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Abstract 

The purpose of this document is to present a fully functional OpenCL-based implementation of common 

GNURadio blocks and a number of supporting tools for additional performance analysis that can easily be 

incorporated into the GNURadio framework using common mechanisms such as pybombs or the git 

download/build process.  The author briefly covers OpenCL concepts as they apply to developing signal 

processing modules, along with the command-line testing tools that come with the OOT module.  Then the 

implemented blocks along with their performance on several different GPU’s for varying block sizes are 

presented.  Blocks range from basic add/multiply functions through quadrature demodulation and filters.  

Advanced concepts such as leveraging different blocks on simultaneous GPU cards in the same flowgraph 

are also discussed.  The complete working OOT module and tools are available in pybombs as gr-clenabled 

and on github (https://github.com/ghostop14/gr-clenabled).  Prerequisite installation instructions are also on 

github in the project’s setup_help directory for several common operating systems. 
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1 Introduction 

Software Defined Radio (SDR) has opened up a world of research and development into broad radio frequency (RF) 

communications and brought affordable hardware and open source software to the world.  However as other real-

world radio solutions continue to push for greater bandwidth such as satellite communications meeting or exceeding 

100 Mbps and new wireless LAN technologies with 80 MHz-wide channels, these solutions implemented in 

hardware are a challenge to implement with the same throughput in SDR for real-time processing. 

One option to provide additional throughput capabilities to SDR is to leverage those graphics cards that are present 

in many computers along with their highly capable, massively parallel GPU’s to supplement CPU-based 

calculations.  This project (named “gr-clenabled”) is not the first project to evaluate this option.  However, the 

unique goal of this project is to provide a more comprehensive and practical implementation of as many common 

blocks as possible along with providing quantitative timing analysis to study the benefit (or degradation) in 

performance while running on GPU’s. 

Gr-clenabled had a number of lofty goals at the project’s onset.  The goal was to go through as many GNURadio 

blocks as possible that are used in common digital communications processing (ASK, FSK, and PSK), convert them 

to OpenCL, and provide scalability by allowing each OpenCL-enabled block to be assigned to a user-selectable 

OpenCL device.  This latter scalability feature would allow a system that has 3 graphics cards, or even a 

combination of GPU’s and FPGA’s, to have different blocks assigned to run on different cards all within the same 

flowgraph.  This flexibility would also allow lower-end cards to drive less computational blocks and allow FPGA’s 

to handle the more intensive blocks.   

Simply implementing blocks in OpenCL does not guarantee that those blocks would perform better than CPU-based 

blocks.  So this project also had to include a quantitative comparison of these new OpenCL-enabled blocks against 

the native GNURadio blocks.  The results of each block could then be categorized into one of three groups: 1.) 

Those blocks that run faster in OpenCL than the native implementation [designated “accelerated”], 2.) those blocks 

where performance of the OpenCL blocks is very close to the native blocks or mixed across hardware and buffer 

sizes [designated “offloaded”], and 3.) those blocks whose OpenCL implementation performs worse than the native 

blocks [designated OpenCL “enabled”, meaning they have been implemented].   

There were a number of driving factors discussed in this paper that contributed to better or worse performance.  For 

instance, those blocks that leveraged more CPU-intensive functions, specifically trigonometric functions such as 

sine, cosine, and inverse tangent calls, along with log functions showed the most improvement.  Those functions that 

do single-cycle or very low computation-intensive tasks such as a basic multiply function had the opposite affect 

where the cost of moving data to the OpenCL device and copying it back outweighed the benefit of the OpenCL 

processing resulting in worse performance.  Others such as filters suffered dramatically in performance in OpenCL 

because of the way the signal processing math is executed with blocks and rolling carry-forward “tails”. 

In total the following list of blocks are implemented in this project and available online as part of an open source 

release.  The goal being to further research and progress in this area. 

1. Basic Building Blocks 

a. Signal Source 

b. Multiply 

c. Add 

d. Subtract 

e. Multiply Constant 

f. Add Constant 

g. Filters (Both FFT and FIR) 
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i. Low Pass 

ii. High Pass 

iii. Band Pass 

iv. Band Reject 

v. Root-Raised Cosine 
vi. General tap-based 

2. Common Math or Complex Data Functions 

a. Complex Conjugate 

b. Multiply Conjugate 

c. Complex to Arg 

d. Complex to Mag Phase 

e. Mag Phase to Complex 

f. Log10 

g. SNR Helper (a custom block performing divide->log10->abs) 

h. Forward FFT 

i. Reverse FFT 

3. Digital Signal Processing  
a. Complex to Mag (used for ASK/OOK) 

b. Quadrature Demod (used for FSK) 

c. Costas Loop 

 

Two general-purpose blocks were also built that allow a kernel described in a text file to process 1-to-1 and 2-to-1 

input to output samples.  This provides a level of future scalability without necessarily building new classes and 

recompiling code. 

 

Note that while PSK was an initial design goal, after beginning the project it became clear than blocks with 

sequential calculations such as PSK and MM Clock Recovery did not lend themselves to OpenCL implementation 

because processing of each data point was not atomic enough.  The study also considered looking at instrumentation, 
but as noted in this study, FFT’s actually performed worse in OpenCL for the block sizes used in real-time 

processing.  Because of this fact, instrumentation sinks such as a Frequency Sink would also perform worse than 

their CPU counterpart.  This was evident when testing gr-fosphor versus the native QT Frequency Sink.  Monitoring 

CPU usage, even on new NVIDIA GTX 1070 hardware on new i7 processors showed much higher CPU usage than 

the CPU-only version. 

 

The remainder of this paper proceeds through the methodology used in testing, the tools the gr-clenabled project 

provides, and some OpenCL lessons learned.  Then each module along with the quantitative testing results are 

presented in detail, discussing the code used in each, along with the results and observations.  The study then goes 

on to discuss the testing results of using multiple OpenCL blocks simultaneously in the same flowgraph, the effect 

of buffer sizes, and why some of the blocks required for digital processing (PSK and MM Clock Recovery) were not 

implemented.  The study then wraps with general conclusions and observations. 
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2 Analysis 

2.1 OPENCL 

Open Computing Language (OpenCL) is a framework for writing code (kernels) that can run across a number of 

computing environments.  This includes CPU’s, Graphics Processing Units (GPU’s), and Field Programmable Gate 

Arrays (FPGA’s).  A common language with which to write the code makes code more portable across all OpenCL-

supported environments. 

GPU’s are used extensively on modern graphics cards for math functions generally related to image processing.  

However, they are not limited to image-related tasks.  GPU’s provide simultaneous processing of small kernels in 

levels of parallelism not possible on more general-purpose CPU’s.  This also makes them ideal for certain types of 

other tasks such as signal processing. 

However, in the context of real-time software-defined radio, there are some caveats.  First, GPU-offloading (from 

here-on out generically referred to as OpenCL to cover all OpenCL-capable devices) works most efficiently when 

calculations can be broken down into stand-alone (atomic) calculations working on each data point.  That is not to 

say there are not techniques to deal with interactions between calculations, just that the greatest performance gains 

are achieved with atomic operations. 

Next, each set of calculations applied to a data point should have some level of computing complexity to them.  

Basic operations like add, subtract, and multiply do not consume the same computing cycles as a log10 or inverse 

tangent (atan) calculation.  Therefore, these basic calculations such as multiply tend to perform better on modern 

CPU’s than on GPU’s. 

The last caveat specifically related to SDR is the OpenCL generally outperforms CPU’s when working on very large 

data sets all at once.  This is fundamentally a problem for real-time SDR as default buffer sizes used in GNURadio 

do not generally reach this “large data set” level for some calculations.  For example, the default GNURadio buffer 

size for blocks is 8192.  However during run-time generally about half that (4096) data points are sent.  This does 

vary as controlled by a complex scheduling engine and can be adjusted by block parameters, however these data sets 

are not at levels such as 128K or 1M of data points where the offloading would become very evident. 

In terms of OpenCL implementation, several lessons were learned during development.  While they may be obvious 

to experienced OpenCL developers, it is worth mentioning them here. 

First, there is a time price to pay to copy data to the graphics card for processing, then to copy the data back.  In fact 

during testing as discussed later, a baseline case is defined that copies the data to the card and copies data back but 

performs no processing (the kernel simply returns).  The time it takes for this kernel to execute becomes the absolute 

best performance that could be achieved with OpenCL offloading.  If CPU-based blocks do not take at least this 

long to process, then the CPU implementation will have better performance.  This baseline is then expanded to 

simply do out=in to incorporate memory actions into the baseline. 

Programmatically, creating buffers during each call to a GNURadio block’s work (or general_work) function is 

costly and inefficient, and initial programming tests demonstrated this.  Therefore this project takes a more efficient 

approach.  An appropriately sized buffer is created once at block startup then reused throughout the course of 

operations.  In the gr-clenabled implementation, safety checks ensure that the data passed in doesn’t exceed the 

allocated buffer, and if it does resizes the buffer.  This can happen in blocks where parameters can be changed at 

runtime such as constant blocks and filters.   

The next important foundational memory concept is that OpenCL supports 2 mechanisms to move data back from a 

card.  One is simply to enqueue a buffer read call while the other maps the underlying memory store to host address 
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space with calls to map/unmap.  During testing, using map/unmap was much slower than simply reading the return 

buffer.  Therefore using map/unmap is not recommended. 

Another important point about OpenCL implementations is that graphics cards have different memory types.  Some 

are faster than others.  Local memory and constant memory are present in the card, however smaller in size than 

global memory.  For instance using the “clview” tool included with gr-clenabled shows constant and local memory 

sizes for an NVIDIA GTX 1070 card as 64K and 48K respectively. 

Platform Name: NVIDIA CUDA 

Device Name: GeForce GTX 1070 

Device Type: GPU 

Constant Memory: 64K (16384 floats) 

Local Memory: 48K (12288 floats) 

However with the size difference, local memory can be 15 times faster than global memory.  Therefore every effort 

should be made to use this faster memory whenever possible.  When looking at the numbers above in the context of 

GNURadio, 64K of constant memory.  For complex data (2 floats) this translates to 8192 samples.  While that seems 

to exactly match the GNURadio default buffer size, you have to remember that GNURadio’s scheduler does not 

generally want to wait until the buffer is full, so will generally send about half that data.  The first reaction may be to 

double the default buffer size in GNURadio, however this means that the scheduling engine MAY send more than 

8192 so the OpenCL implementation has to be prepared for that and fall back to a global memory implementation.  

So there is a fine balance that must be struck. 

One trick that can be used to further improve OpenCL performance is taking advantage of fixed values.  If you are 

calling a kernel and passing it a parameter that will not change, there is still a cost to moving the argument to the 

kernel.  One trick OpenCL coders use is to build the kernel with a #define rather than passing a fixed value as a 

parameter.  Where appropriate some of the kernels here will use this approach. 

Lastly, OpenCL devices have a concept of a preferred workgroup size multiple.  An extensive discussion of this 

attribute will not be given here, however testing found that performance improved when calls to execute kernels 

used this preferred workgroup size.  For instance on the NVIDIA GTX 1070 this value is 32.  It was found during 

testing that calls to enqueueNDRangeKernel performed better when the workgroup size parameter was set to this 

value and the incoming data size was a multiple of this number.  Interestingly, setting it to a higher multiple of this 

value (for example using 64 in this case) caused performance to drop slightly.  Therefore in the absence of any other 

block requirements, gr-clenabled blocks set the output multiple to be this preferred size multiple and execute the 

kernel with this value for best performance. 

2.2 THE CODE 

The project containing all of the code for this study is in a GNURadio out-of-tree (OOT) module called gr-

clenabled.  This module can be found on GitHub at https://github.com/ghostop14/gr-clenabled.git.  This study was 

meant to give back to the general SDR and open source community to provide a framework for moving towards 

ever-increasing digital processing speeds.  The module does require clFFT be installed.  Depending on your linux 

distro you may be able to ‘sudo apt-get install libclfft-dev’ to get all of the libraries and files to build the module.  It 

can also be installed directly from source. 

Also note that these modules were developed using GNURadio 3.7.10 (the latest at the time of development).  

Therefore if you run into any issues, first check that you have the latest GNURadio version and you have the latest 

Swig and Doxygen installed (see GNURadio’s reference on building OOT modules for more details).  Some people 

have issues building OOT modules in general when using older 3.7.9 on Ubuntu.  The best approach is to install the 

latest GNURadio from pybombs. 
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You will also need an OpenCL implementation installed.  The project does include some help on how to set this up 

on Ubuntu 16.04 and Debian/Kali for both NVIDIA cards and Intel drivers.  Instructions are in the github repository 

in the setup_help subdirectory.   

For CPU-based OpenCL, download the Intel software at https://software.intel.com/en-us/intel-opencl/download.  

intel_sdk_for_opencl_2016_ubuntu_6.3.0.1904_x64.tar.gz was used for CPU-based testing.  While you may get an 

OS version issue, it should still install. 

However running OpenCL on a CPU provides arguably a worse multithreading solution.  The real benefit comes 

from running OpenCL on accelerated hardware.  But this requires the appropriate drivers and libraries.  For instance 

on Linux running NVIDIA cards you may want to first ‘sudo apt-get install nvidia-opencl-icd’.  PLEASE READ 

THE DOCUMENTATION FOR GETTING OPENCL WORKING ON YOUR CARD AND VERSION OF LINUX 

BEFORE PROCEEDING!  Obviously the OpenCL blocks won’t compile or run until an OpenCL implementation is 

properly configured. 

Once you have OpenCL set up, ‘sudo apt-get install clinfo’.  If you can run clinfo and see your card you are ready to 

proceed. 

Now that you have OpenCL correctly set up, clfft installed, and a working GNURadio 3.7.10+ installation, make 

sure that gnuradio-dev is also installed if installing from a repo. 

2.2.1 GNURadio Blocks 

To build gr-clenabled, simply follow the standard module build process.  Git clone it to a directory, close 

GNURadio if you have it open, then use the following build steps: 

cd <clone directory> 

mkdir build 

cd build 

cmake .. 

make 

sudo make install 

sudo ldconfig 

If each step was successful (don’t overlook the ‘sudo ldconfig’ step). 

Within GNURadio you will now have 2 new block groups as shown below: 
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Several command-line tools are also included in this project.  These can be used to test performance on your specific 

system and were used to generate the data discussed in this document. 

2.2.2 test-clenabled 

after ‘sudo make install’ you can type ‘test-clenabled --help’ to get the help information below: 

Usage: [--gpu] [--cpu] [--accel] [--any] [--device=<platformid>:<device id>] [number 

of samples (default is 8192)] 

where: --gpu, --cpu, --accel[erator], or any defines the type of OpenCL device opened. 

The optional --device argument allows for a specific OpenCL platform and device to be 

chosen.  Use the included clview utility to get the numbers. 

The first few parameters allow you to choose from multiple GPU platforms, and if multiple cards are present define 

specifically what card you want to target.  The easiest way to run it with a single GPU card is to simply type ‘test-

clenabled’.  This will run with a default 8192 block size.  This can be adjusted by running with a specific block size 

such as ‘test-clenabled 4096’.  In order to get the appropriate platform and device id, you can use clinfo, or the 

included clview tool which just provides a simpler view with the id numbers more easily identified. 
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2.2.3 clview 

This tool just provides a simpler view than clinfo focused specifically on getting the correct platform and device id 

(highlighted in yellow below), and noting how much local and constant memory is present on your card.  The output 

below shows the result for an NVIDIA GTX 1070 card: 

Platform Id: 0 

Device Id: 0 

Platform Name: NVIDIA CUDA 

Device Name: GeForce GTX 1070 

Device Type: GPU 

Constant Memory: 64K (16384 floats) 

Local Memory: 48K (12288 floats) 

OpenCL 2.0 Capabilities: 

Shared Virtual Memory (SVM): Yes 

Fine-grained SVM: No 

The following output shows the result for the Intel CPU driver: 

Platform Id: 0 

Device Id: 0 

Platform Name: Intel(R) OpenCL 

Device Name: Intel(R) Core(TM) i7-3740QM CPU @ 2.70GHz 

Device Type: CPU 

Constant Memory: 128K (32768 floats) 

Local Memory: 32K (8192 floats) 

OpenCL 2.0 Capabilities: 

Shared Virtual Memory (SVM): Yes 

Fine-grained SVM: Yes 

 

2.2.4 test-clfilter 

Since filters are such a big part of signal processing and probably the first one may think of offloading, test-clfilter is 

a command-line tool to focus on filter performance.  It tests filter performance with a given number of taps in 3 

modes: 

➢ OpenCL time-domain filter 

➢ OpenCL frequency domain filter 

➢ Native/CPU filter   

For very small tap counts, you’ll see that the time-domain filter will perform better.  However as the number of taps 

increases, eventually the frequency domain version will perform better.  This tool gives you the opportunity to 

assess throughput on your hardware, and then make decisions for the “OpenCL Tap-Based Fir Filter” module which 

exposes the ability to select between time or frequency domain filtering. 

The following shows some of the output for a small low pass filter with 241 taps on an NVIDIA 1070 card: 

test-clfilter --ntaps=241 

OpenCL Context: GPU 

"Test Type                 "    throughput (sps) 

"OpenCL Time Domain Filter"     130,682,400.00 

"OpenCL Freq Domain Filter"     3,790,198.50 

"CPU Freq Domain Filter"        191,092,784.00 

The following shows with 1730 taps: 
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test-clfilter --ntaps=1730 

OpenCL Context: GPU 

"Test Type                 "    throughput (sps) 

"OpenCL Time Domain Filter"     41,613,248.00 

"OpenCL Freq Domain Filter"     13,019,512.00 

"CPU Freq Domain Filter"        157,887,296.00 

 

The following shows the help screen for the tool: 

Usage: [--gpu] [--cpu] [--accel] [--any] [--device=<platformid>:<device id>] --

ntaps=<# of filter taps> [number of samples (default is 8192)] 

where: --gpu, --cpu, --accel[erator], or any defines the type of OpenCL device opened. 

The optional --device argument allows for a specific OpenCL platform and device to be 

chosen.  Use the included clview utility to get the numbers. 

 

You can create a filter by hand and see how many taps it would create from an 

interactive python command-line like this: 

 

python 

from gnuradio.filter import firdes 

# parameters are gain, sample rate, cutoff freq, transition width for this low_pass 

filter. 

taps=firdes.low_pass(1, 10e6, 500e3, 0.2*500e3) 

len(taps) 

 

For this example 241 taps were created. 

2.2.5 test-clkernel 

Two blocks included in gr-clenabled are generic 1-to-1 and 2-to-1 kernel blocks.  These blocks allow a designer to 

write their own kernel and save it to a file and select the appropriate data type (complex, float, etc.) and provide their 

own implementation to extend GNURadio.  Test-clkernel provides the same level of timing testing and kernel 

testing from a command-line to make sure your kernel compiles and see how it performs. 

‘test-clkernel --help’ will provide the parameters to provide as shown below: 

Usage: <[--1to1] [--2to1]> <[--complex] [--float] [--int]> [--gpu] [--cpu] [--accel] 

[--any] [--device=<platformid>:<device id>] [number of samples (default is 8192)] 

Where: 

--1to1 says use the 1 input stream to 1 output stream module 

--2to1 says use the 2 input streams to 1 output stream module 

complex/float/int defines the data type of the streams (in matches out) 

--fnname is the kernel function name to call in the provided kernel file (e.g. what's 

on the __kernel line 
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--kernelfile is the file containing a valid OpenCL kernel matching the stream format 

2-in/1-out or 1-in/2-out 

--gpu, --cpu, --accel[erator], or any defines the type of OpenCL device opened. 

The optional --device argument allows for a specific OpenCL platform and device to be 

chosen.  Use the included clview utility to get the numbers. 

 

NOTESABOUT CUSTOM KERNELS: 

If you use trig functions in your kernel, verify your hardware supports double precision math.  You can do this with 

clview which will immediately tell you if your card supports it.  Then in your kernel, you can still pass floats but 

make sure you typecast parameters to the trig functions as (double) first or you will notice too much variation in the 

calculated results.   

The following shows a simple example kernel from the project’s <project>/examples/ kernel1to1_sincos.cl file: 

struct ComplexStruct { 

 float real; 

 float imag;  

}; 

 

typedef struct ComplexStruct SComplex; 

 

__kernel void fn_sin_cos(__global SComplex * restrict a, __global SComplex * restrict c) { 

    /* You have to be careful with trig functions and precision. 

       If you call the float versions of sin/cos for example, it may only be accurate to 

       5-6 decimal places for CPU and 9-10 for GPU's which won't be accurate enough 

       for signal processing.  So make sure you use the double versions. 

    */ 

     

 size_t index =  get_global_id(0); 

 c[index].real = cos((double)a[index].real); 

 c[index].imag = sin((double)a[index].imag); 

} 

2.2.6 Printing Actual Block Sizes 

During testing, several options were considered to understand specifically how much data GNURadio’s scheduler 

was actually sending to the block.  How true was the “half max buffer size” theory?  While developing other blocks 

that could output the size of the blocks was considered, it made an assumption that all blocks would get the same 

block size.  In order to avoid an incorrect assumption, in the GRCLBase.cpp file, there is a variable called 

CLPRINT_NITEMS.  If this value is set to true and the module recompiled, enabling debug on a block will cause 

the block to output the size of the input items buffer for each iteration.  Note that this will inevitably have an impact 
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on performance so it should only be d0ne if true block sizes are desired.  The line below shows what the line of code 

looks like: 

bool CLPRINT_NITEMS=false; 
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2.3 METHODOLOGY 

As stated earlier, test-clenabled was used to generate the data for this study.  Incremental block sizes were used from 

2048 to 24576 in 2048 sample increments.  While data could be extended much higher, within the context of 

GNURadio, larger block sizes can impact the real-time processing of flowgraphs.  And since the scheduler generally 

sends about half the set buffer size to each block, 24576 of tested data points would correspond to a real-world 

setting in GNURadio of twice that.  Since this study is focused on practical implementations, data collection was 

capped at the 24576 processed buffer stream sizes, however test-clenabled is capable of running with any value. 

The code that provides the actual testing is in test_clenabled.cc.  This code goes through each of the block types 

discussed in this report and does timing tests both with the straight GNURadio CPU-only code as well as the 

OpenCL implementation.  In order to ensure the integrity of the analysis, the code from GNURadio was used for the 

CPU-only test.  Therefore if the GNURadio implementation used Volk, the CPU-only comparison is also against 

Volk.  The goal was to provide an honest comparison of native GNURadio blocks versus the OpenCL equivalents. 

In order to get good sample data, each test first starts with a single call that is not used in calculating performance.  

This is to remove any initialization performance issues from the first call from the run-time calculations.  Each block 

is then run through 100 iterations and timed with the std::chrono::steady_clock object to provide a 100-run average.  

The code below shows one of these representative timing tests: 

 start = std::chrono::steady_clock::now(); 

 // make iterations calls to get average. 

 for (i=0;i<iterations;i++) { 

  noutputitems = test->testOpenCL(largeBlockSize,ninitems,inputPointers,outputPointers); 

 } 

 end = std::chrono::steady_clock::now(); 

 

 elapsed_seconds = end-start; 

 

 elapsed_time = elapsed_seconds.count()/(float)iterations; 

 throughput = largeBlockSize / elapsed_time; 

The chrono library provides several different types of timing clocks, however steady_clock is the chrono version 

recommended for measuring time intervals. 

In any study, the data can sometimes show outliers or anomalies.  While collecting data, if data points showed 

extreme anomalies, that data point was rerun several times to get a stable number.  The assumption being that when 

that anomalous sample occurred, that the computer may have been executing another task that interrupted the data 

run.  

It should also be noted that each module is tested in isolation.  Meaning that multiple modules are not run 

simultaneously.  One important note on using OpenCL and GPU’s is that the assumption is that a module gets the 

full benefit of the card.  If multiple blocks are trying to run multiple kernels simultaneously, it follows that the card’s 

overall performance too needs to be shared, and if multiple OpenCL contexts are used, the card will need to account 

for running multiple contexts.  The performance of multiple blocks running simultaneously is discussed later in this 

study. 
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2.4 TEST PLATFORM 

One goal of this project was to test across generally available computer configurations.  This means not just a new 

computer, but also slightly older desktops, laptops, and even virtual machines.  Testing with different graphics cards 

also increased the likelihood that if there were issues with older or mobile graphics platforms that those could be 

identified and addressed during development.  The net result was that 4 platforms were tested.  The table below 

shows each of those configurations.  In the subsequent data sets, these platforms are designated by their graphics 

card version. 

UPDATE: During testing, all systems used the same Debian/kali 4.9.0 kernel.  After the study, some systems were 

switched to Ubuntu 16.04 LTS running the 4.4 kernel.  On this 4.4 kernel, performance was slightly lower.  Some 

research indicated that there are a number of performance improvements with some of the newer kernels.  So this 

should be taken into account when selecting your own target platform.  In other words even on the same hardware, 

performance may vary based on OS and kernel version. 

Report Designator VM 1000M 970 1070 

Platform 

Description 

Virtual 

Machine 

Laptop Older system New System 

OS Debian/Kal
i Linux 
“Linux 
4.9.0-
kali3-

amd64 #1 

SMP 
Debian 
4.9.18-
1kali1” 

Debian/Kali 
Linux 

“Linux 4.9.0-
kali3-amd64 #1 

SMP Debian 
4.9.18-1kali1” 

Debian/Kali Linux 
“Linux 4.9.0-kali3-

amd64 #1 SMP Debian 
4.9.18-1kali1” 

Debian/Kali Linux 
“Linux 4.9.0-kali3-amd64 #1 SMP 

Debian 4.9.18-1kali1” 

Hardware Virtual 
Machine 

running on 
a Dell 

Precision 
M4700 

Dell Precision 
M4600 

Custom-build Custom-build 

CPU Intel i7-
3740QM 

@ 2.7 GHz 
8 cores 

assigned to 

the VM 

i7-2820QM 
CPU @ 

2.30GHz 

Intel i7 - 2700 @ 3.5 
GHz 

Intel i7 - 6700 @ 3.4 GHz 

Memory 3 GB 
RAM 

assigned to 
VM 

16 GB 8 GB 16 GB 

OpenCL Platform Intel CPU 
Driver 

NVIDIA 1000M NVIDIA GTX 970 NVIDIA GTX 1070 

It should be noted that the tests were also initially tested on an NVIDIA GTX 730 card before that card was 

upgraded to the 1070 presented in this study.  So a significant variety of NVIDIA hardware was tested. 

2.5 BASELINE 

2.5.1 No-action Kernel 

In order to get a feel for the absolute best performance that could be achieved with OpenCL offloading, 2 initial tests 

were performed.  Note that all tests outlined in this study were done against complex numbers with a few exceptions 

as noted in the appropriate section.  However it should be noted that the actual blocks do support all data types such 

as complex, float, and int where appropriate. 
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A “no-action” kernel that simply returns as shown below: 

struct ComplexStruct { 

float real; 

float imag;  

}; 

typedef struct ComplexStruct SComplex; 

__kernel void opconst_complex(__constant SComplex * a, const float multiplier, 

__global SComplex * restrict c) { 

return; 

} 

Notice the __constant parameter specifier to use faster contant memory.  Each block assesses the requested block 

size and the memory available on the card to determine if it has sufficient room to use constant memory.  If not the 

kernel is automatically switched to use global memory as shown below: 

struct ComplexStruct { 

float real; 

float imag;  

}; 

typedef struct ComplexStruct SComplex; 

__kernel void opconst_complex(__global SComplex * restrict a, const float multiplier, 

__global SComplex * restrict c) { 

return; 

} 

In each of the subsequent sections the results of each of the tests will be shown in 3 ways.  The first is graphically.  

Then 2 tables will follow.  The first table will contain the raw time-based measurements while the second table will 

show the data transformed based on the block size to a throughput number.   

IMPORTANT: The throughput number should not be taken as the throughput that you will see from the block.  It 

represents the absolute theoretical maximum possible from the block if data was continuously streamed to the 

function.  For instance, the scheduler in GNURadio may wait for sufficient data to be available before sending it to 

the block and may adjust when blocks run.  So continuous operation is unlikely.   

However, since a continuous streaming approach was used across all OpenCL and CPU tests, the results provide 

benchmarks on absolute maximum throughputs for each block type as well as relative performance comparisons of 

OpenCL versus CPU implementations. 
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2.5.1.1 Data 

 

In each of the following tables, rows highlighted in yellow are related to the default GNURadio configuration.  8192 

is the default buffer size whereas 4096 would be the general expected actual bytes processed if no adjustments are 

made. 
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Timing in Seconds 

Samples VM OCL 1070 OCL 970 OCL 1000M OCL 

2048 0.000032 0.000021 0.000033 0.000060 

4096 0.000034 0.000026 0.000047 0.000072 

6144 0.000038 0.000031 0.000060 0.000085 

8192 0.000043 0.000035 0.000074 0.000096 

10240 0.000050 0.000039 0.000087 0.000100 

12288 0.000058 0.000043 0.000100 0.000111 

14336 0.000063 0.000048 0.000112 0.000124 

16384 0.000065 0.000052 0.000125 0.000134 

18432 0.000068 0.000056 0.000139 0.000146 

20480 0.000075 0.000061 0.000151 0.000158 

22528 0.000082 0.000065 0.000165 0.000169 

24576 0.000085 0.000070 0.000178 0.00018 

 

Sample throughput based on time and block size 

Samples VM OCL 1070 OCL 970 OCL 1000M OCL 

2048     64,000,000.00      97,523,809.52      62,060,606.06      34,133,333.33  

4096   120,470,588.24    157,538,461.54      87,148,936.17      56,888,888.89  

6144   161,684,210.53    198,193,548.39    102,400,000.00      72,282,352.94  

8192   190,511,627.91    234,057,142.86    110,702,702.70      85,333,333.33  

10240   204,800,000.00    262,564,102.56    117,701,149.43    102,400,000.00  

12288   211,862,068.97    285,767,441.86    122,880,000.00    110,702,702.70  

14336   227,555,555.56    298,666,666.67    128,000,000.00    115,612,903.23  

16384   252,061,538.46    315,076,923.08    131,072,000.00    122,268,656.72  

18432   271,058,823.53    329,142,857.14    132,604,316.55    126,246,575.34  

20480   273,066,666.67    335,737,704.92    135,629,139.07    129,620,253.16  

22528   274,731,707.32    346,584,615.38    136,533,333.33    133,301,775.15  

24576   289,129,411.76    351,085,714.29    138,067,415.73    136,533,333.33  

 

2.5.1.2 Observations 

The good news from this baseline run is that the results agree with the expected outcome and knowledge of 

OpenCL.  From the data above it becomes obvious that larger block sizes show better throughput.  It also 

demonstrates the timing price to move data to and from a card.  The 1070 for instance showed 35 microseconds for 

moving 8192 samples to the card and just returning.   

It also shows the trend that newer cards have improved performance over older and mobile cards.  The 1070 moved 

data at about twice the rate as the 970 and about 3 times faster than the mobile chip.  It also showed a trend evident 

in many of the tests with the VM and CPU driver.  That is that the results show a good bit of variation.  This could 

be due to a combination of both the virtualization of the processor as well as the fact that OpenCL is running on a 

general-purpose CPU. 
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2.5.2 Copy Kernel 

The copy kernel was similar to the no-action kernel and was used as a baseline.  This kernel simply assigned 

output=input to represent a data copy within the kernel then a return.  The same constant/global separation was done 

automatically based on the memory available on the card.  The following kernel shows the constant version: 

struct ComplexStruct { 

float real; 

float imag;  

}; 

typedef struct ComplexStruct SComplex; 

__kernel void opconst_complex(__constant SComplex * a, const float multiplier, 

__global SComplex * restrict c) { 

c.real = a.real; 

c.imag = a.imag; 

} 

 

2.5.2.1 Data 
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Timing in Seconds 

Samples VM OCL 1070 OCL 970 OCL 1000M OCL 

2048 0.000036 0.000021 0.000034 0.000058 

4096 0.000042 0.000026 0.000048 0.000080 

6144 0.000044 0.000031 0.000062 0.000102 

8192 0.000055 0.000035 0.000083 0.000126 

10240 0.000057 0.000039 0.000087 0.000110 

12288 0.000057 0.000043 0.000100 0.000127 

14336 0.000074 0.000048 0.000113 0.000142 

16384 0.000074 0.000052 0.000127 0.000157 

18432 0.000093 0.000056 0.000139 0.000177 

20480 0.000093 0.000061 0.000152 0.000185 

22528 0.000104 0.000065 0.000166 0.000200 

24576 0.000116 0.000070 0.000178 0.000215 

 

Sample throughput based on time and block size 

Samples VM OCL 1070 OCL 970 OCL 1000M OCL 

2048     56,888,888.89      97,523,809.52      60,235,294.12      35,310,344.83  

4096     97,523,809.52    157,538,461.54      85,333,333.33      51,200,000.00  

6144   139,636,363.64    198,193,548.39      99,096,774.19      60,235,294.12  

8192   148,945,454.55    234,057,142.86      98,698,795.18      65,015,873.02  

10240   179,649,122.81    262,564,102.56    117,701,149.43      93,090,909.09  

12288   215,578,947.37    285,767,441.86    122,880,000.00      96,755,905.51  

14336   193,729,729.73    298,666,666.67    126,867,256.64    100,957,746.48  

16384   221,405,405.41    315,076,923.08    129,007,874.02    104,356,687.90  

18432   198,193,548.39    329,142,857.14    132,604,316.55    104,135,593.22  

20480   220,215,053.76    335,737,704.92    134,736,842.11    110,702,702.70  

22528   216,615,384.62    346,584,615.38    135,710,843.37    112,640,000.00  

24576   211,862,068.97    351,085,714.29    138,067,415.73    114,306,976.74  

 

2.5.2.2 Observations 

These results simply continued the trend observed in the no-action kernel.  Note the lower throughput on the older 

and mobile platforms along with the variation in the OpenCL CPU version.  Again clearly the new 1070 card 

significantly outperforms the older hardware and shows very consistent performance. 

It was also interesting to note the impact of constant versus global memory in the curves across the different 

hardware platforms.  What would have been expected would be a change in the performance curves representing a 

slight decrease in performance going to global memory from constant memory above 8192 data points.  However 

visually smoothing the curves shows that the performance curve seems somewhat unaffected.  This is not to say that 
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using constant memory does not provide any benefit, just that as the block sizes increase this benefit appears to be 

offset by overall processing of larger blocks. 

2.6 ACCELERATED LIST 

In any signal processing system, throughput is going to be limited in part by the slowest component.  Where 

multiply blocks may be capable of exceeding 1,000 Msps, as soon as you enable a more complex processing block 

such as a log10 block the throughput may immediately drop to 40 Msps.  Therefore when considering the overall 

throughput capacity of a given flowgraph, increasing the performance of the slowest blocks can mean the difference 

between maintaining high throughput or not being able to process the data in real-time.  This section discusses the 

blocks that after analysis demonstrated significant throughput improvements in OpenCL implementations. 

2.6.1 Log10 

Log10 functions have all the hallmark of being good candidates for OpenCL acceleration.  The calculations are 

atomic and require more CPU cycles than basic add/multiply/subtract operations.  The Log10 block is one of the 

exceptions to using complex data points.  This OpenCL block is designed to only work with float data.  The block 

builds a kernel string with a few performance options.  For instance, if n_val is passed as 1, don’t even bother with 

the math.  And since these values are not expected to change for this block, let’s #define them rather than passing 

them as a parameter.  The following code shows the kernel string being built. 

 srcStdStr = ""; 

      if (n_val != 1.0) { 

         srcStdStr += "#define n_val " + std::to_string(n_val) + "\n"; 

     } 

 

    if (n_val != 1.0) { 

         srcStdStr += "#define n_val " + std::to_string(n_val) + "\n"; 

     } 

 

     if (k_val != 0.0) { 

      srcStdStr += "#define k_val " + std::to_string(k_val) + "\n"; 

     } 

 

     if (useConst) 

      srcStdStr += "__kernel void op_log10(__constant float * a, __global float 

* restrict c) {\n"; 

     else 

      srcStdStr += "__kernel void op_log10(__global float * restrict a, 

__global float * restrict c) {\n"; 

 

     srcStdStr += "    size_t index =  get_global_id(0);\n"; 

 

     if (k_val != 0.0) { 

      if (n_val != 1.0) { 

             srcStdStr += "    c[index] = n_val * log10(a[index]) + k_val;\n"; 

      } 

      else { 

             srcStdStr += "    c[index] = log10(a[index]) + k_val;\n"; 

      } 

     } 

     else { 

      // Don't even bother with the k math op. 

      if (n_val != 1.0) { 

             srcStdStr += "    c[index] = n_val * log10(a[index]);\n"; 

      } 

      else { 

             srcStdStr += "    c[index] = log10(a[index]);\n"; 

      } 
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     } 

 

     srcStdStr += "}\n"; 

 

2.6.1.1 Data 
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Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000055 0.000035 0.000046 0.000022 0.000049 0.000029 0.000089 0.000055 

4096 0.000109 0.000034 0.000091 0.000024 0.000097 0.000035 0.000180 0.000065 

6144 0.000163 0.000041 0.000137 0.000027 0.000146 0.000043 0.000267 0.000078 

8192 0.000220 0.000049 0.000184 0.000030 0.000197 0.000050 0.00036 0.000092 

10240 0.000274 0.000044 0.000227 0.000034 0.000243 0.000057 0.000447 0.000105 

12288 0.000330 0.000047 0.000274 0.000037 0.000292 0.000064 0.000535 0.000119 

14336 0.000381 0.000043 0.000320 0.000045 0.000343 0.000071 0.000629 0.000132 

16384 0.000440 0.000052 0.000366 0.000049 0.000392 0.000082 0.000722 0.000146 

18432 0.000491 0.000052 0.000410 0.000041 0.000439 0.000082 0.000803 0.00013 

20480 0.000545 0.000061 0.000454 0.000043 0.000486 0.000088 0.000895 0.000140 

22528 0.00062 0.000065 0.000499 0.000046 0.000535 0.000096 0.000986 0.000150 

24576 0.000653 0.000075 0.000542 0.000048 0.000586 0.000103 0.001069 0.000163 

 

Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
37,236,363.64  

    
58,514,285.71  

  
44,521,739.13  

    
93,090,909.09  

  
41,795,918.37  

    
70,620,689.66  

  
23,011,235.96  

    
37,236,363.64  

4096 
  
37,577,981.65  

  
120,470,588.24  

  
45,010,989.01  

  
170,666,666.67  

  
42,226,804.12  

  
117,028,571.43  

  
22,755,555.56  

    
63,015,384.62  

6144 
  
37,693,251.53  

  
149,853,658.54  

  
44,846,715.33  

  
227,555,555.56  

  
42,082,191.78  

  
142,883,720.93  

  
23,011,235.96  

    
78,769,230.77  

8192 
  
37,236,363.64  

  
167,183,673.47  

  
44,521,739.13  

  
273,066,666.67  

  
41,583,756.35  

  
163,840,000.00  

  
22,755,555.56  

    
89,043,478.26  

10240 
  
37,372,262.77  

  
232,727,272.73  

  
45,110,132.16  

  
301,176,470.59  

  
42,139,917.70  

  
179,649,122.81  

  
22,908,277.40  

    
97,523,809.52  

12288 
  
37,236,363.64  

  
261,446,808.51  

  
44,846,715.33  

  
332,108,108.11  

  
42,082,191.78  

  
192,000,000.00  

  
22,968,224.30  

  
103,260,504.20  

14336 
  
37,627,296.59  

  
333,395,348.84  

  
44,800,000.00  

  
318,577,777.78  

  
41,795,918.37  

  
201,915,492.96  

  
22,791,732.91  

  
108,606,060.61  

16384 
  
37,236,363.64  

  
315,076,923.08  

  
44,765,027.32  

  
334,367,346.94  

  
41,795,918.37  

  
199,804,878.05  

  
22,692,520.78  

  
112,219,178.08  

18432 
  
37,539,714.87  

  
354,461,538.46  

  
44,956,097.56  

  
449,560,975.61  

  
41,986,332.57  

  
224,780,487.80  

  
22,953,922.79  

  
141,784,615.38  

20480 
  
37,577,981.65  

  
335,737,704.92  

  
45,110,132.16  

  
476,279,069.77  

  
42,139,917.70  

  
232,727,272.73  

  
22,882,681.56  

  
146,285,714.29  

22528 
  
36,335,483.87  

  
346,584,615.38  

  
45,146,292.59  

  
489,739,130.43  

  
42,108,411.21  

  
234,666,666.67  

  
22,847,870.18  

  
150,186,666.67  

24576 
  
37,635,528.33  

  
327,680,000.00  

  
45,343,173.43  

  
512,000,000.00  

  
41,938,566.55  

  
238,601,941.75  

  
22,989,710.01  

  
150,773,006.13  

 

2.6.1.2 Observations 

The results of this block clearly show relatively flat CPU throughput.  Meaning that as the sample sizes double, so 

does the processing time such that the overall throughput is constant across block sizes.  
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In contrast the OpenCL implementation clearly shows a performance improvement over the CPU implementation 

even at small block sizes.  This performance improvement continues to increase as the block sizes increase.  Where 

the CPU throughput for the 1070 platform stays constant around 44 Msps, the OpenCL implementation can easily 

exceed 150 Msps.  In the case of the Log10 block, the OpenCL version provides a significant advantage over the 

CPU-only block. 

2.6.2 SNR Helper  

When discussing OpenCL, one way to gain more benefits from kernels is to put more operations in a single call.  

The SNR helper block is an example of such a block.  This sequence of blocks: divide->log10->Abs could be used 

for a basic signal to noise ratio calculator.  This block shows how a single kernel could combine these multiple 

functions into a single call and demonstrates the benefit gained from such an approach.  The following code builds 

the kernel string: 

srcStdStr += "#define n_val " + std::to_string(n_val) + "\n"; 

srcStdStr += "#define k_val " + std::to_string(k_val) + "\n"; 

 

if (useConst) 

 srcStdStr += "__kernel void op_snr(__constant float * a, __constant float * b, 

__global float * restrict c) {\n"; 

else 

 srcStdStr += "__kernel void op_snr(__global float * restrict a, __global float 

* restrict b, __global float * restrict c) {\n"; 

 

srcStdStr += "    size_t index =  get_global_id(0);\n"; 

srcStdStr += "    float tmpVal = a[index] / b[index];\n"; 

srcStdStr += "    tmpVal = n_val * log10(tmpVal) + k_val;\n"; 

srcStdStr += "    c[index] = fabs(tmpVal);\n"; 

srcStdStr += "}\n"; 

 

2.6.2.1 Data 
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Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000023 0.000045 0.000016 0.000030 0.000020 0.000040 0.000036 0.000070 

4096 0.000045 0.000046 0.000032 0.000034 0.000039 0.000050 0.000072 0.000101 

6144 0.000068 0.00005 0.000048 0.000038 0.000059 0.000068 0.000108 0.000115 

8192 0.000091 0.000055 0.000064 0.000042 0.000078 0.000078 0.000144 0.000134 

10240 0.000113 0.000054 0.000080 0.000054 0.000098 0.000087 0.000181 0.000157 

12288 0.000143 0.000055 0.000097 0.000058 0.000120 0.000097 0.000216 0.000181 

14336 0.000158 0.000061 0.000114 0.000061 0.000138 0.000106 0.000252 0.000207 

16384 0.000181 0.000063 0.000129 0.000064 0.000157 0.000117 0.000288 0.000229 

18432 0.000203 0.000072 0.000145 0.000062 0.000176 0.000119 0.000326 0.000181 

20480 0.000227 0.000077 0.000161 0.000067 0.000197 0.000129 0.000360 0.000193 

22528 0.00025 0.000074 0.000177 0.000071 0.000216 0.000139 0.000396 0.000206 

24576 0.000274 0.000088 0.000193 0.000074 0.000235 0.000148 0.000432 0.000221 
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Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
89,043,478.26  

    
45,511,111.11  

  
128,000,000.00  

    
68,266,666.67  

  
102,400,000.00  

    
51,200,000.00  

  
56,888,888.89  

    
29,257,142.86  

4096 
  
91,022,222.22  

    
89,043,478.26  

  
128,000,000.00  

  
120,470,588.24  

  
105,025,641.03  

    
81,920,000.00  

  
56,888,888.89  

    
40,554,455.45  

6144 
  
90,352,941.18  

  
122,880,000.00  

  
128,000,000.00  

  
161,684,210.53  

  
104,135,593.22  

    
90,352,941.18  

  
56,888,888.89  

    
53,426,086.96  

8192 
  
90,021,978.02  

  
148,945,454.55  

  
128,000,000.00  

  
195,047,619.05  

  
105,025,641.03  

  
105,025,641.03  

  
56,888,888.89  

    
61,134,328.36  

10240 
  
90,619,469.03  

  
189,629,629.63  

  
128,000,000.00  

  
189,629,629.63  

  
104,489,795.92  

  
117,701,149.43  

  
56,574,585.64  

    
65,222,929.94  

12288 
  
85,930,069.93  

  
223,418,181.82  

  
126,680,412.37  

  
211,862,068.97  

  
102,400,000.00  

  
126,680,412.37  

  
56,888,888.89  

    
67,889,502.76  

14336 
  
90,734,177.22  

  
235,016,393.44  

  
125,754,385.96  

  
235,016,393.44  

  
103,884,057.97  

  
135,245,283.02  

  
56,888,888.89  

    
69,256,038.65  

16384 
  
90,519,337.02  

  
260,063,492.06  

  
127,007,751.94  

  
256,000,000.00  

  
104,356,687.90  

  
140,034,188.03  

  
56,888,888.89  

    
71,545,851.53  

18432 
  
90,798,029.56  

  
256,000,000.00  

  
127,117,241.38  

  
297,290,322.58  

  
104,727,272.73  

  
154,890,756.30  

  
56,539,877.30  

  
101,834,254.14  

20480 
  
90,220,264.32  

  
265,974,025.97  

  
127,204,968.94  

  
305,671,641.79  

  
103,959,390.86  

  
158,759,689.92  

  
56,888,888.89  

  
106,113,989.64  

22528 
  
90,112,000.00  

  
304,432,432.43  

  
127,276,836.16  

  
317,295,774.65  

  
104,296,296.30  

  
162,071,942.45  

  
56,888,888.89  

  
109,359,223.30  

24576 
  
89,693,430.66  

  
279,272,727.27  

  
127,336,787.56  

  
332,108,108.11  

  
104,578,723.40  

  
166,054,054.05  

  
56,888,888.89  

  
111,203,619.91  

 

2.6.2.2 Observations 

Because this block builds upon the Log10 calculation by adding a divide and absolute value operation in a single 

kernel, the overall result of this block having a performance increase was as expected in that the OpenCL version 

showed significant improvement over the CPU-only version. 

However, there was an anomaly in this block that was continuously reproduced in testing.  That is that this block 

includes not only the log10 calculation, but also performs a divide and absolute value.  However the CPU 

throughput was actually better than the log10-only block.  The reason behind this was never identified, however the 

result was consistently reproduced. 

2.6.3 Complex to Arg 

The Complex To Arg block is really the phase calculation from the Complex To Mag Phase block isolated to only 

output the phase.  The block takes the inverse tangent of the input complex number and outputs a float as calculated 

below: 

c[index] = atan2(a[index].imag,a[index].real); 

This block is the first block discussed that uses a trigonometric function and as such requires some additional 

discussion.   

Trigonometric functions can be costly calls.  To address this issue, the GNURadio designers took a good 

performance approach and rather than actually calculating the atan, they use a lookup table to approximate it.  The 

GNURadio code uses the following line to perform the same calculation: 
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out[i] = fast_atan2f(in[i].imag(),in[i].real()); 

There is one word of caution about trig functions in OpenCL.  Specifically around the precision supported by the 

device being used.  If the card supports double precision (you can run “clview” and look for “Double Precision Math 

Support: Yes” or clinfo and look for the “Double Precision section”, the resulting OpenCL trig functions will 

actually be slightly more precise.  However, if the device only supports single precision (float), like older graphics 

cards, precision will actually suffer and it will show up as noise in the trig functions.  Testing with the OpenCL 

Signal Source block will give a clear indication of performance.  With double-precision, the OpenCL curve will 

actually not have some side frequencies present.  With single precision the source will look “noisy”. 

Back to the data for this block. 

2.6.3.1 Data 
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Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000012 0.000037 0.000009 0.000023 0.00001 0.000033 0.000019 0.000058 

4096 0.000023 0.000042 0.000018 0.000027 0.000021 0.000044 0.000038 0.000078 

6144 0.000034 0.000042 0.000026 0.000030 0.000031 0.000062 0.000057 0.000099 

8192 0.000044 0.000041 0.000035 0.000035 0.000042 0.000072 0.000076 0.000120 

10240 0.000056 0.000051 0.000042 0.000036 0.000052 0.000072 0.000096 0.000104 

12288 0.000067 0.000057 0.000051 0.000039 0.000062 0.000082 0.000115 0.000120 

14336 0.000082 0.000059 0.000059 0.000042 0.000073 0.000091 0.000134 0.000134 

16384 0.000090 0.000066 0.000066 0.000047 0.000084 0.000101 0.000153 0.000150 

18432 0.000102 0.000076 0.000076 0.000050 0.000094 0.000111 0.000172 0.000163 

20480 0.000113 0.000084 0.000082 0.000054 0.000104 0.000120 0.000191 0.000175 

22528 0.000124 0.000093 0.000090 0.000056 0.000115 0.000130 0.000211 0.000190 

24576 0.000136 0.000104 0.000097 0.000061 0.000125 0.000140 0.000230 0.000203 

 

Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
170,666,666.67  

    
55,351,351.35  

  
227,555,555.56  

    
89,043,478.26  

  
204,800,000.00  

    
62,060,606.06  

  
107,789,473.68  

    
35,310,344.83  

4096 
  
178,086,956.52  

    
97,523,809.52  

  
227,555,555.56  

  
151,703,703.70  

  
195,047,619.05  

    
93,090,909.09  

  
107,789,473.68  

    
52,512,820.51  

6144 
  
180,705,882.35  

  
146,285,714.29  

  
236,307,692.31  

  
204,800,000.00  

  
198,193,548.39  

    
99,096,774.19  

  
107,789,473.68  

    
62,060,606.06  

8192 
  
186,181,818.18  

  
199,804,878.05  

  
234,057,142.86  

  
234,057,142.86  

  
195,047,619.05  

  
113,777,777.78  

  
107,789,473.68  

    
68,266,666.67  

10240 
  
182,857,142.86  

  
200,784,313.73  

  
243,809,523.81  

  
284,444,444.44  

  
196,923,076.92  

  
142,222,222.22  

  
106,666,666.67  

    
98,461,538.46  

12288 
  
183,402,985.07  

  
215,578,947.37  

  
240,941,176.47  

  
315,076,923.08  

  
198,193,548.39  

  
149,853,658.54  

  
106,852,173.91  

  
102,400,000.00  

14336 
  
174,829,268.29  

  
242,983,050.85  

  
242,983,050.85  

  
341,333,333.33  

  
196,383,561.64  

  
157,538,461.54  

  
106,985,074.63  

  
106,985,074.63  

16384 
  
182,044,444.44  

  
248,242,424.24  

  
248,242,424.24  

  
348,595,744.68  

  
195,047,619.05  

  
162,217,821.78  

  
107,084,967.32  

  
109,226,666.67  

18432 
  
180,705,882.35  

  
242,526,315.79  

  
242,526,315.79  

  
368,640,000.00  

  
196,085,106.38  

  
166,054,054.05  

  
107,162,790.70  

  
113,079,754.60  

20480 
  
181,238,938.05  

  
243,809,523.81  

  
249,756,097.56  

  
379,259,259.26  

  
196,923,076.92  

  
170,666,666.67  

  
107,225,130.89  

  
117,028,571.43  

22528 
  
181,677,419.35  

  
242,236,559.14  

  
250,311,111.11  

  
402,285,714.29  

  
195,895,652.17  

  
173,292,307.69  

  
106,767,772.51  

  
118,568,421.05  

24576 
  
180,705,882.35  

  
236,307,692.31  

  
253,360,824.74  

  
402,885,245.90  

  
196,608,000.00  

  
175,542,857.14  

  
106,852,173.91  

  
121,064,039.41  

 

2.6.3.2 Observations 

The newer GTX 1070 card when processing blocks of 10K or larger clearly shows a performance improvement.  

This is important due to the full atan calculation versus the table-based approximation approach in that the result 

implies that for actual processed blocks of 10K and bigger the OpenCL version is both faster and more precise than 

the CPU-based version. 



Study on Implementing OpenCL in Common GNURadio Blocks 

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s). 

26 

2.6.4 Complex to Mag Phase 

Complex to Mag Phase takes a complex input data stream and splits it into a magnitude and a phase.  The magnitude 

calculation is a basic square root of squares calculation as shown below from the OpenCL kernel: 

b[index] = sqrt((aval*aval)+(bval*bval)); 

In the CPU implementation this is accomplished by a Volk function as shown below: 

volk_32fc_magnitude_32f_u(out0, in, noi); 

The phase is then calculated with an atan call matching the Complex To Arg calculation as: 

c[index] = atan2(a[index].imag,a[index].real); 

or this for the CPU implementation: 

out[i] = fast_atan2f(in[i].imag(),in[i].real()); 

Because this block not only includes the calculation from the Complex To Arg calculation, but also an additional 

magnitude calculation.  It has all the hallmarks for OpenCL acceleration.  Adding the magnitude calculation 

increases kernel complexity which generally leads to OpenCL kernel performance gains over CPU-only 

implementations.  And this is exactly the results observed in the data below. 

2.6.4.1 Data 
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Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 970 CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000012 0.000048 0.000010 0.000031 0.000012 0.000045 0.000022 0.000077 

4096 0.000036 0.000044 0.000019 0.000036 0.000024 0.000059 0.000045 0.000095 

6144 0.000038 0.000056 0.000029 0.000041 0.000037 0.00008 0.000067 0.000117 

8192 0.000049 0.000056 0.000037 0.000046 0.000049 0.000094 0.000089 0.000140 

10240 0.000062 0.000055 0.000043 0.000047 0.000061 0.000097 0.000111 0.000139 

12288 0.000074 0.000066 0.000055 0.000054 0.000073 0.000111 0.000134 0.000158 

14336 0.000089 0.000090 0.000063 0.000059 0.000085 0.000123 0.000156 0.000175 

16384 0.000098 0.000075 0.000071 0.000063 0.000097 0.000137 0.000178 0.000191 

18432 0.000111 0.000102 0.000081 0.000068 0.000109 0.000151 0.000200 0.000208 

20480 0.000123 0.000121 0.000089 0.000072 0.000121 0.000164 0.000223 0.000226 

22528 0.000135 0.000140 0.000097 0.000077 0.000133 0.000176 0.000245 0.000241 

24576 0.000148 0.000142 0.000106 0.000083 0.000146 0.000190 0.000267 0.000259 
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Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
170,666,666.67  

    
42,666,666.67  

  
204,800,000.00  

    
66,064,516.13  

  
170,666,666.67  

    
45,511,111.11  

  
93,090,909.09  

  
26,597,402.60  

4096 
  
113,777,777.78  

    
93,090,909.09  

  
215,578,947.37  

  
113,777,777.78  

  
170,666,666.67  

    
69,423,728.81  

  
91,022,222.22  

  
43,115,789.47  

6144 
  
161,684,210.53  

  
109,714,285.71  

  
211,862,068.97  

  
149,853,658.54  

  
166,054,054.05  

    
76,800,000.00  

  
91,701,492.54  

  
52,512,820.51  

8192 
  
167,183,673.47  

  
146,285,714.29  

  
221,405,405.41  

  
178,086,956.52  

  
167,183,673.47  

    
87,148,936.17  

  
92,044,943.82  

  
58,514,285.71  

10240 
  
165,161,290.32  

  
186,181,818.18  

  
238,139,534.88  

  
217,872,340.43  

  
167,868,852.46  

  
105,567,010.31  

  
92,252,252.25  

  
73,669,064.75  

12288 
  
166,054,054.05  

  
186,181,818.18  

  
223,418,181.82  

  
227,555,555.56  

  
168,328,767.12  

  
110,702,702.70  

  
91,701,492.54  

  
77,772,151.90  

14336 

  

161,078,651.69  

  

159,288,888.89  

  

227,555,555.56  

  

242,983,050.85  

  

168,658,823.53  

  

116,552,845.53  

  

91,897,435.90  

  

81,920,000.00  

16384 
  
167,183,673.47  

  
218,453,333.33  

  
230,760,563.38  

  
260,063,492.06  

  
168,907,216.49  

  
119,591,240.88  

  
92,044,943.82  

  
85,780,104.71  

18432 
  
166,054,054.05  

  
180,705,882.35  

  
227,555,555.56  

  
271,058,823.53  

  
169,100,917.43  

  
122,066,225.17  

  
92,160,000.00  

  
88,615,384.62  

20480 

  

166,504,065.04  

  

169,256,198.35  

  

230,112,359.55  

  

284,444,444.44  

  

169,256,198.35  

  

124,878,048.78  

  

91,838,565.02  

  

90,619,469.03  

22528 
  
166,874,074.07  

  
160,914,285.71  

  
232,247,422.68  

  
292,571,428.57  

  
169,383,458.65  

  
128,000,000.00  

  
91,951,020.41  

  
93,477,178.42  

24576 
  
166,054,054.05  

  
173,070,422.54  

  
231,849,056.60  

  
296,096,385.54  

  
168,328,767.12  

  
129,347,368.42  

  
92,044,943.82  

  
94,888,030.89  

 

2.6.4.2 Observations 

The results were as expected in that the OpenCL versions outperformed the CPU-only implementations.  However 

due to the extra calculations, the performance benefit happens slightly later in the curve.  Looking at the 1070 

platform, the CPU and OpenCL implementations are approximately even at 12,288 samples with the OpenCL 

performance benefit not showing up until 14336 samples.   

It is postulated that the cost of the extra buffer in/out copy to produce both the magnitude and the phase as output is 

the reason for the delayed benefit.   
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2.7 OFFLOAD LIST 

Some blocks showed performance with mixed results depending on the card.  For instance all blocks in this list were 

actually accelerated on the NVIDIA 1070 card, however the 970 and 1000M cards showed better CPU performance.   

Given the time of writing, NVIDIA has released their 1070 and 1080 cards to address the higher performance 

requirements for virtual reality.  It is clear that these cards outperform their predecessors based on their results in 

this study.  In terms of SDR and OpenCL accelerating GNURadio blocks, this means that these cards can mean the 

difference between OpenCL implementations outperforming their CPU equivalents versus not.   

While an intuitive conclusion, it is recommended that in order to get the most benefit in OpenCL that the newest 

hardware possible be used.  As demonstrated in the data below these “offload” blocks can actually be classified as 

“accelerated” on the newer 1070+ cards and are grouped that way in the GNURadio block groups. 

2.7.1 Mag Phase to Complex 

The Mag Phase to Complex block performs they opposite function as the Complex to Mag Phase block.  Rather than 

a single atan call, this block uses 2 trigonometric functions (sine and cosine) to reverse the process.  The OpenCL 

kernel below shows the process: 

struct ComplexStruct { 

float real; 

float imag; }; 

typedef struct ComplexStruct SComplex; 

 

__kernel void magphasetocomplex(__constant float * a, __constant float * b, __global 

SComplex * restrict c) { 

    size_t index =  get_global_id(0); 

    float mag = a[index]; 

    float phase = b[index]; 

    float real = mag*cos(phase); 

    float imag = mag*sin(phase); 

    c[index].real = real; 

    c[index].imag = imag; 

} 

For data blocks larger than constant memory size the following kernel is used: 

struct ComplexStruct { 

float real; 

float imag; }; 

typedef struct ComplexStruct SComplex; 

 

__kernel void magphasetocomplex(__global float * restrict a, __global float * restrict 

b, __global SComplex * restrict c) { 

    size_t index =  get_global_id(0); 

    float mag = a[index]; 

    float phase = b[index]; 

    float real = mag*cos(phase); 

    float imag = mag*sin(phase); 

    c[index].real = real; 

    c[index].imag = imag; 

} 

These kernels can be compared to the GNURadio implementation that does the calculations inline while creating a 

new complex sample: 

out[j] = gr_complex (mag[j]*cos(phase[j]),mag[j]*sin(phase[j])); 
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Because of the cost of processing trigonometric functions the expected result is that the OpenCL kernel should have 

performance benefits over the CPU version with sufficient block sizes. 

2.7.1.1 Data 

 

Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000017 0.000037 0.000014 0.000032 0.000014 0.000045 0.000026 0.000073 

4096 0.000036 0.000041 0.000027 0.000037 0.000028 0.000059 0.000052 0.000097 

6144 0.000051 0.000053 0.000039 0.000042 0.000043 0.000081 0.000079 0.000121 

8192 0.000069 0.000049 0.000053 0.000048 0.000057 0.000094 0.000104 0.000147 

10240 0.000085 0.000057 0.000063 0.000061 0.000071 0.000106 0.000130 0.000174 

12288 0.000104 0.000068 0.000077 0.000066 0.000085 0.000119 0.000156 0.000200 

14336 0.000127 0.000067 0.000087 0.000071 0.000099 0.000132 0.000182 0.000229 

16384 0.000137 0.000074 0.000100 0.000076 0.000114 0.000147 0.000209 0.000256 

18432 0.000155 0.000091 0.000114 0.000069 0.000128 0.000150 0.000235 0.000205 

20480 0.000171 0.000101 0.000126 0.000075 0.000142 0.000163 0.000261 0.000219 

22528 0.000187 0.00014 0.000137 0.000079 0.000156 0.000177 0.000287 0.000239 

24576 0.00021 0.000162 0.000152 0.000087 0.000170 0.000190 0.000313 0.000260 
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Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
120,470,588.24  

    
55,351,351.35  

  
146,285,714.29  

    
64,000,000.00  

  
146,285,714.29  

    
45,511,111.11  

  
78,769,230.77  

  
28,054,794.52  

4096 
  
113,777,777.78  

    
99,902,439.02  

  
151,703,703.70  

  
110,702,702.70  

  
146,285,714.29  

    
69,423,728.81  

  
78,769,230.77  

  
42,226,804.12  

6144 
  
120,470,588.24  

  
115,924,528.30  

  
157,538,461.54  

  
146,285,714.29  

  
142,883,720.93  

    
75,851,851.85  

  
77,772,151.90  

  
50,776,859.50  

8192 
  
118,724,637.68  

  
167,183,673.47  

  
154,566,037.74  

  
170,666,666.67  

  
143,719,298.25  

    
87,148,936.17  

  
78,769,230.77  

  
55,727,891.16  

10240 
  
120,470,588.24  

  
179,649,122.81  

  
162,539,682.54  

  
167,868,852.46  

  
144,225,352.11  

    
96,603,773.58  

  
78,769,230.77  

  
58,850,574.71  

12288 
  
118,153,846.15  

  
180,705,882.35  

  
159,584,415.58  

  
186,181,818.18  

  
144,564,705.88  

  
103,260,504.20  

  
78,769,230.77  

  
61,440,000.00  

14336 

  

112,881,889.76  

  

213,970,149.25  

  

164,781,609.20  

  

201,915,492.96  

  

144,808,080.81  

  

108,606,060.61  

  

78,769,230.77  

  

62,602,620.09  

16384 
  
119,591,240.88  

  
221,405,405.41  

  
163,840,000.00  

  
215,578,947.37  

  
143,719,298.25  

  
111,455,782.31  

  
78,392,344.50  

  
64,000,000.00  

18432 
  
118,916,129.03  

  
202,549,450.55  

  
161,684,210.53  

  
267,130,434.78  

  
144,000,000.00  

  
122,880,000.00  

  
78,434,042.55  

  
89,912,195.12  

20480 

  

119,766,081.87  

  

202,772,277.23  

  

162,539,682.54  

  

273,066,666.67  

  

144,225,352.11  

  

125,644,171.78  

  

78,467,432.95  

  

93,515,981.74  

22528 
  
120,470,588.24  

  
160,914,285.71  

  
164,437,956.20  

  
285,164,556.96  

  
144,410,256.41  

  
127,276,836.16  

  
78,494,773.52  

  
94,259,414.23  

24576 
  
117,028,571.43  

  
151,703,703.70  

  
161,684,210.53  

  
282,482,758.62  

  
144,564,705.88  

  
129,347,368.42  

  
78,517,571.88  

  
94,523,076.92  

 

2.7.1.2 Observations 

What was observed from this run was that the OpenCL version actually performed worse than the CPU version for 

all but the new 1070 card.  In fact for the 970 and 1000M cards, the OpenCL performance never exceeded the CPU 

performance.  However the 1070 card started to exceed the CPU performance at 8192 processed data samples. 

2.7.2 Signal Source  

The signal source block provides a number of capabilities within a GNURadio flowgraph.  While it can be used as a 

source in and of itself, it is also used to shift signals in the frequency domain with a complex multiply block. 

The most common uses are producing sine and cosine waves of specific amplitudes.  However interestingly when 

producing complex signals, the sine and cosine signals use the same code (data.real = cos(), data.imag = sin()). 

The OpenCL implementation of this function for complex data points is shown below: 
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struct ComplexStruct { 

float real; 

float imag; 

}; 

 

typedef struct ComplexStruct SComplex; 

 

__kernel void sig_complex(const float phase, const float phase_inc, const float ampl, 

__global SComplex * restrict c) { 

    size_t index =  get_global_id(0); 

    float dval =  (float)(phase+(phase_inc*(float)index)); 

 srcStdStr += "    c[index].real = (float)(cos(dval) * ampl); 

 srcStdStr += "    c[index].imag = (float)(sin(dval) * ampl); 

} 

This can be compared against the GNURadio CPU-only implementation shown below: 

output[i] = gr_complex(gr::fxpt::cos(d_phase) * d_ampl, gr::fxpt::sin(d_phase) * 

d_ampl); 

 

2.7.2.1 Data 
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Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000008 0.000027 0.000006 0.000013 0.000007 0.000021 0.000010 0.000036 

4096 0.000015 0.000032 0.000012 0.000016 0.000014 0.000028 0.000020 0.000044 

6144 0.000023 0.000036 0.000017 0.000019 0.000021 0.000036 0.000030 0.000053 

8192 0.000031 0.000038 0.000023 0.000021 0.000028 0.000043 0.000040 0.000062 

10240 0.000038 0.000043 0.000029 0.000024 0.000034 0.000050 0.000050 0.000070 

12288 0.000046 0.000044 0.000034 0.000027 0.000041 0.000056 0.000060 0.000081 

14336 0.000053 0.000051 0.000040 0.000029 0.000038 0.000062 0.000070 0.000090 

16384 0.000060 0.000056 0.000046 0.000031 0.000043 0.000069 0.000080 0.000099 

18432 0.00007 0.000074 0.000052 0.000034 0.000049 0.000077 0.000090 0.000109 

20480 0.000079 0.000062 0.000057 0.000037 0.000054 0.000083 0.000099 0.000116 

22528 0.000083 0.000086 0.000063 0.000039 0.000060 0.000089 0.000109 0.000128 

24576 0.000094 0.000073 0.000069 0.000042 0.000065 0.000097 0.000119 0.000137 

 

Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048   256,000,000.00      75,851,851.85    341,333,333.33    157,538,461.54    292,571,428.57      97,523,809.52    204,800,000.00      56,888,888.89  

4096   273,066,666.67    128,000,000.00    341,333,333.33    256,000,000.00    292,571,428.57    146,285,714.29    204,800,000.00      93,090,909.09  

6144   267,130,434.78    170,666,666.67    361,411,764.71    323,368,421.05    292,571,428.57    170,666,666.67    204,800,000.00    115,924,528.30  

8192   264,258,064.52    215,578,947.37    356,173,913.04    390,095,238.10    292,571,428.57    190,511,627.91    204,800,000.00    132,129,032.26  

10240   269,473,684.21    238,139,534.88    353,103,448.28    426,666,666.67    301,176,470.59    204,800,000.00    204,800,000.00    146,285,714.29  

12288   267,130,434.78    279,272,727.27    361,411,764.71    455,111,111.11    299,707,317.07    219,428,571.43    204,800,000.00    151,703,703.70  

14336   270,490,566.04    281,098,039.22    358,400,000.00    494,344,827.59    377,263,157.89    231,225,806.45    204,800,000.00    159,288,888.89  

16384   273,066,666.67    292,571,428.57    356,173,913.04    528,516,129.03    381,023,255.81    237,449,275.36    204,800,000.00    165,494,949.49  

18432   263,314,285.71    249,081,081.08    354,461,538.46    542,117,647.06    376,163,265.31    239,376,623.38    204,800,000.00    169,100,917.43  

20480   259,240,506.33    330,322,580.65    359,298,245.61    553,513,513.51    379,259,259.26    246,746,987.95    206,868,686.87    176,551,724.14  

22528   271,421,686.75    261,953,488.37    357,587,301.59    577,641,025.64    375,466,666.67    253,123,595.51    206,678,899.08    176,000,000.00  

24576   261,446,808.51    336,657,534.25    356,173,913.04    585,142,857.14    378,092,307.69    253,360,824.74    206,521,008.40    179,386,861.31  

 

2.7.2.2 Observations 

In this block, both the 970 and 1000M cards showed worse performance in the OpenCL implementation.  However 

the 1070 card outperformed even the faster CPU starting at 819s samples processed. 

There is one other very important observation from developing the signal source block.  That is that the accuracy of 

the sin() and cos() functions implemented by OpenCL platforms varies.  The anomaly showed up during testing 

when comparing the OpenCL version of a signal source to the native version as implemented in this flowgraph: 
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The net result on the VM was the following curves: 

 

At first the assumption was there was an error with the code, however after doing some research it turns out it is an 

OpenCL anomaly.  Running accuracy tests on different platforms showed the following results as output from test-

clenabled: 

This is the run result from running on the Intel CPU OpenCL driver: 

maximum error OpenCL versus gnuradio table lookup cos/sin: 0.000056/0.000054 

Running the same tests on the 1000M and 1070 card produced the following outcome: 

maximum error OpenCL versus gnuradio table lookup cos/sin: 0.000009/0.000009 

According to the OpenCL specification, sin and cos accuracy are implementation-specific.  Which means that the 

OpenCL code was correct however the precision of the results may vary.  This did not have a notable visual impact 

when shifting signals as in the following comparative flowgraph: 
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This produced the following frequency curves showing the shift is correct: 

 

However it means that if precision is important, the native block may be preferred, and a more efficient way of 

getting rid of the center frequency DC spike on devices that do not remove it in their driver would be to use 

something like my correctiq block (found here https://github.com/ghostop14/gr-correctiq.git) which has been timed 

at 280+ MSPS and can skip the signal source and multiply requirement or overhead of combining those functions in 

the XLATING FIR filter by simply doing this: 
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2.7.3 Quadrature Demod  

The quadrature demod block is used for Frequency Shift Keying decoding, one of the three primary digital data 

transmission modes (with the other two being amplitude shift keying [ASK or On/Off Keying (OOK)] and Phase 

Shift Keying (PSK).  This block performs the following calculations to produce a demodulated signal (note some 

optimizations for if gain is set to 1 or some other value): 

srcStdStr = ""; 

if (f_gain != 1.0) { 

 srcStdStr += "#define GAIN " + std::to_string(f_gain) + "\n"; 

} 

 

srcStdStr += "struct ComplexStruct {\n"; 

srcStdStr += "float real;\n"; 

srcStdStr += "float imag; };\n"; 

srcStdStr += "typedef struct ComplexStruct SComplex;\n"; 

 

srcStdStr += "__kernel void quadDemod(__global SComplex * restrict a, __global float * 

restrict c) {\n"; 

 

srcStdStr += "    size_t index =  get_global_id(0);\n"; 

srcStdStr += "    float a_r=a[index+1].real;\n"; 

srcStdStr += "    float a_i=a[index+1].imag;\n"; 

srcStdStr += "    float b_r=a[index].real;\n"; 

srcStdStr += "    float b_i=-1.0 * a[index].imag;\n"; 

srcStdStr += "    float multCCreal = (a_r * b_r) - (a_i*b_i);\n"; 

srcStdStr += "    float multCCimag = (a_r * b_i) + (a_i * b_r);\n"; 

if (f_gain != 1.0) 

 srcStdStr += "    c[index] = GAIN * atan2(multCCimag,multCCreal);\n"; 

else 

 srcStdStr += "    c[index] = atan2(multCCimag,multCCreal);\n"; 

srcStdStr += "}\n"; 

This can be compared to the GNURadio implementation which uses a Volk block to do the calculations.  The Volk 

block ultimately performs the following calculation: 

        volk_32fc_x2_multiply_conjugate_32fc(&tmp[0], &in[1], &in[0], noutput_items); 

        for(int i = 0; i < noutput_items; i++) { 

          out[i] = f_gain * gr::clenabled::fast_atan2f(imag(tmp[i]), real(tmp[i])); 

        } 

Where the volk_32fc_x2_multiply_conjugate_32fc function performs the following calculation: 

volk_32fc_x2_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* 

aVector, 

                                             const lv_32fc_t* bVector, unsigned int 

num_points) 

{ 

  lv_32fc_t* cPtr = cVector; 

  const lv_32fc_t* aPtr = aVector; 

  const lv_32fc_t* bPtr=  bVector; 

  unsigned int number = 0; 

 

  for(number = 0; number < num_points; number++){ 

    *cPtr++ = (*aPtr++) * lv_conj(*bPtr++); 

  } 

} 

Note highlighted in the code the in[1] and in[0] parameters passed to the Volk function.  This implies that each 

sample is actually multiplied by the conjugate of the subsequent data point to produce the output.  This makes sense 

because mathematically multiplying a complex number by its complex conjugate simply produces a real number 
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(the imaginary part cancels itself out to zero).  This subsequent conjugate calculation is reflected in the OpenCL 

implementation with the index+1 reference to match the Volk calculation.  Care was taken in the code when creating 

the buffers to allow for the potential for datasize+1 to be accessed as in the CPU implementation. 

2.7.3.1 Data 

 

Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000014 0.000042 0.000009 0.000024 0.000011 0.000033 0.000021 0.000058 

4096 0.000028 0.000051 0.000018 0.000029 0.000023 0.000044 0.000042 0.000068 

6144 0.000043 0.000064 0.000028 0.000033 0.000034 0.000054 0.000063 0.000080 

8192 0.000057 0.000074 0.000035 0.000037 0.000046 0.000064 0.000084 0.000092 

10240 0.000070 0.000088 0.000043 0.000037 0.000057 0.000072 0.000105 0.000107 

12288 0.000086 0.000092 0.000053 0.000040 0.000068 0.000082 0.000126 0.000122 

14336 0.000099 0.000113 0.000059 0.000043 0.000080 0.000092 0.000147 0.000138 

16384 0.000115 0.00013 0.000069 0.000047 0.000098 0.000103 0.000168 0.000153 

18432 0.00013 0.000135 0.000076 0.000051 0.000103 0.000112 0.000189 0.000168 

20480 0.000144 0.000156 0.000085 0.000054 0.000114 0.000122 0.000210 0.000181 

22528 0.000156 0.000162 0.000092 0.000059 0.000126 0.000131 0.000231 0.000195 

24576 0.000157 0.000176 0.000100 0.000065 0.000138 0.000141 0.000252 0.000208 
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Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
146,285,714.29  

    
48,761,904.76  

  
227,555,555.56  

    
85,333,333.33  

  
186,181,818.18  

    
62,060,606.06  

  
97,523,809.52  

    
35,310,344.83  

4096 
  
146,285,714.29  

    
80,313,725.49  

  
227,555,555.56  

  
141,241,379.31  

  
178,086,956.52  

    
93,090,909.09  

  
97,523,809.52  

    
60,235,294.12  

6144 
  
142,883,720.93  

    
96,000,000.00  

  
219,428,571.43  

  
186,181,818.18  

  
180,705,882.35  

  
113,777,777.78  

  
97,523,809.52  

    
76,800,000.00  

8192 
  
143,719,298.25  

  
110,702,702.70  

  
234,057,142.86  

  
221,405,405.41  

  
178,086,956.52  

  
128,000,000.00  

  
97,523,809.52  

    
89,043,478.26  

10240 
  
146,285,714.29  

  
116,363,636.36  

  
238,139,534.88  

  
276,756,756.76  

  
179,649,122.81  

  
142,222,222.22  

  
97,523,809.52  

    
95,700,934.58  

12288 
  
142,883,720.93  

  
133,565,217.39  

  
231,849,056.60  

  
307,200,000.00  

  
180,705,882.35  

  
149,853,658.54  

  
97,523,809.52  

  
100,721,311.48  

14336 
  
144,808,080.81  

  
126,867,256.64  

  
242,983,050.85  

  
333,395,348.84  

  
179,200,000.00  

  
155,826,086.96  

  
97,523,809.52  

  
103,884,057.97  

16384 
  
142,469,565.22  

  
126,030,769.23  

  
237,449,275.36  

  
348,595,744.68  

  
167,183,673.47  

  
159,067,961.17  

  
97,523,809.52  

  
107,084,967.32  

18432 
  
141,784,615.38  

  
136,533,333.33  

  
242,526,315.79  

  
361,411,764.71  

  
178,951,456.31  

  
164,571,428.57  

  
97,523,809.52  

  
109,714,285.71  

20480 
  
142,222,222.22  

  
131,282,051.28  

  
240,941,176.47  

  
379,259,259.26  

  
179,649,122.81  

  
167,868,852.46  

  
97,523,809.52  

  
113,149,171.27  

22528 
  
144,410,256.41  

  
139,061,728.40  

  
244,869,565.22  

  
381,830,508.47  

  
178,793,650.79  

  
171,969,465.65  

  
97,523,809.52  

  
115,528,205.13  

24576 

  

156,535,031.85  

  

139,636,363.64  

  

245,760,000.00  

  

378,092,307.69  

  

178,086,956.52  

  

174,297,872.34  

  

97,523,809.52  

  

118,153,846.15  

 

2.7.3.2 Observations 

This block shows mixed performance based on processed block size.  It isn’t until the block size reaches 10240 that 

the OpenCL implementation actually starts to outperform the CPU implementation.  And a much more significant 

performance gain is achieved on the newer 1070 hardware. 
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2.8 ENABLED LIST 

The modules discussed in this section represent functions that are or may be used in common flow graphs such as a 

basic complex multiply or constant multiply block but whose performance was not categorized as accelerated or 

offloaded.  In the original design goal of this project, and prior to having a more thorough understanding of both 

GNURadio operations and OpenCL, it was not understood why these blocks had not been implemented in OpenCL.   

Therefore to address others having the same thought processes as mine prior to the study, these blocks are included 

along with the performance comparisons of each. 

2.8.1 Multiply/Add/Subtract/Multiply Conjugate 

Within the gr-clenabled code, there are a number of blocks that are all implemented in a single class.  These blocks 

share common traits such as 2 inputs and 1 output, and only differ in the calculation performed.  While only the 

Multiply operation is presented here, the block also provides the following operations: 

• Add 

• Subtract 

• Multiply Conjugate 

The following code shows the OpenCL kernel construction for the complex data types: 

         srcStdStr = "struct ComplexStruct {\n"; 

         srcStdStr += "float real;\n"; 

         srcStdStr += "float imag; };\n"; 

         srcStdStr += "typedef struct ComplexStruct SComplex;\n"; 

 

         fnName = "op_complex"; 

 

         if (useConst) 

          srcStdStr += "__kernel void op_complex(__constant SComplex * a, 

__constant SComplex * b, __global SComplex * restrict c) {\n"; 

         else 

          srcStdStr += "__kernel void op_complex(__global SComplex * restrict 

a, __global SComplex * restrict b, __global SComplex * restrict c) {\n"; 

 

         if (d_operatorType != MATHOP_EMPTY) 

          srcStdStr += "    size_t index =  get_global_id(0);\n"; 

         switch (d_operatorType) { 

         case MATHOP_MULTIPLY: 

             srcStdStr += "    float a_r=a[index].real;\n"; 

             srcStdStr += "    float a_i=a[index].imag;\n"; 

             srcStdStr += "    float b_r=b[index].real;\n"; 

             srcStdStr += "    float b_i=b[index].imag;\n"; 

             srcStdStr += "    c[index].real = (a_r * b_r) - (a_i*b_i);\n"; 

             srcStdStr += "    c[index].imag = (a_r * b_i) + (a_i * b_r);\n"; 

         break; 

         case MATHOP_ADD: 

             srcStdStr += "    c[index].real = a[index].real + b[index].real;\n"; 

             srcStdStr += "    c[index].imag = a[index].imag + b[index].imag;\n"; 

         break; 

         case MATHOP_SUBTRACT: 

             srcStdStr += "    c[index].real = a[index].real - b[index].real;\n"; 

             srcStdStr += "    c[index].imag = a[index].imag - b[index].imag;\n"; 

         break; 

 

         case MATHOP_MULTIPLY_CONJUGATE: 

                numParams = 2; 

             fnName = "op_complex"; 

 

             srcStdStr = "struct ComplexStruct {\n"; 

             srcStdStr += "float real;\n"; 

             srcStdStr += "float imag; };\n"; 

             srcStdStr += "typedef struct ComplexStruct SComplex;\n"; 
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             if (useConst) 

              srcStdStr += "__kernel void op_complex(__constant SComplex * a, 

__constant SComplex * b, __global SComplex * restrict c) {\n"; 

             else 

              srcStdStr += "__kernel void op_complex(__global SComplex * restrict 

a, __global SComplex * restrict b, __global SComplex * restrict c) {\n"; 

 

             srcStdStr += "    size_t index =  get_global_id(0);\n"; 

             srcStdStr += "    float a_r=a[index].real;\n"; 

             srcStdStr += "    float a_i=a[index].imag;\n"; 

             srcStdStr += "    float b_r=b[index].real;\n"; 

             srcStdStr += "    float b_i=-1.0 * b[index].imag;\n"; 

             srcStdStr += "    c[index].real = (a_r * b_r) - (a_i*b_i);\n"; 

             srcStdStr += "    c[index].imag = (a_r * b_i) + (a_i * b_r);\n"; 

             numConstParams = 2; 

         break; 

         } 

         srcStdStr += "}\n"; 

 

2.8.1.1 Data 

 

Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000001 0.000044 0.000001 0.000031 0.000002 0.000050 0.000003 0.000085 

4096 0.000003 0.000052 0.000004 0.000039 0.000003 0.000077 0.000006 0.000123 

6144 0.000004 0.000057 0.000006 0.000045 0.000005 0.000088 0.000009 0.000116 

8192 0.000006 0.000066 0.000004 0.000050 0.000006 0.000108 0.000012 0.000136 

10240 0.000007 0.000065 0.000009 0.000057 0.000008 0.000127 0.000015 0.000159 

12288 0.000008 0.000078 0.000010 0.000062 0.000010 0.000147 0.000018 0.000180 
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14336 0.000010 0.000365 0.000008 0.000069 0.000011 0.000165 0.000021 0.000200 

16384 0.000013 0.000142 0.000010 0.000076 0.000014 0.000186 0.000024 0.000219 

18432 0.000018 0.000158 0.000011 0.000082 0.000015 0.000204 0.000027 0.000242 

20480 0.000021 0.00014 0.000019 0.000088 0.000016 0.000222 0.000033 0.000259 

22528 0.000018 0.000147 0.000012 0.000095 0.000019 0.000243 0.000036 0.000279 

24576 0.000026 0.000222 0.000023 0.000102 0.000020 0.000261 0.000036 0.000300 

 

Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 

  

2,048,000,000.00  

    

46,545,454.55  

  

2,048,000,000.00  

    

66,064,516.13  

  

1,024,000,000.00  

  

40,960,000.00  

  

682,666,666.67  

  

24,094,117.65  

4096 
  
1,365,333,333.33  

    
78,769,230.77  

  
1,024,000,000.00  

  
105,025,641.03  

  
1,365,333,333.33  

  
53,194,805.19  

  
682,666,666.67  

  
33,300,813.01  

6144 
  
1,536,000,000.00  

  
107,789,473.68  

  
1,024,000,000.00  

  
136,533,333.33  

  
1,228,800,000.00  

  
69,818,181.82  

  
682,666,666.67  

  
52,965,517.24  

8192 

  

1,365,333,333.33  

  

124,121,212.12  

  

2,048,000,000.00  

  

163,840,000.00  

  

1,365,333,333.33  

  

75,851,851.85  

  

682,666,666.67  

  

60,235,294.12  

10240 
  
1,462,857,142.86  

  
157,538,461.54  

  
1,137,777,777.78  

  
179,649,122.81  

  
1,280,000,000.00  

  
80,629,921.26  

  
682,666,666.67  

  
64,402,515.72  

12288 
  
1,536,000,000.00  

  
157,538,461.54  

  
1,228,800,000.00  

  
198,193,548.39  

  
1,228,800,000.00  

  
83,591,836.73  

  
682,666,666.67  

  
68,266,666.67  

14336 
  
1,433,600,000.00  

    
39,276,712.33  

  
1,792,000,000.00  

  
207,768,115.94  

  
1,303,272,727.27  

  
86,884,848.48  

  
682,666,666.67  

  
71,680,000.00  

16384 
  
1,260,307,692.31  

  
115,380,281.69  

  
1,638,400,000.00  

  
215,578,947.37  

  
1,170,285,714.29  

  
88,086,021.51  

  
682,666,666.67  

  
74,812,785.39  

18432 
  
1,024,000,000.00  

  
116,658,227.85  

  
1,675,636,363.64  

  
224,780,487.80  

  
1,228,800,000.00  

  
90,352,941.18  

  
682,666,666.67  

  
76,165,289.26  

20480 
     
975,238,095.24  

  
146,285,714.29  

  
1,077,894,736.84  

  
232,727,272.73  

  
1,280,000,000.00  

  
92,252,252.25  

  
620,606,060.61  

  
79,073,359.07  

22528 
  
1,251,555,555.56  

  
153,251,700.68  

  
1,877,333,333.33  

  
237,136,842.11  

  
1,185,684,210.53  

  
92,707,818.93  

  
625,777,777.78  

  
80,745,519.71  

24576 
     
945,230,769.23  

  
110,702,702.70  

  
1,068,521,739.13  

  
240,941,176.47  

  
1,228,800,000.00  

  
94,160,919.54  

  
682,666,666.67  

  
81,920,000.00  

 

2.8.1.2 Observations 

This basic multiply block is very revealing.  It clearly shows that for very simple operations the cost of moving the 

data to the graphics card and back exceeds the amount of time it takes for the CPU to perform the multiply 

operation.  The graph clearly shows the CPU outperforms OpenCL by almost an order of magnitude. 

After reviewing the data, the cyclic nature of the CPU results appears to be attributed to the fact that the 

measurements down to 1 microsecond accuracy may be the cause.  Some blocks only differ from their predecessor 

for the 1070 hardware by 1-2 microseconds.  If the timers are rounding up/down to produce an integer, it would 

explain the wild swings in throughput.  In other words 1 microsecond versus 2 microseconds in timing would give 

the impression of doubling or halving the throughput rates.   

In either case, this block could be capable of processing 1 – 2 GSPS due to the simplicity of the calculations.  This 

can be compared against the GPUs that can only process 100-200 MSPS. 

One could argue that for current SDR hardware capable of sampling at 2.4 – 20 MSPS, that this 100-200 MSPS rate 

is sufficient to offload processing to a GPU.  However as noted later there is a price to pay for running multiple 
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blocks with separate contexts in the same flowgraph which could actually decrease performance.  So this is not 

recommended. 

The other observation from the results is in regard to the OpenCL CPU results, in other words OpenCL running on 

the Intel CPU driver.  The effect of this driver really amounts to a less efficient version of multi-threading.  What is 

evident from the result is that the OpenCL CPU version slightly outperformed the CPU-only version for the VM 

version.   This implies that this block could benefit from a true multithreading implementation if true acceleration 

were desired. 

2.8.2 Multiply/Add Const 

2.8.2.1 Data 
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Timing in Seconds 

Samples VM CPU VM OCL 

1070 

CPU 

1070 

OCL 970 CPU 970 OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000001 0.000034 0.000001 0.000021 0.000001 0.000034 0.000001 0.000059 

4096 0.000001 0.000041 0.000001 0.000026 0.000001 0.000048 0.000002 0.000082 

6144 0.000002 0.000044 0.000002 0.000031 0.000002 0.000063 0.000003 0.000104 

8192 0.000003 0.000057 0.000002 0.000036 0.000004 0.000079 0.000005 0.000125 

10240 0.000004 0.000059 0.000002 0.000039 0.000003 0.000086 0.000006 0.000111 

12288 0.000005 0.000057 0.000003 0.000044 0.000004 0.000099 0.000007 0.000126 

14336 0.000005 0.000058 0.000004 0.000048 0.000004 0.000112 0.000008 0.000143 

16384 0.000006 0.000074 0.000005 0.000052 0.000005 0.000125 0.000009 0.000157 

18432 0.000007 0.000078 0.000005 0.000057 0.000006 0.000139 0.000011 0.000173 

20480 0.000009 0.000083 0.000007 0.000061 0.000007 0.000153 0.000013 0.000187 

22528 0.00001 0.000141 0.000007 0.000066 0.000008 0.000165 0.000015 0.000203 

24576 0.000018 0.000129 0.000007 0.000070 0.000009 0.000179 0.000018 0.000215 

 

Sample throughput based on time and block size 

 

 

2.8.2.2 Observations 

This block performed very similarly to the Multiply block. 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
  
2,048,000,000.00  

    
60,235,294.12  

  
2,048,000,000.00  

    
97,523,809.52  

  
2,048,000,000.00  

    
60,235,294.12  

  
2,048,000,000.00  

    
34,711,864.41  

4096 
  
4,096,000,000.00  

    
99,902,439.02  

  
4,096,000,000.00  

  
157,538,461.54  

  
4,096,000,000.00  

    
85,333,333.33  

  
2,048,000,000.00  

    
49,951,219.51  

6144 
  
3,072,000,000.00  

  
139,636,363.64  

  
3,072,000,000.00  

  
198,193,548.39  

  
3,072,000,000.00  

    
97,523,809.52  

  
2,048,000,000.00  

    
59,076,923.08  

8192 
  
2,730,666,666.67  

  
143,719,298.25  

  
4,096,000,000.00  

  
227,555,555.56  

  
2,048,000,000.00  

  
103,696,202.53  

  
1,638,400,000.00  

    
65,536,000.00  

10240 

  

2,560,000,000.00  

  

173,559,322.03  

  

5,120,000,000.00  

  

262,564,102.56  

  

3,413,333,333.33  

  

119,069,767.44  

  

1,706,666,666.67  

    

92,252,252.25  

12288 
  
2,457,600,000.00  

  
215,578,947.37  

  
4,096,000,000.00  

  
279,272,727.27  

  
3,072,000,000.00  

  
124,121,212.12  

  
1,755,428,571.43  

    
97,523,809.52  

14336 
  
2,867,200,000.00  

  
247,172,413.79  

  
3,584,000,000.00  

  
298,666,666.67  

  
3,584,000,000.00  

  
128,000,000.00  

  
1,792,000,000.00  

  
100,251,748.25  

16384 

  

2,730,666,666.67  

  

221,405,405.41  

  

3,276,800,000.00  

  

315,076,923.08  

  

3,276,800,000.00  

  

131,072,000.00  

  

1,820,444,444.44  

  

104,356,687.90  

18432 
  
2,633,142,857.14  

  
236,307,692.31  

  
3,686,400,000.00  

  
323,368,421.05  

  
3,072,000,000.00  

  
132,604,316.55  

  
1,675,636,363.64  

  
106,543,352.60  

20480 
  
2,275,555,555.56  

  
246,746,987.95  

  
2,925,714,285.71  

  
335,737,704.92  

  
2,925,714,285.71  

  
133,856,209.15  

  
1,575,384,615.38  

  
109,518,716.58  

22528 

  

2,252,800,000.00  

  

159,773,049.65  

  

3,218,285,714.29  

  

341,333,333.33  

  

2,816,000,000.00  

  

136,533,333.33  

  

1,501,866,666.67  

  

110,975,369.46  

24576 
  
1,365,333,333.33  

  
190,511,627.91  

  
3,510,857,142.86  

  
351,085,714.29  

  
2,730,666,666.67  

  
137,296,089.39  

  
1,365,333,333.33  

  
114,306,976.74  
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2.8.3 Complex to Mag 

Complex to Mag is a block used for a number of applications, however in digital data processing it is most 

commonly used to demodulate ASK/OOK signals.  Given the goal of covering all three primary digital data modes 

(ASK/FSK/PSK), it was logical to include this block in the study. 

This block is simply implemented in OpenCL as a square root of squares as shown in the code below which builds 

the kernel: 

     srcStdStr = ""; 

 srcStdStr += "struct ComplexStruct {\n"; 

     srcStdStr += "float real;\n"; 

     srcStdStr += "float imag; };\n"; 

     srcStdStr += "typedef struct ComplexStruct SComplex;\n"; 

 

     if (useConst) 

      srcStdStr += "__kernel void complextomag(__constant SComplex * a, 

__global float * restrict c) {\n"; 

     else 

      srcStdStr += "__kernel void complextomag(__global SComplex * restrict a, 

__global float * restrict c) {\n"; 

 

     srcStdStr += "    size_t index =  get_global_id(0);\n"; 

     srcStdStr += "    float aval = a[index].imag;\n"; 

     srcStdStr += "    float bval = a[index].real;\n"; 

     srcStdStr += "    c[index] = sqrt((aval*aval)+(bval*bval));\n"; 

     srcStdStr += "}\n"; 

This can be compared against the GNURadio implementation which uses the following Volk call: 

volk_32fc_magnitude_32f_u(out, in, noutput_items); 

This calculation can ultimately be seen in the generic version of the Volk call: 

volk_32fc_magnitude_32f_generic(float* magnitudeVector, const lv_32fc_t* 

complexVector, unsigned int num_points) 

{ 

  const float* complexVectorPtr = (float*)complexVector; 

  float* magnitudeVectorPtr = magnitudeVector; 

  unsigned int number = 0; 

  for(number = 0; number < num_points; number++){ 

    const float real = *complexVectorPtr++; 

    const float imag = *complexVectorPtr++; 

    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag)); 

  } 

} 
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2.8.3.1 Data 

 

Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000001 0.000031 0.000001 0.000022 0.000002 0.000032 0.000003 0.000057 

4096 0.000002 0.000033 0.000002 0.000026 0.000003 0.000043 0.000006 0.000074 

6144 0.000003 0.000038 0.000003 0.000030 0.000005 0.000061 0.000009 0.000094 

8192 0.000004 0.000037 0.000004 0.000033 0.000007 0.000071 0.000013 0.000112 

10240 0.000005 0.000047 0.000004 0.000035 0.000009 0.000070 0.000016 0.000095 

12288 0.000006 0.000046 0.000005 0.000038 0.000010 0.000081 0.000019 0.000109 

14336 0.000007 0.000044 0.000006 0.000041 0.000012 0.000091 0.000022 0.000122 

16384 0.000008 0.000054 0.000007 0.000044 0.000014 0.000100 0.000025 0.000135 

18432 0.000009 0.000054 0.000008 0.000048 0.000015 0.000110 0.000028 0.000147 

20480 0.000010 0.000079 0.000009 0.000051 0.000017 0.000119 0.000031 0.000158 

22528 0.000011 0.000074 0.000010 0.000054 0.000019 0.000129 0.000034 0.000169 

24576 0.000013 0.000092 0.000011 0.000058 0.000020 0.000138 0.000038 0.000182 
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Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048   2,048,000,000.00      66,064,516.13    2,048,000,000.00      93,090,909.09    1,024,000,000.00      64,000,000.00    682,666,666.67      35,929,824.56  

4096   2,048,000,000.00    124,121,212.12    2,048,000,000.00    157,538,461.54    1,365,333,333.33      95,255,813.95    682,666,666.67      55,351,351.35  

6144   2,048,000,000.00    161,684,210.53    2,048,000,000.00    204,800,000.00    1,228,800,000.00    100,721,311.48    682,666,666.67      65,361,702.13  

8192   2,048,000,000.00    221,405,405.41    2,048,000,000.00    248,242,424.24    1,170,285,714.29    115,380,281.69    630,153,846.15      73,142,857.14  

10240   2,048,000,000.00    217,872,340.43    2,560,000,000.00    292,571,428.57    1,137,777,777.78    146,285,714.29    640,000,000.00    107,789,473.68  

12288   2,048,000,000.00    267,130,434.78    2,457,600,000.00    323,368,421.05    1,228,800,000.00    151,703,703.70    646,736,842.11    112,733,944.95  

14336   2,048,000,000.00    325,818,181.82    2,389,333,333.33    349,658,536.59    1,194,666,666.67    157,538,461.54    651,636,363.64    117,508,196.72  

16384   2,048,000,000.00    303,407,407.41    2,340,571,428.57    372,363,636.36    1,170,285,714.29    163,840,000.00    655,360,000.00    121,362,962.96  

18432   2,048,000,000.00    341,333,333.33    2,304,000,000.00    384,000,000.00    1,228,800,000.00    167,563,636.36    658,285,714.29    125,387,755.10  

20480   2,048,000,000.00    259,240,506.33    2,275,555,555.56    401,568,627.45    1,204,705,882.35    172,100,840.34    660,645,161.29    129,620,253.16  

22528   2,048,000,000.00    304,432,432.43    2,252,800,000.00    417,185,185.19    1,185,684,210.53    174,635,658.91    662,588,235.29    133,301,775.15  

24576   1,890,461,538.46    267,130,434.78    2,234,181,818.18    423,724,137.93    1,228,800,000.00    178,086,956.52    646,736,842.11    135,032,967.03  

 

2.8.3.2 Observations 

Again the results were very comparable to the Multiply and Multiply Const blocks with the CPU outperforming the 

GPU.  There was one anomaly in the data that was most evident in the 1070 hardware and that was the unusual jump 

going from 8192 to 10240 data points.  The test was rerun several times and each time the result was consistent.  

The reason for this jump is unknown. 
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2.9 POOR PERFORMANCE LIST 

In general, there are implementations of various core signal processing functions in OpenCL.  Most specifically 

these are basic Fast Fourier Transforms (FFT), both forward and reverse, along with signal filters.  Given all of the 

materials available on the Internet regarding executing FFT’s in OpenCL, the clFFT OpenCL FFT library, and 

vendor-specific implementations such as cuFFT, the expected result was that the OpenCL implementations would 

outperform the CPU implementations.  However the data indicates a different outcome within the context of real-

time SDR processing.  And once the underlying root causes were understood it did make sense.  As a result, this 

group provided the greatest surprise in the test data results.   

Before reviewing the data, some speculation in terms of why these blocks performed worse is be in order.  Many of 

the sample code about doing FFT transforms in OpenCL were geared towards offline processing.  In offline 

processing, blocks or batches of data could be processed at one time, which takes advantage of OpenCL’s 

performance gains with large data blocks.  However for real-time processing these blocks are much smaller and 

must be processed in a time-sensitive way.  For GNURadio this equates to processing the blocks provided by the 

scheduler.  

Because an FFT transform works on a complex data set matching in size to the FFT size (in other words a 2048 

point FFT would process 2048 data points at a time), moving these blocks individually to the GPU and back pays 

the performance cost of the memory copies mentioned earlier.  It is possible that more focus on batch processing 

within the code for the FFT and reverse FFT blocks would improve performance, however problems were 

encountered with clFFT throwing exceptions while using batches.  This may be more programmatic errors in this 

implementation than problems with the library. 

However any improvements in the FFT blocks would not be realized in the filter code since the filter calculations 

have a carry-forward “tail” necessitating FFT blocks be done sequentially.  In terms of filters, several options were 

explored.  Given the filter transition width and type, a series of taps are generated.  Smaller transition widths 

produce more taps which require more processing and adjustments to the block sizes.  These taps can be applied in 

either a time domain or frequency domain, however in general the frequency domain application does not take as 

much processing power and produces exactly the same result.  However what this requires is a forward FFT to get 

the data into the frequency domain, application of the taps, then a reverse FFT to get the transformed signal out.  

This process produces that “tail” that was mentioned that needs to be applied to the next block before it can be 

processed, which means processing needs to be done in sequential chunks.  Not an optimal implementation for 

OpenCL in that buffer read/writes need to be executed to move each block to the card.  This incurs quite a time 

penalty over the CPU implementation. 

These root causes do account for the lower-than-expected performance seen in the data presented in the next 

subsections. 

2.9.1 FFT Forward 

The forward FFT calculation was implemented in OpenCL using the clFFT library as shown below. 

Setup: 

        /* Setup clFFT. */ 

        clfftSetupData fftSetup; 

        err = clfftInitSetupData(&fftSetup); 

        err = clfftSetup(&fftSetup); 

 

        err = clfftCreateDefaultPlan(&planHandle, (*context)(), dim, clLengths); 

 

        /* Set plan parameters. */ 

        err = clfftSetPlanPrecision(planHandle, CLFFT_SINGLE); 

 

        if (dataType==DTYPE_COMPLEX) { 
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            err = clfftSetLayout(planHandle, CLFFT_COMPLEX_INTERLEAVED, 

CLFFT_COMPLEX_INTERLEAVED); 

        } 

        else { 

            err = clfftSetLayout(planHandle, CLFFT_REAL, CLFFT_REAL); 

        } 

 

     clfftSetPlanScale(planHandle, CLFFT_BACKWARD, 1.0f); // By default the backward scale is 

set to 1/N so you have to set it here. 

 

        //err = clfftSetResultLocation(planHandle, CLFFT_INPLACE);  // In-place puts data back in 

source queue.  Not what we want. 

        err = clfftSetResultLocation(planHandle, CLFFT_OUTOFPLACE); 

 

        // using vectors we don't want to change the output multiple since 1 item will be an fft 

worth of data. 

        //     set_output_multiple(fftSize); 

 

        /* Bake the plan. */ 

        err = clfftBakePlan(planHandle, 1, &(*queue)(), NULL, NULL); 

Note the highlighted line required for reverse transforms.  For some reason the clFFT library applies a scaling factor 

by default to reverse transforms.  This factor is 1/N where N is the FFT size.  This can be overridden with the 

highlighted line but must be done explicitly or the results would be scaled down and not match the CPU-only 

implementation results. 

The actual transform is then executed at runtime with the following code: 

         err = clfftEnqueueTransform(planHandle, fftDir, 1, &((*queue)()), 0, 

NULL, NULL, &((*aBuffer)()), &((*cBuffer)()), NULL); 

Note the same code is used for both forward and reverse transforms, the only difference is the fftDir flag which 

indicates whether the transform is forward or reverse. 

2.9.1.1 Data 
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Timing in Seconds 

Samples VM CPU VM OCL 

1070 

CPU 

1070 

OCL 970 CPU 970 OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000005 0.000147 0.000007 0.000071 0.000005 0.000063 0.000008 0.000101 

4096 0.000011 0.000203 0.000017 0.000142 0.000009 0.000125 0.000017 0.000203 

6144 0.000016 0.000562 0.000016 0.000202 0.000013 0.000186 0.000026 0.000308 

8192 0.000022 0.000386 0.000020 0.000241 0.000019 0.000249 0.000033 0.000401 

10240 0.000027 0.000413 0.000019 0.000275 0.000023 0.000292+G10 0.000042 0.000503 

12288 0.000032 0.000547 0.000021 0.000347 0.000027 0.000350 0.000049 0.000602 

14336 0.000037 0.000922 0.000022 0.000361 0.000033 0.000409 0.000060 0.000704 

16384 0.000044 0.000975 0.000026 0.000387 0.000038 0.000505 0.000069 0.000806 

18432 0.000049 0.000801 0.000030 0.000476 0.000044 0.000535 0.000080 0.000900 

20480 0.000054 0.001200 0.000032 0.000491 0.000048 0.000584 0.000088 0.000999 

22528 0.000060 0.002420 0.000035 0.000499 0.000051 0.000646 0.000101 0.001104 

24576 0.000066 0.000931 0.000040 0.000564 0.000058 0.000701 0.000105 0.001202 

 

Sample throughput based on time and block size 

Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
     
409,600,000.00  

    
13,931,972.79  

     
292,571,428.57  

    
28,845,070.42  

     
409,600,000.00  

    
32,507,936.51  

  
256,000,000.00  

  
20,277,227.72  

4096 
     
372,363,636.36  

    
20,177,339.90  

     
240,941,176.47  

    
28,845,070.42  

     
455,111,111.11  

    
32,768,000.00  

  
240,941,176.47  

  
20,177,339.90  

6144 
     
384,000,000.00  

    
10,932,384.34  

     
384,000,000.00  

    
30,415,841.58  

     
472,615,384.62  

    
33,032,258.06  

  
236,307,692.31  

  
19,948,051.95  

8192 
     
372,363,636.36  

    
21,222,797.93  

     
409,600,000.00  

    
33,991,701.24  

     
431,157,894.74  

    
32,899,598.39  

  
248,242,424.24  

  
20,428,927.68  

10240 
     
379,259,259.26  

    
24,794,188.86  

     
538,947,368.42  

    
37,236,363.64  

     
445,217,391.30  #VALUE! 

  
243,809,523.81  

  
20,357,852.88  

12288 
     
384,000,000.00  

    
22,464,351.01  

     
585,142,857.14  

    
35,412,103.75  

     
455,111,111.11  

    
35,108,571.43  

  
250,775,510.20  

  
20,411,960.13  

14336 
     
387,459,459.46  

    
15,548,806.94  

     
651,636,363.64  

    
39,711,911.36  

     
434,424,242.42  

    
35,051,344.74  

  
238,933,333.33  

  
20,363,636.36  

16384 
     
372,363,636.36  

    
16,804,102.56  

     
630,153,846.15  

    
42,335,917.31  

     
431,157,894.74  

    
32,443,564.36  

  
237,449,275.36  

  
20,327,543.42  

18432 
     
376,163,265.31  

    
23,011,235.96  

     
614,400,000.00  

    
38,722,689.08  

     
418,909,090.91  

    
34,452,336.45  

  
230,400,000.00  

  
20,480,000.00  

20480 
     
379,259,259.26  

    
17,066,666.67  

     
640,000,000.00  

    
41,710,794.30  

     
426,666,666.67  

    
35,068,493.15  

  
232,727,272.73  

  
20,500,500.50  

22528 
     
375,466,666.67  

      
9,309,090.91  

     
643,657,142.86  

    
45,146,292.59  

     
441,725,490.20  

    
34,873,065.02  

  
223,049,504.95  

  
20,405,797.10  

24576 
     
372,363,636.36  

    
26,397,422.13  

     
614,400,000.00  

    
43,574,468.09  

     
423,724,137.93  

    
35,058,487.87  

  
234,057,142.86  

  
20,445,923.46  
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2.9.2 FFT Reverse 

2.9.2.1 Data 

 

Timing in Seconds 

Samples 

VM 

CPU 

VM 

OCL 

1070 

CPU 

1070 

OCL 

970 

CPU 

970 

OCL 

1000M 

CPU 

1000M 

OCL 

2048 0.000006 0.000118 0.000006 0.000059 0.000004 0.000063 0.000009 0.000100 

4096 0.000011 0.000167 0.000008 0.000094 0.000009 0.000126 0.000016 0.000202 

6144 0.000015 0.000305 0.000011 0.000137 0.000013 0.000187 0.000025 0.000302 

8192 0.000022 0.000455 0.000014 0.000177 0.000019 0.000250 0.000035 0.000403 

10240 0.000027 0.000500 0.000017 0.000264 0.000022 0.000294 0.000042 0.000502 

12288 0.000031 0.000755 0.000020 0.000291 0.000027 0.000351 0.000053 0.000611 

14336 0.000036 0.000880 0.000023 0.000396 0.000034 0.000410 0.000062 0.000701 

16384 0.000041 0.000821 0.000026 0.000380 0.000037 0.000499 0.000071 0.000801 

18432 0.000046 0.000826 0.000029 0.000418 0.000041 0.000535 0.000077 0.000901 

20480 0.000055 0.000878 0.000032 0.000463 0.000045 0.000582 0.000086 0.000995 

22528 0.000060 0.001817 0.000035 0.000487 0.000054 0.000647 0.000099 0.001107 

24576 0.000066 0.001424 0.000039 0.000491 0.000055 0.000703 0.000108 0.001197 

 

 

 

Sample throughput based on time and block size 
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Samples VM CPU VM OCL 1070 CPU 1070 OCL 970 CPU 970 OCL 1000M CPU 1000M OCL 

2048 
     
341,333,333.33  

    
17,355,932.20  

     
341,333,333.33  

    
34,711,864.41  

     
512,000,000.00  

    
32,507,936.51  

  
227,555,555.56  

  
20,480,000.00  

4096 

     

372,363,636.36  

    

24,526,946.11  

     

512,000,000.00  

    

43,574,468.09  

     

455,111,111.11  

    

32,507,936.51  

  

256,000,000.00  

  

20,277,227.72  

6144 
     
409,600,000.00  

    
20,144,262.30  

     
558,545,454.55  

    
44,846,715.33  

     
472,615,384.62  

    
32,855,614.97  

  
245,760,000.00  

  
20,344,370.86  

8192 
     
372,363,636.36  

    
18,004,395.60  

     
585,142,857.14  

    
46,282,485.88  

     
431,157,894.74  

    
32,768,000.00  

  
234,057,142.86  

  
20,327,543.42  

10240 

     

379,259,259.26  

    

20,480,000.00  

     

602,352,941.18  

    

38,787,878.79  

     

465,454,545.45  

    

34,829,931.97  

  

243,809,523.81  

  

20,398,406.37  

12288 
     
396,387,096.77  

    
16,275,496.69  

     
614,400,000.00  

    
42,226,804.12  

     
455,111,111.11  

    
35,008,547.01  

  
231,849,056.60  

  
20,111,292.96  

14336 
     
398,222,222.22  

    
16,290,909.09  

     
623,304,347.83  

    
36,202,020.20  

     
421,647,058.82  

    
34,965,853.66  

  
231,225,806.45  

  
20,450,784.59  

16384 

     

399,609,756.10  

    

19,956,151.04  

     

630,153,846.15  

    

43,115,789.47  

     

442,810,810.81  

    

32,833,667.33  

  

230,760,563.38  

  

20,454,431.96  

18432 
     
400,695,652.17  

    
22,314,769.98  

     
635,586,206.90  

    
44,095,693.78  

     
449,560,975.61  

    
34,452,336.45  

  
239,376,623.38  

  
20,457,269.70  

20480 
     
372,363,636.36  

    
23,325,740.32  

     
640,000,000.00  

    
44,233,261.34  

     
455,111,111.11  

    
35,189,003.44  

  
238,139,534.88  

  
20,582,914.57  

22528 

     

375,466,666.67  

    

12,398,459.00  

     

643,657,142.86  

    

46,258,726.90  

     

417,185,185.19  

    

34,819,165.38  

  

227,555,555.56  

  

20,350,496.84  

24576 
     
372,363,636.36  

    
17,258,426.97  

     
630,153,846.15  

    
50,052,953.16  

     
446,836,363.64  

    
34,958,748.22  

  
227,555,555.56  

  
20,531,328.32  

 

2.10 FILTERS 

Filters turned out to show quite a variety  of performance variation in testing.  The number of taps in the specified 

filter along with FIR versus FFT versions both affected the ultimate throughput of the OpenCL implementation.   

Before discussing the results, it’s important to understand how taps can vary in a real implementation.  We’ll use a 

firdes.low_pass filter as an example.  This filter takes gain, a sampling rate, a cutoff frequency, and a transition 

frequency as the minimum parameters.  As seen below, the number of taps varies with sample rate, cutoff, and 

transition values.  Each set was generated with gain 1 (however changing the gain did not impact the taps): 

Description: 10 MSPS, 100 KHz Filter, 20% transition 

Filter: firdes.low_pass(1, 10e6, 100e3, 0.2*100e3) 

Taps: 1205 

 

Description: 2.4 MSPS, 100 KHz Filter, 20% transition 

Filter: firdes.low_pass(1, 2.4e6, 100e3, 0.2*100e3) 

Taps: 289 

 

Description: 10 MSPS, 50 KHz Filter, 20% transition 

Filter: firdes.low_pass(1, 10e6, 50e3, 0.2*50e3) 

Taps: 2409 

 

Description: 10 MSPS, 50 KHz Filter, 30% transition 

Filter: firdes.low_pass(1, 10e6, 50e3, 0.3*50e3) 

Taps: 1607 

 



Study on Implementing OpenCL in Common GNURadio Blocks 

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s). 

52 

Description: 10 MSPS, 50 KHz Filter, 10% transition 

Filter: firdes.low_pass(1, 10e6, 50e3, 0.1*50e3) 

Taps: 4819 

The point of this exercise is that changing any one of the parameters can have an impact on the number of taps.  So 

to understand filter performance, one must measure it based on the number of taps, then consider that for each of the 

filters and sampling rates in use to determine appropriate performance.  Luckily, gr-clenabled includes a command-

line tool called test-clfilter that takes the number of taps as a command-line parameter and measures performance 

across all 4 filter types: 

1. OpenCL FIR Filter 

2. GNURadio FIR Filter 

3. OpenCL FFT Filter 

4. GNURadio FFT Filter 

The first draft of this report did not take enough into account.  This section has been reworked to support a more 

thorough filter analysis.  The one change over the rest of the document was that the NVIDIA 1070 system was 

changed to Ubuntu 16.04 LTS in between the first round of testing due to issues with the PFB Arbitrary Resampler 

on the version of Debian (potentially due to the 4.9 kernel or kali linux optimizations).  This does have an impact on 

GNURadio/filter results in that CPU calculations did appear to run slightly slower on the 4.4 kernel over the 4.9 

kernel. 

The following OpenCL implementation was used for the time domain calculations.  It shows a number of 

optimizations such as defining the number of taps as a constant rather than passing it as a parameter (if the number 

of taps changes, the kernel is recompiled).  Note that this version does attempt to optimize if the hardware supports 

Fused Multiply/Add (FMA) operations.  Also, if the number of taps supports it, the kernel is optimized to pass the 

taps in constant memory for improved speed. 

"#define K "+ std::to_string(d_ntaps) 

 

struct ComplexStruct { 

 float real; 

 float imag; 

}; 

typedef struct ComplexStruct SComplex; 

 

__kernel void td_FIR_complex 

( __global const SComplex * restrict InputArray, // Length N 

__constant float * FilterArray, // Length K 

__global SComplex *restrict OutputArray // Length N+K-1 

) 

{ 

  size_t gid=get_global_id(0); 

 // Perform Compute 

 SComplex result; 

 result.real=0.0f; 

 result.imag=0.0f; 

 for (int i=0; i<K; i++) { 

 

Code to check if FMA support is present 
 if (hasSingleFMASupport) { 

  // gid+i doesn't crash because we pass the larger buffer to the device 

and zero out the additional memory 

  kernelCode +="  result.real = fma(FilterArray[K-1-

i],InputArray[gid+i].real,result.real);\n"; 

  kernelCode +="  result.imag = fma(FilterArray[K-1-

i],InputArray[gid+i].imag,result.imag);\n"; 
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 } 

 else { 

  kernelCode +="  result.real += FilterArray[K-1-

i]*InputArray[gid+i].real;\n"; 

  kernelCode +="  result.imag += FilterArray[K-1-

i]*InputArray[gid+i].imag;\n"; 

 } 

 
 } 

 OutputArray[gid].real = result.real; 

 OutputArray[gid].imag = result.imag; 

} 

There were a number of examples on the Internet of implementing time-domain filtering with barriers and copying 

the data to local memory, however this approach was focused on FPGA implementations.  When this approach was 

attempted on GPU’s in combination with the constant memory, the kernels would throw exceptions at runtime, 

presumably due to lack of on-board memory.  Therefore this approach with constant memory for the taps and global 

memory for the filter data was the best that could be achieved on the GPU’s.   

Given the flexibility in the gr-clenabled code it is possible to use a faster implementation when the OpenCL type is 

set to Accelerator, however an expensive FPGA was not available to test for this study so this implementation was 

left in the code for FPGA’s as well for compatibility. 

The frequency domain implementation can be seen in the following run-time routine leveraging the clFFT forward 

and reverse transforms.  Note that since it had previously been proven in the Multiply block that the CPU multiply 

function was faster, the FFT calculations are done in OpenCL and the multiply to apply the taps is done on the CPU.  

In the code below, the GNURadio block code is commented out with the OpenCL implementation immediately 

following it. 

     for(int i = 0; i < ninput_items; i += d_fft_filter->d_nsamples) { 

       // Move block of data to forward FFT buffer 

     /* 

       memcpy(d_fwdfft->get_inbuf(), &input[i], d_fft_filter->d_nsamples * 

sizeof(gr_complex)); 

 

       // zero out any data past d_fft_filter->d_nsamples to fft_size 

       for(j = d_fft_filter->d_nsamples; j < d_fft_filter->d_fftsize; j++) 

      d_fwdfft->get_inbuf()[j] = 0; 

       // Run the transform 

       d_fwdfft->execute(); // compute fwd xform 

    */ 

 

       queue->enqueueWriteBuffer(*aBuffer,CL_TRUE,0,d_fft_filter->d_nsamples*dataSize,(void 

*)&in[i]); 

       queue->enqueueWriteBuffer(*aBuffer,CL_TRUE,d_fft_filter-

>d_nsamples*dataSize,(d_fft_filter->d_fftsize-d_fft_filter->d_nsamples)*dataSize,(void 

*)zeroBuff); 

       err = clfftEnqueueTransform(planHandle, CLFFT_FORWARD, 1, &(*queue)(), 0, NULL, NULL, 

&(*aBuffer)(), &(*cBuffer)(), NULL); 

       err = clFinish((*queue)()); 

 

       // Get the fwd FFT data out 

    //   gr_complex *a = d_fwdfft->get_outbuf(); 

       queue->enqueueReadBuffer(*cBuffer,CL_TRUE,0,d_fft_filter->d_fftsize*dataSize,(void 

*)tmpFFTBuff); 

       gr_complex *a; 

       a=(gr_complex *)tmpFFTBuff; 

 

       gr_complex *b = d_fft_filter->d_xformed_taps; 

 

       // set up the inv FFT buffer to receive the complex multiplied data 

    //   gr_complex *c = d_invfft->get_inbuf(); 

       gr_complex *c; 

       c=(gr_complex *)ifftBuff; 
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       // Original volk call.  Might as well use SIMD / SSE 

       // I've tried, but this VOLK CALL JUST CRASHES!  DON"T USE IT UNTIL I KNOW WHY 

       //volk_32fc_x2_multiply_32fc_a(c, a, b, d_fft_filter->d_fftsize); 

 

       for (k=0;k<d_fft_filter->d_fftsize;k++) { 

        c[k] = a[k] * b[k]; 

       } 

 

 

 //       memcpy(d_invfft->get_inbuf(),(void *)c,d_fft_filter->d_fftsize*dataSize); 

       queue->enqueueWriteBuffer(*aBuffer,CL_TRUE,0,d_fft_filter->d_fftsize*dataSize,(void 

*)ifftBuff); 

 

       // Run the inverse FFT 

       //  d_invfft->execute(); // compute inv xform 

       err = clfftEnqueueTransform(planHandle, CLFFT_BACKWARD, 1, &(*queue)(), 0, NULL, NULL, 

&(*aBuffer)(), &(*cBuffer)(), NULL); 

       err = clFinish((*queue)()); 

 

         // outdata = (gr_complex *)d_invfft->get_outbuf(); 

       queue->enqueueReadBuffer(*cBuffer,CL_TRUE,0,d_fft_filter->d_fftsize*dataSize,(void 

*)tmpFFTBuff); 

         gr_complex *outdata; 

       outdata=(gr_complex *)tmpFFTBuff; 

 

       // ------------------------------------------------------------------ 

       // Unmodified GNURadio flow 

       // add in the overlapping tail 

       for(j = 0; j < d_fft_filter->tailsize(); j++) 

      outdata[j] += d_fft_filter->d_tail[j]; 

 

       // copy d_fft_filter->d_nsamples to output buffer and increment for decimation! 

       j = dec_ctr; 

       while(j < d_fft_filter->d_nsamples) { 

      *output++ = outdata[j]; 

      j += decimation(); 

       } 

       dec_ctr = (j - d_fft_filter->d_nsamples); 

 

       // ------------------------------------------------------------------ 

       // stash the tail 

       // memcpy(&d_tail[0], outdata + d_fft_filter->d_nsamples,tailsize() * 

sizeof(gr_complex)); 

       memcpy(&d_fft_filter->d_tail[0], outdata + d_fft_filter->d_nsamples,d_fft_filter-

>tailsize() * dataSize); 

     } 

 

Before presenting the data, there is another dimension to filter testing.  FFT filters require specific block sizes to 

match up with FFT bins.  Therefore as the number of taps changes, so does this block size.  The test tool test-clfilter 

takes this into account, however what it means is that the data below was run for time domain samples with the 

number of samples specified.  Whereas the FFT transforms were run with their necessary block size which may be 

higher or lower.  Test-clfilter does tell you the block size used for each run in its output for further analysis.  This is 

important in the context of OpenCL and the number of bytes transferred to hardware.  Because more bytes can mean 

higher throughput, one can see some variations in the FFT OpenCL transforms that at first glance may not make 

sense.  However if one considers that the block sizes changed for the FFT transforms, it makes sense. 
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2.10.1.1 Data 

 

 

Throughput 

 

Taps   VM OCL FIR   VM CPU FIR   VM OCL FFT   VM CPU FFT  

 100 Taps    22,885,616.00    21,404,476.00        1,075,628.00    161,624,064.00  

 300 Taps    12,312,318.00      7,563,402.00        2,938,967.75    151,332,832.00  

 1000 Taps      4,089,839.75      1,325,223.12        3,470,441.00      98,806,104.00  

 2000 Taps      2,051,149.62         362,435.88        2,928,042.25      80,466,240.00  

 4000 Taps      1,065,685.25            97,455.12        4,383,777.00      62,140,540.00  

8,000 Taps        545,208.06         433,145.47        6,661,933.50      54,585,396.00  

 

Taps   1070 OCL FIR   1070 CPU FIR   1070 OCL FFT   1070 CPU FFT  

 100 Taps    76,546,064.00    18,979,310.00        2,743,087.75    224,000,912.00  

 300 Taps    66,045,096.00    12,235,497.00        3,736,149.50    238,450,976.00  

 1000 Taps    75,889,568.00      2,359,690.00        8,852,358.00    160,946,704.00  

 2000 Taps    35,378,960.00      1,693,756.00      11,923,301.00    140,503,680.00  

 4000 Taps    26,616,328.00         209,474.69      20,767,786.00      98,766,816.00  

 -
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8,000 Taps   16,599,522.00         204,850.78      26,284,392.00      89,369,280.00  

 

Taps   970 OCL FIR   970 CPU FIR   970 OCL FFT   970 CPU FFT  

 100 Taps    83,844,648.00      26,843,200.00        2,084,594.38    155,215,264.00  

 300 Taps    71,128,776.00      10,141,627.00        6,673,140.50    148,326,640.00  

 1000 Taps    46,703,180.00            808,101.50        7,343,295.50    104,844,624.00  

 2000 Taps    30,493,560.00        1,790,411.00        8,603,805.00      89,385,872.00  

 4000 Taps    18,013,690.00            375,857.19      14,012,486.00      64,487,392.00  

 8000 Taps    11,443,021.00              26,349.91      16,937,466.00      63,031,420.00  

 

Taps 

1000M OCL 

FIR 

1000M CPU 

FIR 1000M OCL FFT 1000M CPU FFT 

 100 Taps    36,492,792.00    18,272,636.00        1,098,577.50      104,363,320.00  

 300 Taps    16,995,168.00      8,430,986.00        3,586,630.50        98,818,272.00  

 1000 Taps      5,948,145.50      1,122,462.25        4,286,220.50        63,277,876.00  

 2000 Taps      3,082,568.50         379,239.84        5,294,612.50        53,444,016.00  

 4000 Taps      1,555,993.25            91,996.01        8,386,413.50        40,870,868.00  

 8000 Taps         766,855.38            43,131.77        9,624,576.00        37,386,076.00  

 

2.10.1.2 Observations 

As is probably expected, an entire report could be done on filters.  In general, the CPU-based FFT filters showed an 

order of magnitude better performance over the other filters.  And as expected, the OpenCL implementation of the 

FIR filters outperformed their CPU equivalents.  However the OpenCL-based FFT performance continued to 

improve as the number of taps increased, indicating that for very large tap sets the OpenCL FFT filter may be the 

best. 

There was also decreasing performance with FIR filters as tap count increased countered by increasing FFT speed.  

This again is as expected in that the number of loops in time-based convolution increase with tap size taking more 

calculations per point.  This reaches a tradeoff point in number of taps where the FIR filter is faster up to an 

equilibrium tap size, then after which the FFT is faster.  The graph below shows this tradeoff for the NVIDIA 1070. 
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In general the best recommendation is to treat taps as a design point in your flowgraphs.  Take a look at the filter 

parameters and determine the number of taps in the specific filter(s) you are using and use the test-clfilter tool to 

profile each of the 4 filters to select the one with the best performance. 

2.10.2 Costas Loop 

In the original study, a Costas Loop was not included.  This was due to the nature of the algorithm with sequential 

calculations that do not lend themselves to massively parallel processing.  However after this study was completed, a 

follow-up project (gr-lfast) was started to look at ways to optimize CPU-based blocks for some additional 

performance improvements.  Since a 50-70% speed gain was achieved in that project on the Costas Loop, the code 

was at least considered and translated in its optimized form into OpenCL to see how it would perform. 

In order to implement this block in OpenCL, the method of OpenCL processing had to be different.  Rather than 

parallel data processing, an OpenCL task-based processing approach was taken with a work queue size of 1 and all 

of the data passed as a single-dimensional input array.  The result is that the algorithm runs as a single thread on a 

single core. 

Performance was as expected (poor) on any of the GPU’s.  The data below shows the timing on the NVIDIA 1070: 

Testing Costas Loop performance with 8192 items... 

OpenCL Context: GPU 

OpenCL Run Time:      0.011528 s  (710622.437500 sps) 

CPU-only Run Time:      0.000462 s  (17721346.000000 sps) 

One can see that it only achieved about 710,622 samples/sec.  Not enough to even process in realtime at low 

sampling rates. 
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Because the code runs as a single task on a single core, increasing the data set size does not impact the overall 

throughput.  In other words the throughput rate stays flat similar to when running on the CPU.  This can be seen 

when moving to a 16384 block size: 

Testing Costas Loop performance with 16384 items... 

OpenCL Context: GPU 

OpenCL Run Time:      0.023313 s  (702798.437500 sps) 

CPU-only Run Time:      0.000922 s  (17774404.000000 sps) 

As seen above, the throughput stays right around that 700,000 samples/sec range.  This result agrees with 

expectations in running on a single core. 

One rationale behind ultimately including this in this study was that some FPGA’s also support OpenCL and the gr-

clenabled code includes the ability to run on this OpenCL-enabled hardware as long as it appears as a standard 

OpenCL Accelerator device.  It is possible that performance could be different on these alternate platforms, so the 

block was ultimately included. 

2.11 A NOTE ON FRAMES AND SAMPLES / SEC 

There are a number of notes of caution in actually using OpenCL accelerated blocks.  In some cases, the size of the 

data blocks processed may need to be at a minimum of 8192, 10240, or larger to achieve OpenCL performance 

gains.  This means making the GNURadio buffers at least twice that so that the scheduler would actually pass that 

much data to the block.   

The GNURadio documentation cautions against adjusting these values unless you know specifically what you are 

doing and how it will impact the flowgraph.  This section is strictly conjecture (yet to be tested), however it stands to 

reason that the real value in OpenCL block usage comes from SDR hardware at higher data rates (in other words 

cards sampling at 20 MSPS or higher). 

In real-time processing there is a concept of frames and frames per second.  In this case a frame can be thought of as 

a single pass on a block of data provided to a block.  If you assume a linear progression as is generally observed 

with CPU-only blocks, doubling the block size doubles the processing time but halves the frame rate.  This can be 

best understood with an example: 

If it takes .01 seconds to process a block of data, this translates to 100 frames per second (1/0.01).  Multiply that 

times the size of the block and that would give you your throughput.  So if 8192 data points are received, 8192 

samples / frame x 100 frames/sec = 819,200 samples / sec.  In many implementations both the throughput and frame 

rate are important.  For instance, the human eye may require 20-30 frames/sec in a video stream to see smooth 

motion.  If you decrease this to 5 frames/sec the video gets very choppy.  The same concept can apply for real-time 

signal processing in that if we want to process our data in real time, we have to not only be aware of throughput but 

also frame rate.  In other words if we made our block size so big that we were only processing 1 frame / sec, our 

flowgraphs and our output would “look” choppy just like the video example. 

If you take a slower SDR producing 2.4 MSPS, increasing the buffer size per frame may make the signal choppy as 

in the video example. Moving to a 16K buffer over an 8K buffer would generally cut the frame rate in half.   

However, it stands to reason that if you go from a 2.4 MSPS data stream on an rtl-sdr dongle to a 20 MSPS data 

stream on a HackRF you are increasing the required throughput per second by 8.3 times.  Or on an Airspy running at 

10 MSPS the throughput would be 4.17 times the 2.4 MSPS rate.   
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This implies that given the same buffer size, GNURadio needs to process more frames / sec to maintain throughput.  

In a real-world example, if the default 8192 buffer setting is used, lets assume the scheduler sends us half that every 

frame (it’s not that linear but just for argument’s sake and to make the math easy let’s use this).  That means that for 

2.4 MSPS at 4096 samples, GNURadio would process about 586 frames / sec.  For 20 MSPS, this increases to 4883 

frames / sec! 

In this 20 MSPS case, it may be okay to increase the buffer size comparably which would produce the same frame 

rate.  In other words 20 MSPS with 8192 samples/frame * 8.3 factor (20/2.4) equals a buffer setting of 67164 to 

produce the same frame rate.  Using this setting would produce the same frames / sec at 20 MSPS as 8192 at 2.4 

MSPS but pass more data per frame which would be more conducive to OpenCL acceleration.  Suddenly adjusting 

the buffer to 32K or 64K to get OpenCL block sizes above 10K doesn’t seem unrealistic. 

Therefore, while speculation, it stands to reason that increasing buffer sizes to 32K for 10 MSPS or 64K for 20 

MSPS.  Because we simply took the default setting of 8192 to get these numbers, remember that the scheduler 

would generally send about half that, which means that for 10 MSPS, a 32K buffer setting would generally produce 

16K frame sizes.  For 20 MSPS and 64K buffer sizes this means generally that blocks may be around 32K samples / 

frame.  These line up much better with the performance curves where OpenCL outperforms the CPU.   

Based on this line of thought, it stands to reason that one could use larger buffer sizes without impacting GNURadio 

flowgraphs and gain the benefit of OpenCL with larger block sizes, but only at higher SDR sample rates.  This 

actually stands to reason in that if your goal is to process higher throughput through a flowgraph, it is because you 

are feeding it more samples per second.  Otherwise at low sample rates the CPU-only performance for 2.4 MSPS is 

sufficient and wouldn’t even require acceleration. 

2.12 MULTIPLE SIMULTANEOUS BLOCKS 

While one may think that using as many OpenCL-enabled blocks in a single flowgraph as possible would improve 

performance, running multiple kernels on a single graphics card does impact performance.  A moment of reflection 

and this makes intuitive sense.  Running a CPU-intensive application along with another CPU-intensive application 

will not only effect each but the system as a whole as they will compete to take full advantage of the CPU. 

The same applies to GPU’s.  Performance benefits are calculated on an individual isolated basis taking full 

advantage of GPU hardware.  Attempting to run multiple blocks simultaneously, each attempting to take full 

advantage of a GPU will inevitably effect each other.  The following tests with test-clenabled demonstrate this 

effect. 

This result is for the no-action kernel running with an 8192 block size and nothing else running on the 1070 

hardware.  The result is 36 microsecond runtimes. 

Testing no-action kernel (return only) constant operation to measure OpenCL overhead 

This value represent the 'floor' on the selected platform.  Any CPU operations have to 

be slower than this to even be worthy of OpenCL consideration unless you're just 

looking to offload. 

OpenCL INFO: Math Op Const building kernel with __constant params... 

Max constant items: 8192 

OpenCL INFO: Math Op Const building kernel with __constant params... 

OpenCL Context: GPU 

OpenCL Run Time:      0.000036 s  (225498704.000000 sps) 

Running test-clenabled in a continuous while loop to load the GPU like this: 

while true; do test-clenabled 128000; done 

Then running test-clenabled in a separate command-prompt immediately shows the impact of the other running 

calculations: 
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Testing no-action kernel (return only) constant operation to measure OpenCL overhead 

This value represent the 'floor' on the selected platform.  Any CPU operations have to be slower than this to even be 

worthy of OpenCL consideration unless you're just looking to offload. 

OpenCL INFO: Math Op Const building kernel with __constant params... 

Max constant items: 8192 
OpenCL INFO: Math Op Const building kernel with __constant params... 

OpenCL Context: GPU 

OpenCL Run Time:      0.000116 s  (70560704.000000 sps) 

The result was an increased runtime to 116 microseconds… over 3.2 times slower.  And this only represents the 

impact of one other block running at any given time.  Running additional blocks could only have additional negative 

impacts on performance. 

Tests were then run on the 970 hardware which actually contained 2 GTX 970 cards.  The baseline no-action kernel 

test for 8192 data points was 73 microseconds shown below. 

Testing no-action kernel (return only) constant operation to measure OpenCL overhead 

This value represent the 'floor' on the selected platform.  Any CPU operations have to 

be slower than this to even be worthy of OpenCL consideration unless you're just 

looking to offload. 

OpenCL INFO: Math Op Const building kernel with __constant params... 

Max constant items: 8192 

OpenCL INFO: Math Op Const building kernel with __constant params... 

OpenCL Context: GPU 

OpenCL Run Time:      0.000073 s  (111518528.000000 sps) 

The same while loop was executed using the second graphics card with the following line: 

while true; do test-clenabled --device=0:1 128000;done 

test-clenabled was then simultaneously run on the first graphics card to test the impact of running 2 blocks on 2 

different cards.  Then net result was a minimal impact as shown below: 

Testing no-action kernel (return only) constant operation to measure OpenCL overhead 

This value represent the 'floor' on the selected platform.  Any CPU operations have to 

be slower than this to even be worthy of OpenCL consideration unless you're just 

looking to offload. 

OpenCL INFO: Math Op Const building kernel with __constant params... 

Max constant items: 8192 

OpenCL INFO: Math Op Const building kernel with __constant params... 

OpenCL Context: GPU 

OpenCL Run Time:      0.000077 s  (105756552.000000 sps) 

Note the increase from 73 to 77 microseconds.  Multiple runs do vary by a few microseconds so this can be within 

within normal performance variances, however it stands to reason that other shared resources within the computer 

may contribute to some delay while both are running simultaneously. 

In either case these tests demonstrate that using multiple OpenCL blocks on multiple cards can maintain the 

performance gains and allow multiple blocks to be used simultaneously. 

2.13 CLOCK RECOVERY 

MM Clock Recovery was another digital data block that was up for OpenCL implementation consideration.  In 

reviewing the GNURadio code, the block appeared to have sequential calculations in that each successive iteration 

requires the previous iteration’s calculation like the Costas Loop which does not lend itself to the massively parallel 



Study on Implementing OpenCL in Common GNURadio Blocks 

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s). 

61 

architecture of OpenCL processing.  In addition, some other timing tests on the native block showed very high 

throughput rates, making it not worth OpenCL conversion at this time. 

The sequential nature of the code can be seen in the code below taken from the GNURadio clock recovery 

general_work function: 

      if(write_foptr) { 

 while(oo < noutput_items && ii < ni) { 

   d_p_2T = d_p_1T; 

   d_p_1T = d_p_0T; 

   d_p_0T = d_interp->interpolate(&in[ii], d_mu); 

 

   d_c_2T = d_c_1T; 

   d_c_1T = d_c_0T; 

   d_c_0T = slicer_0deg(d_p_0T); 

 

   x = (d_c_0T - d_c_2T) * conj(d_p_1T); 

   y = (d_p_0T - d_p_2T) * conj(d_c_1T); 

   u = y - x; 

   mm_val = u.real(); 

   out[oo++] = d_p_0T; 

 

   // limit mm_val 

   mm_val = gr::branchless_clip(mm_val,1.0); 

   d_omega = d_omega + d_gain_omega * mm_val; 

   d_omega = d_omega_mid + gr::branchless_clip(d_omega-d_omega_mid, 

d_omega_lim); 

 

   d_mu = d_mu + d_omega + d_gain_mu * mm_val; 

   ii += (int)floor(d_mu); 

   d_mu -= floor(d_mu); 

 

   // write the error signal to the second output 

   foptr[oo-1] = mm_val; 

 

   if(ii < 0) // clamp it.  This should only happen with bogus input 

     ii = 0; 

 } 

 } 

If any readers have OpenCL implementations for these remaining blocks they could be worth timing and 

incorporating into gr-clenabled. 
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2.14 INSTRUMENTATION AND GR-FOSPHOR 

This study specifically did not attempt to implement any instrumentation as the GR-FOSPHOR block already exists 

to provide an OpenCL implementation.  Also, by the time the study got to the point to consider instrumentation, the 

poor performance of FFT transforms in OpenCL for real-time processing were understood and were speculated to 

show up in instrumentation like a Frequency Sink as well.   

However the study did take a cursory look at the performance of gr-fosphor with the hindsight of the results of this 

study.  What was observed was that gr-fosphor has a significant negative impact on a system.  Tests were performed 

with a flowgraph with a constant source feeding a 2MSPS throttle block into gr-fosphor on the 1070 system.  The 

net result was that 2 of the CPU cores still went from near zero to 100% utilization.  This may be unacceptable if 

other high-CPU blocks are in a flowgraph.   

For comparison, the same test was then performed with the standard QT Frequency sink on the 1070 system and the 

CPU usage was considerably lower.  CPU’s showed only nominal activity, low by any estimation.   

This indicates that CPU-based visualization is actually more efficient and the use of the GPU for visualization, at 

least based on FFT transforms, is less efficient and would actually put a higher load on the system.  This makes 

sense in the context of the results of this study where FFT transforms, fundamental to frequency displays perform 

better on the CPU than on the GPU. 

If the overall goal of a flowgraph with OpenCL blocks is to process higher throughput or relieve some of the CPU-

intensive calculations, one alternative in providing visualization with frequency, time, and/or phase plots to consider 

if this is the case is to use a TCP or UDP source/sink combination to send the data to a second computer dedicated to 

visualization.  That way signal instrumentation would not impact processing of the same signal. 
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3 Conclusions 

Software Defined Radio provides a great opportunity for researchers and hobbyists to engage in a field of study that 

has historically been too costly.  However as technologies emerge, more and more bandwidth and throughput are 

required.  Generalized CPU’s continue to evolve and as seen in this study on the newer i7 processor in the 1070 

hardware, throughput continues to improve as CPUs become faster. 

However as computers provide the platform to enable SDR, all hardware at the radio designer’s disposal should be 

able to be used.  This includes graphics cards with powerful GPU’s, and FPGA cards for higher-end applications.  

GNURadio is arguably one of the most utilized open source SDR platforms available.  Therefore in the process of 

evolution it becomes a next logical step to evaluate which types of digital signal processing blocks could benefit 

from CPU offloading through OpenCL.  This should not just be limited to a single card or a single type of card 

within a computer, but should be scalable to allow all cards to be utilized with the discretion of the designer to 

determine which blocks run on which cards.   

This is the goal of the gr-clenabled project: 

✓ The ability to use OpenCL for the most common GNURadio blocks used in digital data processing 

✓ The ability to take full advantage of all OpenCL-capable hardware simultaneously 

✓ The ability to have the flowgraph designer determine which blocks run on which cards 

✓ Develop a solid understanding of which blocks can benefit from OpenCL, and by design which blocks will 

not 

With the software developed during this study and the data collected, several important conclusions were reached.  

Some of these conclusions were obvious and simply confirmed assumptions, while others were quite revealing.  

First, not all blocks implemented in OpenCL running on GPU hardware demonstrate acceleration.  In fact blocks 

could be categorized in 3 categories: 1. Those that provide acceleration, 2. Those that provide offloading or mixed 

results based on hardware and/or block size, and 3. Those implemented in OpenCL but exhibiting performance 

worse than their CPU version. 

Of the blocks implemented in this project the following blocks showed acceleration when executed in OpenCL:  

1. Log10 

2. Complex To Arg 

3. Complex To Mag/Phase 

4. A custom Signal To Noise Ratio Helper that executes a divide->Log10->Abs sequence 

The following blocks showed mixed or offload performance: 

1. Mag/Phase To Complex (OpenCL performed better only for blocks above 8K for the 1070, and 18K for the 

970 and 1000M) 

2. Signal Source (OpenCL outperformed CPU only for the 1070 for 8K blocks and above) 

3. Quadrature Demodulation (OpenCL performed better only for blocks above 10K) 

4. FIR Filters 

The remaining blocks tested showed worse throughput in OpenCL implementations.  These blocks were: 

1. Multiply 

2. Add 

3. Subtract 

4. Complex Conjugate 

5. Multiply Conjugate 

6. Multiply Constant 
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7. Add Constant 

8. Complex to Mag 

9. Forward FFT 

10. Reverse FFT 

11. FFT Filters 

Instrumentation is also a very important part of most flowgraphs.  GR-Fosphor has been around for some time and 

actually uses a fifo and a separate application along with OpenGL and OpenCL to offload FFT transforms along 

with graphics rendering.  However testing gr-fosphor with a constant source and a 2 MSPS throttle into both a 

standard QT Frequency Sink and a gr-fosphor sink on the 1070 hardware clearly demonstrated that using OpenGL 

and OpenCL for visualization puts an even higher load on a CPU than GPU offloading.  This is actually inline with 

the findings of this study.  Since FFT transforms are fundamental to frequency displays and it has been demonstrated 

here that FFT transforms can perform worse than CPU implementations for SDR block sizes, poorer performance 

from gr-fosphor should be expected. 

The real benefit of OpenCL acceleration will come from higher sampling rates where increased buffer sizes can be 

used without negatively effecting frame rates.  This can be important in realizing OpenCL acceleration in that some 

blocks only outperform their CPU counterparts when provided sufficiently large block sizes.  This makes intuitive 

sense in that OpenCL acceleration may be most beneficial at higher throughput rates where the load on the CPU 

may increase to unacceptable levels.  This should be kept in mind along with how GNURadio and its scheduler 

handle maximum and operational block sizes  where the scheduler will [generally] attempt to send about half the 

maximum buffer size to a block during each frame.  This default buffer size is 8192, so the default block size that 

could be expected without making any changes would be 4096.  This may not be sufficient to achieve OpenCL 

acceleration for some blocks. 

Overall this study proved very enlightening.  With the exception of improving PSK and MM Clock Recovery 

processing which had sequential calculations not conducive to OpenCL parallel processing, the study met all of its 

goals of providing implementations of most common blocks that could run on user-selectable OpenCL devices and 

studied the process from signal source through visualization for both ASK and FSK signals.  However the study also 

demonstrated that not all blocks experience better performance on OpenCL hardware versus their CPU-only 

counterparts for a variety of reasons. 

One final conclusion could be reached on appropriate use of OpenCL blocks.  The greatest benefit would be derived 

from identifying all blocks used in your flowgraph that are in the OpenCL accelerated list.  From this short list, start 

with the block that provides the most benefit and use that block on your OpenCL hardware.  If you have multiple 

cards repeat this process with one block for each card.  If you have multiple versions of the same card, selection will 

not matter.  However if you have different cards of varying performance you may want to assign the most 

computationally intensive blocks to the best-performing hardware.  Test-clenabled can be used to determine actual 

throughput for the block in question. 

 


