Scheme Two (CS2). CS0 indicates that the
payload is scrambled using a 9-bit pseudo-random num-
ber generator (PN9) which is based on the polynomial
x9 + x5 + x0 (Christiansen, 2010). CS2 adds an extra step
to the scrambled payload i.e. a 1

2 Forward Error Correction
( 12 FEC).

In this work, we use SWC1 and applied CS0. This indi-
cates that the payload is a foreground frame and is PN9
encoded. Finally, a 16-bit Cyclic Redundancy Check, i.e.
CRC16-CCITT, is calculated on the scrambled payload, re-
sulting in a checksum of two bytes, which are added to the
scrambled payload and form the complete payload (Weyn
et al., 2013). In GNU Radio, these fields are defined as dec-
imal values using multiplexed vector sources. The payload
encoding and the error detection code are handled in a sep-
arate Python module. The output of this module is added
to the payload vector source.

3.2. Data Mapping

Python Module

ID: CRC16_and_PN9

Parameter

ID: Coded_Packet

Label: Coded_Packet

Value: 252, 181, 79, 183

Parameter

ID: Preamble

Label: Preamble

Value: 170, 170, 170, 170

Parameter

ID: SyncWord

Label: SyncWord

Value: 11, 103

Add Const

Constant: -1

Char To Float

Scale: 500m

Packed to Unpacked

Bits per Chunk: 1

Endianness: MSB

Stream Mux

Lengths: 4, 2, 4

Throttle

Sample Rate: 9.6k

Limit: None

Vector Source

Vector: 170, 170, 170, 170

Tags:

Repeat: Yes

Vector Source

Vector: 11, 103

Tags: 

Repeat: Yes

Vector Source

Vector: 252, 181, 79, 183

Tags:

Repeat: Yes

Virtual Sink

Stream ID: PAM_data

Preamble

Encoded payload

Sync Word
Multiplexer

 

Data formatting

Mapping stage, binary to symbols

Figure 3. Packet assembly and data formatting continued with the
mapping stage in GNU Radio.

When the packet is assembled, the binary message needs to
be converted to a physical waveform to modulate the packet
correctly. The first step is to map the bits to a constellation
value. For 2-(G)FSK, the mapping consists of two possi-
ble values, namely -1 and 1. A zero value bit is repre-
sented as a -1 value, which forms the space frequency and
a one value bit is represented as a value of 1 and forms the
mark frequency. Figure 3 shows the data formatting and
the mapping stage. The output after mapping is depicted in
Figure 4.

Figure 4. Output of the data after the mapping operation. The val-
ues are mapped between -1 and 1, and the preamble, sync word,
and payload are detected.

Variable

ID: Gaussian_Shape_Filter

Value: firdes.gaussian(nta...

AGC

Rate: 1.04167m

Reference: 1

Gain: 10

Max Gain: 65.536k

Interpolating FIR Filter

Interpolation: 10

Taps: Gaussian_Shape_Filter

Virtual Sink

Stream ID: shaped_pulse

Virtual Source

Stream ID: PAM_data

Upsampling and 
pulse shaping Gain normalization

Figure 5. Symbol-to-waveform stage where the mapped data is
upsampled and a Gaussian shape filtering process is applied.

3.3. Symbol-to-Waveform Conversion

Figure 6. Recorded FSK signal when no pulse shaping is applied.
The spectrum is occupied with unused sidelobes.

After creating the mapped symbols, we can start building
the physical waveform. This is achieved by upsampling the
symbols and applying a pulse shape filter to the upsampled
signal. In this way, a time dimension or specific symbol
time is created i.e. the symbols will span more samples.
The symbol width and amplitude can be altered by apply-
ing a specific pulse shape filter. Although DASH7 supports
FSK modulation, typically, a Gaussian pulse shape filter
with a specific Bandwidth-Symbol Time product (BT) is
applied to create smooth transitions between symbols in
the time domain. In the frequency domain, it optimizes
the power in the main lobe, decreases the occupied band-
width, and therefore, reduces Inter-Channel Interference
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Figure 7. Recorded GFSK signal with a Bandwidth-Symbol Time
product of 0.5 which is a typical value used in DASH7. The spec-
trum is more concentrated and cleaner.

Constant Source

Constant: 1
Magnitude and Phase To Complex

Multiply Const

Constant: 314.159m

IIR Filter

Feed-forward Taps: 1

Feedback Taps: 1, -1

QT GUI Sink

Name: Tx

FFT Size: 4096

Center Frequency (Hz): 0

Bandwidth (Hz): 96k

Update Rate: 10

Virtual Source

Stream ID: shaped_pulse

Rectangular 
integrator

const = (2πΔf)/T Data type conversion

Spectrum output

Figure 8. Baseband modulator process.

(ICI). The implementation of the process in GNU Radio
is shown in Figure 5 by using an Interpolating FIR Filter-
block and an Automatic Gain Control-block (AGC) which
normalizes the output from the FIR filter. The effect with
and without Gaussian shape filtering is depicted in Figure 6
and Figure 7 respectively.

3.4. Baseband Modulation

When our symbols are shaped, we can start modulating the
symbols on a baseband level. The transmitted waveform
can be seen as:

s(t) = AejΦ(t) , (1)

where A is the transmitted signal’s amplitude and Φ(t) is
the angular phase which can be expressed as follows:

Φ(t) = 2πh

∫ t

0

α(τ)dτ , (2)

where h or the h-factor is the modulation index defined by
∆f
fm

. ∆f is the frequency deviation and fm is the frequency
of the message signal. α(t) for an FSK signal can be ex-
pressed as:

α(t) =

L∑
i=0

a(i)q(t− iTs) , (3)

where a = ±1, is the transmitted bit value, L is the number
of transmitted bits, and q(t − iTs) is the shape filter re-
sponse of the transmitted signal (i.e. for GFSK, the q(t) is
a Gaussian filter response). For the signal that we transmit
from the SDR, we start from the equations of a Frequency

Modulated (FM) signal. The waveform at the SDR front
end can then be defined as,

Re[s(t)] = Ace
(2πfct+2π∆f

∫ t
0
m(τ)dτ), (4)

where Ac is the carrier amplitude, fc is the carrier fre-
quency, ∆f is the frequency deviation and m(τ) is the
message. When looking at the symbols of 2-(G)FSK in the
frequency domain, we see that symbols are altered around
a defined center frequency, which at baseband is 0Hz. We
need to obtain the instantaneous frequency ωi of that sym-
bol which is defined as,

fi =
1

2π

dθi
dt

→ θi =

∫
ωidt. (5)

Equation (5) shows directly the relation between instan-
taneous frequency and instantaneous phase, which is that
the instantaneous frequency fi is the rate of instantaneous
phase change over time whereas the instantaneous phase
is obtained by integrating the instantaneous frequency over
time. It is more convenient to implement a phase integrator
in GNU Radio since magnitude and phase are easier ob-
tained from standard software blocks. Therefore, we need
to discretely integrate the symbols. When translating this
to the discrete domain, we can closely approach the inte-
gration by using a Riemann sum. We can substitute the
message from Equation (2) then to:∫ t

0

x(τ)dτ ≈
n∑

k=0

x(nT )T (6)

that leads to:

s[n] = Ace
(ωc+2π∆f

∑n
k=0 x(nT )T,), (7)

where T is the sampling interval or reciprocal of the IQ
sample rate. Furthermore, it can be expressed as:

s[n] = Ace
(ωc+2πh

∑n
k=0 x(nT )). (8)

If we extract the summation of the symbols from Equa-
tion (8) and write:

y[n] =

n∑
k=0

x(nT ) (9)

and apply rectangular integration, we get:

y[n]− y[n− 1] =

n∑
k=0

x(nT )−
n−1∑
k=0

x[nT ] = x[nT ]

(10)

which leads to

y[n] = y[n− 1] + x[nT ], (11)
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SPACE MARK

Figure 9. The baseband modulated signal. The two distinctly vis-
ible peaks represent the two symbols, i.e. -1 and 1.

where y[n] is the output of the filter at time n, y[n − 1]
output of the filter at time n − 1 and x[nT ] is the input of
the filter at time n. We can rewrite this as

Y (nT ) = Y (nT − T ) +X(nT )T. (12)

The Z-transform of Equation (12) can be expressed as fol-
lows:

Y (z) = Y (z)z−1 +X(z)T, (13)

which leads to a transfer function H(z) of

H(z) =
Y (z)

X(z)
= T

1

1− z−1
. (14)

Equation (14) is the single pole difference equation of an
Infinite Impulse Response (IIR) filter. The implementation
can be found in Figure 8 and the baseband modulated signal
in the frequency domain is depicted in Figure 9.

4. DASH7 Receiver Design
To create a DASH7 receiver, we split the process into six
parts,

• SDR modulation and demodulation
• frequency shifting
• demodulation
• time synchronization
• frame synchronization
• payload decoding

These parts will be discussed in the following sections.

4.1. SDR Modulation and Demodulation

At the transmitter, we need to tune the center frequency of
the SDR to a specific channel index. A DASH7 channel
frequency can be calculated as follows,

f(b, c, d) = Start(b) + 0.025d+
Chan. Spacing(c)

2
. (15)

QT GUI Frequency Sink

FFT Size: 1024

Center Frequency (Hz): 0

Bandwidth (Hz): 7.68M

UHD: USRP Sink

Device Address: ser...327123F

Sync: No Sync

Samp rate (Sps): 200k

Ch0: Center Freq (Hz): ...13M

Ch0: Gain Value: 300m

Ch0: Gain Type: Normalized

Ch0: Antenna: TX/RX

UHD: USRP Source

Device Address: ser...327116A

Sync: No Sync

Samp rate (Sps): 7.68M

Ch0: Center Freq (Hz): 866.5M

Ch0: AGC: Default

Ch0: Gain Value: 300m

Ch0: Gain Type: Normalized

Ch0: Antenna: RX2

TX RX

CHANNEL
From 
modulator

Figure 10. TX and RX settings on two USRP devices.

The parameters b, d and c can be found in Table 1 and in
Table 2.

The signal received by the SDR can be described as

r̂(t) = Ar exp

(
j2π∆f

∫ t

0

m(τ)

mp
dτ

)
. (16)

The first demodulation step is tuning the SDR RX channel
to a center frequency of 866.5MHz and capturing a band-
width of 7.68MHz. In this way, we investigate the com-
plete 868MHz band. This means that the collected data
set is down-converted to an appropriate intermediate fre-
quency (IF). In the recorded data sets, we only made use
of the 868MHz band where channels are assigned between
863MHz and 870MHz as can be seen in Table 2. The
transmission and reception with separate USRPs in GNU
Radio can be found in Figure 10.

4.2. Frequency Shifting

Variable

ID: IF

Value: 3.4875M

Variable

ID: ch

Value: 0

Variable

ID: sampling_rate

Value: 7.68M

Signal Source

Sample Rate: 7.68M

Waveform: Cosine

Frequency: 3.4875M

Amplitude: 1

Offset: 0

Initial Phase (Radians): 0

File Source

File: ..._13.42.33.sigmf-data

Repeat: No

Add begin tag: ()

Offset: 0

Length: 0

Multiply

Throttle

Sample Rate: 7.68M

Limit: None

Low Pass Filter

Decimation: 1

Gain: 100

Sample Rate: 7.68M

Cutoff Freq: 14.4k

Transition Width: 10k

Window: Hamming

Beta: 6.76

QT GUI Sink

Name:

FFT Size: 1024

Center Frequency (Hz): 0

Bandwidth (Hz): 7.68M

Update Rate: 10

Virtual Sink

Stream ID: Center...cy_signal

Baseband signal

Clean up the spectrum

Slow down the 
sample stream

Local oscillator

Recorded I/Q samples

Mixer

Figure 11. Mixing down the signal to zero and filtering out noise.

In GNU Radio, we set the frequency of an external oscil-
lator to the center frequency of a predetermined DASH7
channel and mix the received signal with this tuned oscilla-
tor. This operation downconverts the signal to a baseband
signal. The complete flowgraph is shown in Figure 11. The
DASH7 specification defines the calculation for channel
frequency as,

4.3. Demodulation

To demodulate the signal, we apply the opposite operation
as we did in the transmitter design. Obtaining the phase
is achieved by using a Complex-to-Arg-block. This phase
needs to be differentiated and will result in,
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2π∆f
m(t)

mp
= 2πkfm(t). (17)

To implement the differentiator, we recognize that in dis-
crete time,

dx(t)

dt
≈ x[n]− x[n− 1]

1
(18)

The differentiator can be implemented using an Interpo-
lating FIR Filter block with the same taps we used in the
transmitter design. This output is passed through a low-
pass filter since the differentiation tends to increase high-
frequency noise. Eventually, the mapped symbols are re-
trieved. The demodulation flowgraph can be found in Fig-
ure 12.

4.4. Time Synchronization

The purpose of symbol time synchronization or clock re-
covery process is to find the optimal instants when down-
sampling a sequence of samples into a series of symbols.
This means that the system needs to select the best sample
out of every group of samples, such that this selected sam-
ple can better represent the transmitted symbol. The chosen
sample is then passed on to the symbol detector, which, in
our case is set to the Mueller and Müller timing error detec-
tion algorithm. Note that this system is a feedback Phase
Locked Loop (PLL) which is set with static parameters.
This indicates that there is a trade-off between acquisition
speed and tracking stability of the symbol clock estimate.
In our implementation, we configure the interpolation re-
sampler as a Polyphase Filter Bank (PFB) which imple-
ments a Gaussian-matched filter similar to the one used at
the transmitter to reshape the symbols.

4.5. Frame synchronization

After the symbol synchronization, the binary conversion
process takes place using the binary slicer. When the sym-
bols are converted to bits, the stream is correlated with a
predefined preamble and sync word. Afterward, tags are
added to the stream and indicate the start of these fields. At
this moment it is predefined what the length of the pream-
ble is, which sync word class and coding scheme is used,
and when the encoded payload exactly starts.

4.6. Payload decoding

The added tags, as discussed in section 4.5, are
exploited by the DASH7 demod py bb-block. The
DASH7 demod py bb-block decodes the received payload
and calculates a CRC16 to validate if bit errors occurred
during transmission. If there is an error, the check will
show the message “Check is False”. Finally, the data type
of the block is converted to float, and the recovered data is

Variable

ID: bit_rate

Value: 9.6k

Variable

ID: deltaF

Value: 4.8k

Variable

ID: sampling_rate

Value: 7.68M

Constant Source

Constant: 1

Complex to Arg

Complex to Arg Magnitude and Phase To Complex

Multiply Const

Constant: 254.648

Interpolating FIR Filter

Interpolation: 1

Taps: 1, -1

Low Pass Filter

Decimation: 1

Gain: 1

Sample Rate: 7.68M

Cutoff Freq: 4.8k

Transition Width: 10k

Window: Hamming

Beta: 6.76

Virtual Sink

Stream ID: demodulated_signal

Virtual Source

Stream ID: Center...cy_signal

The frequency shifted
received signal

Extract the phase Φ(k)
The derivative of

the phase
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Figure 12. Demodulation process. The phase is extracted from
the complex data and subsequently derived and filtered.
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Figure 13. Flowgraph for time synchronization, frame synchro-
nization, and payload decoding.

plotted using a time sink. The payload is printed in deci-
mal and hexadecimal form. The complete implementation
of time synchronization, frame synchronization, and pay-
load decoding is found in Figure 13.

If a packet is successfully demodulated, the message, as
depicted in Figure 14, is printed to the console window
of GNU Radio. The total length of the packet is the first
byte that is found. The actual payload [0x00, 0xAB,
0xCD] is preceded by the length byte of the payload and
is succeeded by two CRC bytes. It is noteworthy that the
packet has a total length of 25 bytes, which is due to the
other stack layers adding their minimum fields. The com-
plete payload is printed in decimal and hexadecimal form,
and a CRC is calculated. The DASH7 spec provides an
overview of these fields.

5. Experimental results
To test the flowgraphs in a real-world experiment, we exe-
cuted several cabled experiments. The experimental mea-
surement setup contained six B-L072Z-LRWAN1 STM32
LoRaWAN Discovery Boards, an Ettus Research USRP
B210 SDR, an RF-splitter and a 40 dB RF-attenuator. The
development boards were programmed as DASH7 nodes
by using the Sub-IoT stack which contains an implemen-
tation of the DASH7 Alliance Protocol (Sub-IoT, 2024a).
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Found packet 1 sync word at location 10200
2024-08-06 14:43:46.931153
MsgLength = 25 bytes
Msg = 24 1 110 32 33 49 55 52 52 0 45 0 23 128 110 0
32 64 0 3 0 171 205 199 20
Hex:
18 01 6e 20 21 31 37 34 34 00 2d 00 17 80 6e 00
20 40 00 03 00 ab cd c7 14
CRC read = 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0
CRC calc = 1 1 0 0 0 1 1 1 0 0 0 1 0 1 0 0
Check is True
correlate_access_code_tag_bb :debug:
writing tag at sample 11577

Figure 14. Decoded output of a DASH7 packet with a total length
of 25 bytes as seen in the console window of GNU Radio. The
first payload byte, in bold, is the total length of the effective
payload. The original payload of three bytes [0x00, 0xAB,
0xCD] is then found and followed by two CRC bytes.

D7 gateway
CH[n]RX SDR

DASH7_data_
recorder.py

TX D7 node
CH[n]

I/Q samples
+

Gateway logs
STORAGE

40 dB
attenuator

unsolicited_
response_logger.py

RX

unsolicited_
response_logger.py

Figure 15. System block diagram of the measurement setup.

Figure 16. Experimental setup containing one development board
acting as a DASH7 gateway and a second board acting as a
DASH7 node which transmits a message on Lo-Rate channel 186.
The setup is accompanied by an SDR to record the transmitted
message.

The nodes use the push communication model and transmit
DASH7 messages with a predefined payload. We executed
tests on Lo-Rate channels 0, 93 and 186. Therefore, three
other boards were programmed as DASH7 gateways. The
configured payload of a DASH7 transmission was set to
[counter value, 0xAB, 0xCD]. The DASH7 gateways de-
modulate and log the amount of successfully received pack-
ets.

The unsolicited response logger.py script is part of pyd7a
which is a collection of Python modules that supports
the usage of the D7AP (Sub-IoT, 2024b). The script
logs the gateway data of each received packet i.e. the
timestamp, channel, payload, and Received Signal Strength
Indicator (RSSI). Each log entry indicates that a packet
has been successfully received by the gateway. The
DASH7 data recorder.py script records the transmitted
DASH7 packets via a USRP B210 SDR. These recordings
were saved using the Signal Metadata Format (SigMF) and
can be fed to the created flowgraphs to demodulate and
decode messages in post-processing. In total ten record-
ings were made per channel, forming a complete data set
of 30 recordings. Figure 15 shows the block diagram of
the measurement setup. Figure 16 shows the bench setup
for one channel, i.e. channel 186. The GNU Radio flow-
graphs, accompanied by the recorded data set and gateway
logs, can be consulted on GitLab (Joosens et al., 2024a) and
Zenodo (Joosens et al., 2024b). Furthermore, we extended
the testing of the software by a wireless measurement cam-
paign in an indoor and outdoor environment (Joosens et al.,
2024c) which has a more extended data set containing more
transmissions per recording (Joosens et al., 2024d).

6. Conclusion and Future Work
In this paper, we have investigated the physical layer op-
eration of the DASH7 Alliance Protocol. We created a
DASH7 transmitter and receiver design in software that in-
corporates the functions of the physical layer. These cre-
ated software tools have been tested in simulation and with
real data recordings and perform well. Thus, these tools
can be used as a simulation and validation tool for DASH7
packets. In future work, we see several extensions and im-
provements for the software. One of these extensions is the
addition of the Normal-Rate and Hi-Rate channel classes
and the implementation of Coding Scheme 2, which uses
Forward Error Correction. Furthermore, an automatic fre-
quency control system can be implemented as well. Finally,
implementing parts of other layers of the DASH7 stack into
the transceiver system can make the tool even more useful
for investigating and validating DASH7 packets.

Disclaimer: The content of the present work reflects solely
the authors’ view and by no means represents the official
ESA view.
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