Study on | mpleenm@edntiinngommon GNURadi o
(GRCON 2017)

Michael Piscopo ghostopl4@gmail.com

Abstract
The purposefahis document is to present a fully functional Opergalsed implementation of common
GNURadio blocks and numberof supporting tooldor additional performance analysisat can easily be
incorporated into the GNURadio framework using common mechanisms such as pybdmetggtor
downloadbuild process The authobriefly covers OpenCL concepés they apply to developing signal
processing modulealong with the commanbihe testing tools that come with the OOT module. Tien
implementedlocksalong withtheir performanceroseveral diferenGPU6 s f or varaei ng bl ock
presented Blocks range from basic add/multiply functions through quadrature demodulation and filters.
Advanced concepts such as leveragliifgrentblocks onsimultaneou$PU cardsn the same flowgaph
are also discussed. The complete working OOT mahdgools aravailable in pybombas grclenabled
and ongithub (https:/github.com/ghostopl4/gclenabled).Prerequisite installation instructions are also on
githubi n t he pr o] erector§ for several copmoh @pératingdystems.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

Study on Implementing OpenCL in CommoiNGRadio Blocks

Contents
A [a1 oo 18 [ox 1 o] o ISP PT TP RUPPPTTRR 1
2 ANAIY SIS e et e e ettt et e e b e e et e e e et e e et e rn s 3
21 L0 0] [O B PPTTPTT 3
2.2 TRE COUR. ... et e e e e e e e e e e e ettt e ettt e e e e e e aeeeeeeeeeane 4
2.2.1 GNURAIO BIOCKS......cceiiiiiiiiiiie ettt e e ettt ee e 5
2.2.2 1ESECIENADIEM. e s 6
2.2.3 CIVIBW ettt e et e e bbb e e 7
2.2.4 HESECIHIITET .. e 7
2,25 HESECIKEINEL. ..ottt e e e n b b 8
2.2.6 Printing ACLUAI BIOCK SIZES..... ittt 9
2.3 V=3 aTeTo (o] (ol Y AR PSPPI 11
24 LICEES] A o =1 {0 o PSPPI 12
25 BASEIINEG. ... et 12
2.5.1 NO-ACHON KEIMEL....uuiiiiii e e e e e e et e ea bbbt r e e e e e e eeeeeeennes 12
A o] o)V =T 1 1 16
2.6 FXeel= 1= = =T I I] SO 18
22 T R 1o T 1 N 18
2 | B = T T P 21
A ST T O] 141 0] 1= qR (o 1 A o PP 23
2.6.4 CompleX t0 Mag PhaSe.......cccuuiiiiiiiie et e e e 26
2.7 10710 =T I 1 PR PRTPPPP 29
D % R Y - Yo = g =TT (o T O] 1 1] 0] L= 29
S [0 1 T= LIS Yo T | o = Y 31
P A T O 1N T= (o [(81 =0 7= 3T o S 36
2.8 S =T o] =T o [IR SO P PPPPPPPPRPPPRN: 39
2.8.1 Multiply/Add/Subtract/Multiply CONJUQALE...........uiieiiiiii e e e e e 39
A T Y V7o) Y77V o I 0] 1= P 42
P S S T O] 1 4] o] (=3 (o 11 1V - Vo PSSP RURRRT 44
2.9 POOr PerforMance LISL.........oooiiiiiiiiit ettt et e et e e e e e e e e e s bbb e e 47
2.9 1 FFT FOIWAN. ...ttt e e e e e e et e et e e e e e e e e e e e e e e s s e e s e s nnnb s e s sseeeeeeateeaaeeaeeesanan 47
2.9.2 FFT REBVEISE. ..ottt ettt ettt e e e e e et e et e e r et e e e e eeens 50
P O (= = PP PP PP TSP PPTPPPPPO 51

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

3

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.00.2 COSTAS LOOP. ... eeeetti ettt ettt ettt e ettt er e e 57
2.11 A Note on Frames and SAMPIES / SEC......ccoiiiiiiiiiiiiiie e e 58
2.12 Multiple SIMURBN@US BIOCKS........ ...t 59
2,13 CIOCK RECOVETY. ...ttt ettt oo e e e ettt et et bbbt e e e e e e e e e e eesseaenenaan 60
2.14 Instrumentation and GROSPHOR...........uuitiii e e 62

CONCIUSIONS. ..ttt ettt e oo oo et ettt et bbb oo e e e e e ettt et bbb e e e e e e e 63

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
1

Study on Implementing OpenCL in CommoiNGRadio Blocks

1 Introduction

Software Defined Radio (SDR) has opened up a world of research and development into broad radio frequency (RF)
communications and brought affordable hardware and open source saétwesavorld. However as other real

world radio solutions continue to push for greater bandwidth such as satellite communications meeting or exceeding
100 Mbps and new wireless LAN technologies with 80 Mtide channels, these solutions implemented in

hadwareare a challenge to implement with the same throughgsiDR for realtime processing.

One option to provide addition#iroughputcapabilities to SDR is to leverage those graphics cards that are present

in many computers along with their highlyeap | e, massi vely par albasei GPUG6s to s
calculations.Thisproject(n a me-cd | & iy a ib hoktlk dirgt project to evaluate this optiddowever,the

uniquegoal of this project is to provide a more comprehensive and practical imphioerdf as many common

blocks as possible along with providing quantitative timing analysis to study the benefit (or degradation) in
performance while running on GPUOG6s.

Grcl enabl ed had a number o fThelgoafwasto gitoagh & many GNURagliopr oj ect €
blocks as possible that are used in common digital communications procésSKig-SK, and PSK), convert them

to OpenCL, angbrovide scalability by allowingachOpenCl-enabledblock to beassigned to a useelectable

OpenCL devie. This latter scalability feature would allow a system that has 3 graphics cards, or even a
combination of ,tGaediffererd biodks &ssigBel dogun on different cadiisvithin the same

flowgraph This flexibility would also allowlower-end card to drive less computationddlocksand allowr P GA & s

to handle the morimtensive blocks.

Simply implementing blocks in OpenCL does not guarantee that those blocks would perform better thiaseePU

blocks. So this project also had to irdiua quantitative comparison bfse new OpenGenabled blocks against

the native GNURadio blocksThe results of each block could thenchéegorizd into one of three groups: 1.)

Those blocks that run faster in OpenCL than the native implementdéori[gn at ed i a)thosebloeksat ed o] ,
where performance of the OpenCL blocks is very close to the native lolookiged across hardware and buffer

sizesf desi gnated fAoffl oadedd], and 3.) those blnatweks whose
blocks [designate®@penCLfi e n a pnheanthgthey have been implemeited

There were a number of driving factors discussed in this paper that contributed to better or worse performance. For
instancethose blocks that leveraged more Ciaténsiwe functions, specifically trigonometric functions such as

sine, cosine, and inverse tangent calls, along with log functions showed the most improvement. Those functions that
do singlecycle or very low computatieintensive tasks such as a basic multfplyction had the opposite affect

where the cost of moving data to the OpenCL device and copying it back outweighed the benefit of the OpenCL
processing resulting in worse performan@thers such as filters suffered dramatically in performance in OpenCL

because of the way the signal processing math is executed with blocks and rollifgoarryvar d fit ai | s o .

In totalthe following list of blocksare implementedh this projectand available online as part of an open source
release. The goal being to furtmesearch and progress in this area.

1. Basic Building Blocks

Add Constant
Filters (Both FFT and FIR)

a. Signal Source

b. Multiply

c. Add

d. Subtract

e. Multiply Constant
f.

g.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
1

Study on Implementing OpenCL in CommoiNGRadio Blocks

i. Low Pass
ii. High Pass
iii. Band Pass
iv. Band Reject
v. RootRaised Cosine
vi. General taghased
2. Common Math or Complex D& Functions
Complex Conjugate
Multiply Conjugate
Complex to Arg
Complex to Mag Phase
Mag Phase to Complex
Logl1l0
SNR Helper(a custom block performing diviedelog10->abs)
Forward FFT
i. Reverse FFT
3. Digital Signal Processing
a. Complex to Mag (used for ASK/OOK)
b. Quadrature Demoglsed for FSK)
c. Costas Loop

Sempoooy

Two generalpurpose blocks were also built that allow a kernel described in a text file to preice$ssahd 2to-1
input to output samples. This provides a level of future scalability without necessadinguiew classes and
recompiling code.

Note that while PSK was an initial design goal, after beginning the project it became clear than blocks with

sequential calculations such as PSK and MM Clock Recovery did not lend themselves to OpenCL implementation
because processing of each data point was not atomic enough. The study also considered looking at instrumentation,
but as noted in this study, FFTds actwual Itmeper for med
processing. Because of this faastrumentation sinks such as a Frequency Sink would also perform worse than

their CPU counterpart. This was evident when testirfggphor versus the native QT Frequency Sink. Monitoring

CPU usage, even on new NVIDIA GTX IDRAardware on new i7 pragsors showed much higher CPU usage than

the CPUonly version.

The remainder of this paper proceeds through the methodology used in testing, the toeattetiablgrd project

provides, and some OpenCL lessons learned. Then each module along with tietigadasting results are

presentedn detail, discussing the code useaath along withthe result@and observationsThe study then goes

on to discuss thtesting resultef using multiple OpenCL blocks simultaneously in the same flowgraph, fiat ef

of buffer sizes, and why some of the blocks required for digital processing (PSK and MM Clock Recovery) were not
implemented. The study then wraps with general conclusions and observations.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
2

Study on Implementing OpenCL in CommoiNGRadio Blocks

2 Analysis

2.1 OPENCL

Open Computing Language (OpenCL) is a feswark for writing code (kernels) that can run across a number of
computing environments. This includes CPUOGs, Graphics
Arrays (FPGAO®ds) . A common | anguage owdble&crosshlliOpdmC€Lt o wr i t

supported environments.

GPUOGs are used extensively on modern graphics cards fo
However they are not limited toimagee | at ed t asks. GPUG6 s psmalkerdedsinsi mul t an
levels of parallelism not possible on mgeneralpurposeC P U 6 s . alsoma@kesd tteem ideal for certain types of

other tasks such agynal processing.

However,in the context of redime softwaredefined radio, there are some caved#tisst, GPUoffloading (from

hereon out generically referred to as Opent@lcover all OpenCicapable devicgsvorks most efficiently when
calculations can be broken down into stahahe (atomic) calculations working on each data point. That is not to

say there are not techniques to deal with interactions between calculations, just that the greatest performance gains
are achieved with atomic operations.

Next, each set of calculations applied to a data point should have some level of computing cotophesity

Basic operations like addubtract, and multiply do nabnsumehe same computing cycles as a log10 or inverse
tangent (atan) calculatiolhereforethese basic calculatiossich as multiply tend tperform better on modern

C P Utihan on GP@.s

The |l ast caveat specifically related to SDR is the Ope
data sets all at once. This is fundamentally a problem fotirealSDR as default buffer sizes used in GNURadio
donot generallyreachiti s Al ar ge data setdo | evel for some calcul ati

size for blocks is 8192. However during fiime generally about half that (409#3ta points are sent. This does
vary as controlled by a complex scheduling eagind can be adjusted by block parameters, however these data sets
are not at levels such as 128K or 1M of data peifmtsre the offloading would become very evident

In terms of OpenCL implementation, several lessons were learned during developmeptthgyhihay be obvious
to experienced OpenCL developers, it is worth mentioning them here.

First,there is a time price to pay to copy data to the graphics card for processing, then to copy the data back. In fact
during testing as discussed later, a basatiase is defined that copies the data to the card and copies data back but
performs no processing (the kernel simply returns). The time it takes for this kernel to execute becomes the absolute
best performance that could be achieved with OpenCL offigadif CPUbased blocks do not take at least this

long to process, then the CPU implementation will have better perform@ihisebaseline is then expanded to

simply do out=in to incorporate memory actions into the baseline.

Programmaticallycreatingbti f er s duri ng each call to a GNURadi o bl ock
costlyand inefficient, and initial programming tests demonstrated fhiereforehis project takes a more efficient

approach. A appropriately sized buffés creatednceat block startup thereusedhroughout the course of

operations. Intheeg | enabl ed i mpl ementation, safety checks ensur
allocated buffer, and if it does resizes the buff€his can happen in blocks wheregraeters can be changed at

runtime such as constant blocks and filters.

The next importanfoundational memory concejst that OpenCL supports 2 mechanisms to move data back from a
card. One is simply to enqueue a buffer read call while the other hepaderlying memory store to host address

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
3

Study on Implementing OpenCL in CommoiNGRadio Blocks

space with calls to map/unmap. During testing, using map/unmap was much slower than simply reading the return
buffer. Therefore using map/unmap is not recommended.

Another importanpoint about OpenCL implemetitans is that graphics cards have different memory types. Some

are faster than others. Local memory and constant memory are present in theveavdrsmaller in sizéhan

global memory For instance wusi ng 4clanabledholseonstamt and tocalorlemoryn ¢l ud e d
sizes for an NVIDIA GTX 1070 card as 64K and 48K respectively.

Platform Name: NVIDIA CUDA
Device Name: GeForce GTX 1070
Device Type: GPU

Constant Memory: 64K (16384 floats)
Local Memory: 48K (12288 floats)

However with the ige difference, local memory can be 15 times faster than global memory. Therefore every effort

should be made to use this faster memory whenever possible. When looking at the numbers above in the context of
GNURadio, 64K of constant memory. For comptietta (2 floats) this translates to 8192 samples. While that seems

to exactly match the GNURadi o default buffer size, you
generally want to wait until the buffer is full, so will generally send aboutthaifdata. The first reaction may be to

double the default buffer size in GNURadio, however this means that the scheduling engine MAY send more than

8192 so the OpenCL implementation has to be prepared for that and fall back to a global memory intjglementa

So there is a fine balance that must be struck.

One trick that can be used to further improve OpenCL performance is taking advantage of fixed values. If you are
calling a kernel and passing it a parameter that will not change, there is stilt@a masting the argument to the

kernel. One trick OpenCL coders use is to build the kernel with a #define rather than passing a fixed value as a
parameter. Where appropriate some of the kernels here will use this approach.

Lastly, OpenCL devices have anoept of a preferred workgroup size multiple. An extensive discussion of this
attribute will not be given here, however testing found that performance improved when calls to execute kernels
used this preferred workgroup size. For instance on the NVIDIX G070 this value is 32. It was found during

testing that calls to enqueueNDRangeKernel performed better when the workgroup size parameter was set to this
value and the incoming data size was a multiple of this number. Interestingly, setting ithterahigtiple of this

value (for example using 64 in this case) caused performance to drop slightly. Therefore in the absence of any other
block requirements, grlenabled blocks set the output multiple to be this preferred size multiple and execute the
kernel with this value for best performance.

2.2 THE CODE

The project containing all of the code for this study is in a GNURadiofeee (OOT) module called gr

clenabled. This module can be found@itHub athttps:/github.com/ghostopl4/gclenabled.git This study was

meant to give back to the general SDR and open source community to provide a framework for moving towards
everincreasing digital processing speeds. The module does requiretmHRStalled Depending on your linux

di stro you may -gbtmstadl libtlffed et vod Otsou dgoe ta patd files to Buildtthk modudlei b r ar i e s
can also be installed directly from source.

Also note that these modules were developedguGiNURadio 3.7.10 (the latest at the time of development).

Therefore if you run into any issues, first check that you have the latest GNURadio version and you have the latest
Swig and Doxygen installed (see GNURedadetalld).Some medbpler ence o
have issues building OOT modules in general when using older 3.7.9 on Ubuntu. The best approach is to install the
latest GNURadio from pybombs

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
4

Study on Implementing OpenCL in CommoiNGRadio Blocks

You will also need an OpenCL implementation install&tde project does includ®me help on how to set this up
on Ubuntu 16.04 and Debian/Kali for both NVIDIA cards and Intel drivers. Instructions aregiththlerepository
in thesetup_help subdirectory.

For CPUbased OpenCL, download the Intel softwarbtgis://software.intel.com/eas/intetopencl/download
intel_sdk_for_opencl_2016_ubuntu_6.3.0.1904_x64.tar.gz was used feb&ed testing. While you may get an
OS version issue, it should still indtal

However running OpenCL on a CPU provides arguably a worse multithreading solution. The real benefit comes

from running OpenClon accelerated hardwarBut this requires the appropriate drivers and librarfes. instance

on Linuxrunning NVIDIAcardy ou may want -geonsthllinvidedpendlisadl®@. a pRLEASE READ
THE DOCUMENTATION FOR GETTING OPENCL WORKING ON YOUR CARD AND VERSION OF LINUX

BEFORE PROCEEDINGIObvi ousl y the OpenCL bl ocks wonoét ciompile o
properly configured.

Once you have Opeq&tl isedt alpl, dlsiundfoo@pt I f you can run
proceed.

Now that you have OpenCL correctly set up, clfft installed, and a working GNURadio-Bifistdllation,make
sure that gnuradidev is also installed if installing from a repo.

2.2.1 GNURadio Blocks

To build grclenabled, simply follow the standard module build process. Git clone it to a directory, close
GNURadio if you have it open, then use the following bsi&ps:

cd <clone directory>
mkdir build

cd build

cmake ..

make

sudo make install
sudo Idconfig

I f each step was successful (dondt overl ook the O6sudo

Within GNURadio you will now have 2 new block grougssshown below:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
5

Study on Implementing OpenCL in CommoiNGRadio Blocks

¥ OpenCL-Accelerated
OpenCL Complex To Arg
OpenCL Complex To Mag Phase
OpenCL Logl0
OpenClL Mag Phase To Complex
OpenCL Quadrature Demod
OpenCL Signal Source
OpenCL SNR Helper

¥ OpenCL-Enabled
OpenCL Add
OpenClL Add Const
OpenCL Band Pass Filter
OpenCL Band Reject Filter
OpenClL Complex Conjugate
OpenCL Complex To Mag
OpenCL Custom Kernel 1-to-1
OpenCL Custom Kernel 2-to-1
OpenCL FFT
OpenCL High Pass Filter
OpenCL Low Pass Filter
OpenCL Multiply
OpenCL Multiply Conjugate
OpenCL Multiply Const
OpenCL Root Raised Cosine Filter
OpenCL Subtract

Several commantine tools are also includéd this project These can be used to test performance on your specific
system and were used to generate the data discussed in this document.

2.2.2 test-clenabled
after &édsudo make iclenalled-h ke & p % daihelg iafaeniation pelow: 6 t e s t

Usage:[-- gpu][-- cpu][-- accel][-- any][-- device=<platformid>:<device id>] [number
of samples (default is 8192)]

where: -- gpu, -- cpu, -- accellerator], or any defines the type of OpenCL device opened.

The optional -- device argum ent allows for a specific OpenCL platform and device to be
chosen. Use the included clview utility to get the numbers.

The first few parameters allow you to choose from multiple GPU platforms, and if multiple cards are present define
specificallywhatcat you want to target. The easiest way to run
clenabl ed6. This will run with a default 8192 block s
such &#d edtaddted 4tOdget@h@ approptiate platforch@nd device id, you can use clinfo, or the

included clview tool which just provides a simpler view with the id numbers more easily identified.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
6

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.2.3 clview

This tool just provides a simpler view than clinfo focused specificallyatting the correct platform and device id
(highlighted in yellow below)and noting how much local and constant memory is present on your card. The output
below shows the result for an NVIDIA GTX 1070 card:

Platform Id: O

Device Id: O

Platform Name: NVID IA CUDA
Device Name: GeForce GTX 1070
Device Type: GPU

Constant Memory: 64K (16384 floats)
Local Memory: 48K (12288 floats)
OpenCL 2.0 Capabilities:

Shared Virtual Memory (SVM): Yes
Fine - grained SVM: No

The following output shows the result for the Int&Cdriver:

Platform Id: O

Device Id: 0

Platform Name: Intel(R) OpenCL

Device Name: Intel(R) Core(TM) i7 - 3740QM CPU @ 2.70GHz

Device Type: CPU

Constant Memory: 128K (32768 floats)
Local Memory: 32K (8192 floats)
OpenCL 2.0 Capabilities:

Shared Virtual Memor y (SVM): Yes
Fine - grained SVM: Yes

2.2.4 testclfilter

Since filters are such a big part of signal processing and probably the first one may think of offloadiifdtelest
a commandine tool to focus on filter performance. It tests filter performanitie &given number of taps 3
modes:

U OpenCL timedomain filter
OpenCL frequency domain filter
U Native/CPU filter

c:

For very small tap c-damain fiter wilyperfortnlbdtter.sHowever ds the numbereof taps me
increases, eventualthie frequency domain version will perform better. This tool gives you the opportunity to

assess throughput on your hardwar eBasaead EihrenF imatkeer @ emoa
exposes the ability to select between time or frequdonyain filtering.

The following shows some of the output for a small low pass filter with 241 taps on an NVIDIA 1070 card:

test - clfilter -- ntaps=241

OpenCL Context: GPU

"Test Type " throughput (sps)

"OpenCL Time Domain Filter" 130,6 82,400.00
"OpenCL Freq Domain Filter" 3,790,198.50

"CPU Freq Domain Filter" 191,092,784.00

The following shows with 1730 taps:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
7

Study on Implementing OpenCL in CommoiNGRadio Blocks

test - clfilter -- ntaps=1730
OpenCL Context: GPU
"Test Type " throughput (sps)

"OpenCL Time Domain Fi lter" 41,613,248.00
"OpenCL Freq Domain Filter" 13,019,512.00
"CPU Freq Domain Filter" 157,887,296.00

The following shows the help screen for the tool:

Usage:[- gpu][-- cpu][-- accel][-- any][-- device=<platformid>:<device id>] -
ntaps=<# of filter taps> [number of samples (default is 8192)]

where: -- gpu, -- cpu, -- accellerator], or any defines the type of OpenCL device opened.
The optional -- device argument allows for a specific OpenCL platform and device to be
chosen. Use the included clv iew utility to get the numbers.

You can create a filter by hand and see how many taps it would create from an
interactive python command - line like this:

python
from gnuradio.filter import firdes

parameters are gain, sample rate, cutoff freq, transition width for this low_pass
filter.

taps=firdes.low_pass(1, 10e6, 500e3, 0.2*500e3)

len(taps)

For this example 241 taps were created.

2.2.5 test-clkernel

Two blocks included in gclenabled are generieti-1 and 2to-1 kernel blocks. These blocks allow a designe

write their own kernel and save it to a file and select the appropriate data type (complex, float, etc.) and provide their
own implementation to extend GNURadio. Fekternel provides the same level of timing testing and kernel

testing from a commathline to make sure your kernel compiles and see how it performs.

0t -elemel-hel pd wi | | provide the parameters to provide as
Usage: <[-- 1tol][- 2tol]><[-- complex][-- float][- int]>[-- gpu][-- cpu][-- accel]

[-- any][-- device=<platform id>:<device id>] [number of samples (default is 8192)]

Where:

-- 1tol says use the 1 input stream to 1 output stream module

-- 2tol says use the 2 input streams to 1 output stream module

complex/float/int defines the data type of the streams (in matches out)

-- fnname is the kernel function name to call in the provided kernel file (e.g. what's
on the __kernel line

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
8

Study on Implementing OpenCL in CommoiNGRadio Blocks

-- kernelfile is the file containing a valid OpenCL kernel matching the stream format

2-in/1 -outorl -in/2 -out

-- gpu, -- cpu, -- accellerator], or any defines the type of OpenCL device opened.
The optional -- device argument allows for a specific OpenCL platform and device to be
chosen. Use the included clview utility to get the numbers.

NOTESABOUT CUSTOM KERNELS:

If you use trig functions in your kerheerify your hardware supports double precision math. You can do this with
clview which will immediately tell you if your card supports it. Then in your kernel, you can still pass floats but
make sure you typecast parameters to the trig functionealslé)l first or youwill notice too much variation in the
calculated results.

The following shows a simple example kernel from the p

struct ComplexStruct {
float real;

float imag;

typedef stru ct ComplexStruct SComplex;

__kernel void fn_sin_cos(__global SComplex * restrict a, __global SComplex * restrict c) {
/* You have to be careful with trig functions and precision.
If you call the float versions of sin/cos for example, it may onl y be accurate to
5- 6 decimal places for CPU and 9 - 10 for GPU's which won't be accurate enough
for signal processing. So make sure you use the double versions.

*

size_t index = get_global_id(0);
c[index].real = cos((double)a[inde x].real);

c[index].imag = sin((double)afindex].imag);

}

2.2.6 Printing Actual Block Sizes

During testing, several options were considered to und
was actually sending to txebuwbflfoerk.si Hodw tthaecr was Whiel d
that could output the size of the blocks was considered, it made an assumption that all blocks would get the same

block size. In order to avoid an incorrect assumption, in the GRCLBase.cpp filestaemriable called

CLPRINT_NITEMS. If this value is set to true and the module recompiled, enabling debug on a block will cause

the block to output the size of the input items buffer for each iteration. Note that this will inevitably have an impact

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
9

Study on Implementing OpenCL in CommoiNGRadio Blocks

on performance so it should only be dOne if true block sizes are desired. The line below shows what the line of code
looks like:

| bool CLPRINT_NITEMS=false;

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
10

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.3 METHODOLOGY

As stated earlier, teslenabled was used to generate the data for this study. Imtegrbkck sizes were used from
2048 to 24576 in 2048 sample increments. While data could be extended much higher, within the context of
GNURadio, larger block sizes can impact the-tiaé processing of flowgraphs. And since the scheduler generally
serds about half the set buffer size to each block, 24576 of tested data points would corresponeitorkreal
setting in GNURadio of twice that. Since this study is focused on practical implementditansollection was
capped at the 24576 processeffdyustream sizeshowever testlenabled is capable of running with any value

The code that provides the actual testing is in test_clenabled.cc. This code goes through each of the block types
discussed in this report and does timing tests both witktthight GNURadio CPidnly code as well as the

OpenCL implementation. In order to ensure the integrity of the analysis, the code from GNURadio was used for the
CPUonly test. Therefore if the GNURadio implementation used Volk, the-@Jcomparison ialso against

Volk. The goal was to provide an honest comparison of native GNURadio blocks versus the @genglents

In order to get good sample data, each test first starts with a single call that is not used in calculating performance.
This is to emove any initialization performance issues from the first call from th&imancalculations. Each block

is then run through 100 iterations and timed with the std::chrono::steady_clock object to providerad@dage.

The code below shows one oe#erepresentative timing tests

start = std::chrono:: steady_clock :: now();
/I make iterations calls to get average.
for (i=0;i<iterations;i++) {
noutputitems = test - >testOpenCL(largeBlockSize,ninitems,inputPointers,outputPointers);
end = std::chro no:: steady clock :: now();
elapsed_seconds = end - start;
elapsed_time = elapsed_seconds.count()/(float)iterations;
throughput = largeBlockSize / elapsed_time;

The chrono library provides several different types of timing clocks, however steadyische chrono version
recommended for measuring time intervals.

In any study, the data can sometimes show outliers or anomalies. While collecting data, if data points showed
extremeanomalies, that data point was rerun several times to get a stable nutmdessiimption being that when

that anomalous sample occurred, that the computer may have been executing another task that interrupted the data
run.

It should also be noted that each module is tested in isolation. Meaning that multiple modules are not run
simultaneouslyOne i mportant note on using OpenCL and GPUG&6s i s
full benefit of the card. I f multiple blocks are tryi
overall performancéoo needs to be shared, and if multiple OpenCL contexts are used, the card will need to account

for running multiple contextsThe performance of multiple blocks running simultaneously is discussed later in this

study.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
11

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.4 TEST PLATFORM

One goal of this piiect was to test across generally available computer configurations. This means not just a new
computer, but also slightly older desktops, laptops, and even virtual machines. Testing with different graphics cards
also increased the likelihood that if thevereissueswith older or mobile graphics platforms that those could be
identified and addressefliring developmentThe net result was that 4 platforms were tested. The table below

shows each of those configurations. In the subsequent data ssglttéorms are designated by their graphics

card version.

UPDATE: During testing, all systems used the same Debian/kali 4.9.0 kernel. After the study, some systems were
switched to Ubuntu 16.04 LTS running the 4.4 kernel. On this 4.4 kernel, perfermansslightly lower. Some

research indicated that there are a number of performance improvements with some of the newer kernels. So this
should be taken into account when selecting your own target platform. In other words even on the same hardware,
performance may vary based on OS and kernel version.

Report Designator VM 1000M 970 ‘ 1070
Platform Virtual Laptop Older system New System
Description Machine
oS Debian/Kal Debian/Kali Debian/Kali Linux Debian/Kali Linux
i Linux Linux fAiLi nuxal&. 9 i Li nuxkalidamae4 81 SMP
ALiny ALI AKX amd64 #1 SMP Debian| Debian4.9.18 k al i 10
4.9.0 kali3-amd64 #1 49181 kal i 1
kali3- SMP Debian
amd64 #1 | 4.9.181 k a |
SMP
Debian
4.9.18
lkalii
Hardware Virtual Dell Precision Custombuild Custombuild
Machine M4600
running on
a Dell
Precision
M4700
CPU Intel i7- i7-2820QM Intel i7-2700 @ 3.5 Intel i7-6700 @ 3.4 GHz
3740QM CPU @ GHz
@ 2.7 GHz 2.30GHz
8 cores
assigned to|
the VM
Memory 3 GB 16 GB 8 GB 16 GB
RAM
assigned to
VM
OpenCL Platform | Intel CPU | NVIDIA 1000M NVIDIA GTX 970 NVIDIA GTX 1070
Driver

It should be noted that the tests were also initially tested on an NVIDIA GTX 730 card before that card was
upgraded to the 104fresented in this study. So a significant variety of NVIDIA hardware waslteste

2.5 BASELINE
2.5.1 No-action Kernel

In order to get a feel for the absolute best performance that could be achieved with OpenCL offloading, 2 initial tests
were performed. Note that all tests outlined in this study were done against complex numbers wittcepfemnex

as noted in the appropriate sectidfowever it should be noted that the actual blocks do support all data types such

as complex, float, and int where appropriate.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
12

Study on Implementing OpenCL in CommoiNGRadio Blocks

A faoti onod kernel that simply returns as shown bel ow:

struct ComplexStruct {
fl oatreal;
float imag ;
I3
typedef struct ComplexStruct SComplex;
__kernel void opconst_complex(__constant SComplex * a, const float multiplier,
__global SComplex * restrict) {
return;
}

Notice the _constantparameter specifier to use faster contant mgmBach block assesses the requested block
size and the memory available on the card to determine if it has sufficient room to use constant memory. If not the
kernel is automatically switched to use global memory as shown below:

struct ComplexStruct {
f loat real;
float imag ;
kh
typedef struct ComplexStruct SComplex;
__kernel void opconst_complex(__global SComplex * restrict a, const float multiplier,
__global SComplex * restrict ¢) {
return;
}

In each of the subsequent sections the results of each wfstis will be shown in 3 ways. The first is graphically.
Then 2 tables will follow. The firgablewill contain the raw timébased measurements while the second table will
show the data transformed based on the block size to a throughput number.

IMPORTANT: The throughput number should not be taken as the throughput that you will see from the block. It
represents the absolutesoreticamaximum possible from the block if data was continuously streamed to the
function. Forinstancethe schedulemi GNURadio may wait for sufficient data to be available before sending it to
the block and may adjust when blocks run. So continuous operation is unlikely.

However,since a continuous streaming approach was used across all OpenCL and CPU testkstheoxébel
benchmarks on absolute maximum throughputs for each block type as well as relative performance comparisons of
OpenCL versus CPU implementations.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
13

Study on Implementing OpenCL in CommohGRadio Blocks

2.5.1.1 Data

400,000,000.00

350,000,000.00

300,000,000.00

250,000,000.00

=

b3 —e—VM OCL

S 200,000,000.00

3 —e— 1070 OCL

e

= 970 OCL
150,000,000.00

—e— 1000M OCL

100,000,000.00

50,000,000.00

0 5000 10000 15000 20000 25000 30000
Block Size

In each of the following tables, rows highlighted in yellow are related to the default GlidJ&efiguration. 8192

is the default buffer size whereas 4096 would be the general expected actual bytes processed if no adjustments are
made.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
14

Study on Implementing OpenCL in CommoiNGRadio Blocks

Timing in Seconds

SEEE 1070 OCL 970 OCL 1000M OCL
2048 0.000032 0.000021 0.000033 0.000060
4096 0.000034 0.000026 0.000047 0.000072
6144 0.000038 0.000031 0.000060 0.000085
8192 0.000043 0.000035 0.000074 0.000096
10240 0.000050 0.000039 0.000087 0.000100
12288 0.000058 0.000043 0.000100 0.000111
14336 0.000063 0.000048 0.000112 0.000124
16384 0.000065 0.000052 0.000125 0.000134
18432 0.000068 0.000056 0.000139 0.000146
20480 0.000075 0.000061 0.000151 0.000158
22528 0.000082 0.000065 0.000165 0.000169
24576 0.000085 0.000070 0.000178 0.00018

Sample throughput based on time and block size

VM OCL 1070 OCL 970 OCL 1000M OCL

Samples

2048| 64,000,000.00 97,523,809.52 62,060,606.06 34,133,333.33
4096 | 120,470,588.24 157,538,461.54 87,148,936.17 56,888,888.89
6144| 161,684,210.53 198,193,548.39 102,400000.00 72,282,352.94
8192| 190,511,627.91 234,057,142.86 110,702,702.70 85,333,333.33
10240| 204,800,000.00 262,564,102.56 117,701,149.43 102,400,000.00
12288| 211,862,068.97 285,767,441.86 122,880,000.00 110,702702.70
14336| 227,555,555.56 298,666,666.67 128,000,000.00 115,612,903.23
16384| 252,061,538.46 315,076,923.08 131,072,000.00 122,268,656.72
18432| 271,058,823.53 329,142,857.14 132,604,316.55 126,246,575.34
20480 273,066,666.67 335,737,704.92 135,629,139.07 129,620,253.16
22528| 274,731,707.32 346,584,615.38 136,533,333.33 133,301,775.15
24576| 289,129,411.76 351,085,714.29 138,067,415.73 136,533,333.33

2.5.1.2 Observations

The good newsdém this baseline run is that the results agree thiglexpectecdbutcomeand knowledge of

OpenCL. From the data above it becomes obvious that larger block sizes show better throughput. It also
demonstrates the timing price to move data to and fromda ddre 1070 for instance showed 35 microseconds for
moving 8192 samples to the card and just returning.

It also shows the trend that newer cards have improved performance over older and mobile cards. The 1070 moved
data at about twice the rate as ti7@® @nd about 3 times faster than the mobile chip. It also showed a trend evident

in many of the testwith the VM and CPU driver That is that the results show a good bit of variation. This could

be due to a combination of both the virtualization ofgtacessor as well as the fact that OpenCL is running on a
generalpurpose CPU.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
15

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.5.2 Copy Kernel

The copy kernel was similar to the-aotion kernel and was used as a baseline. This kernel simply assigned
output=input to represent a data copy within the keirezl a return. The same constant/global separation was done
automatically based on the memory available on the card. The following kernel shows the constant version:

struct ComplexStruct {

float real;

float imag ;

3

typedef struct ComplexStruct SComple x;

__kernel void opconst_complex(__constant SComplex * a, const float multiplier,

__global SComplex * restrict ¢) {
c.real = a.real;
c.imag = a.imag;

2.5.2.1 Data

400,000,000.00

350,000,000.00

300,000,000.00

250,000,000.00

—e— VM OCL
200,000,000.00
—e— 1070 OCL
970 OCL

—e—1000M OCL

Throughput

150,000,000.00

100,000,000.00

(\

50,000,000.00

0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
16

Study on Implementing OpenCL in CommoiNGRadio Blocks

Timing in Seconds

1070 OCL 970 OCL 1000M OCL
2048 0.000036 0.000021 0.000034 0.000058
4096 0.000042 0.000026 0.000048 0.000080
6144 0.000044 0.000031 0.000062 0.000102
8192 0.000055 0.000035 0.000083 0.000126
10240 0.000057 0.000039 0.000087 0.000110
12288 0.000057 0.000043 0.000100 0.000127
14336 0.000074 0.000048 0.000113 0.000142
16384 0.000074 0.000052 0.000127 0.000157
18432 0.000093 0.000056 0.000139 0.000177
20480 0.000093 0.000061 0.000152 0.000185
22528 0.000104 0.000065 0.000166 0.000200
24576 0.000116 0.000070 0.000178 0.000215

Sample throughput based on tiared block size

Samples VM OCL 1070 OCL 970 OCL 1000M OCL

2048| 56,888,888.89

97,523,809.52

60,235,294.12

35,310,344.83

4096| 97,523,809.52

157,538,461.54

85,333,333.33

51,200,000.00

6144| 139,636,363.64

198,193,48.39

99,096,774.19

60,235,294.12

8192 | 148,945,454.55

234,057,142.86

98,698,795.18

65,015,873.02

10240| 179,649,122.81

262,564,102.56

117,701,149.43

93,090,909.09

12288| 215,578,947.37

285,767,441.86

122,88,000.00

96,755,905.51

14336| 193,729,729.73

298,666,666.67

126,867,256.64

100,957,746.48

16384| 221,405,405.41

315,076,923.08

129,007,874.02

104,356,687.90

18432| 198,193,548.39

329,142,857.14

132,604,316.55

104,13%,593.22

20480| 220,215,053.76

335,737,704.92

134,736,842.11

110,702,702.70

22528| 216,615,384.62

346,584,615.38

135,710,843.37

112,640,000.00

24576| 211,862,068.97

351,085,714.29

138,067,415.73

114,306,976.74

2.5.2.2 Observdions

These results simply continued the trend observed in taetian kernel. Note the lower throughput on the older
and mobile platforms along with the variation in the OpenCL CPU version. Again clearly the new 1070 card
significantly outperforms thelder hardware and shows very consistent performance.

It was also interesting to natiee impact of constant versus global memory in the curves across the different

hardware platformsWhat would have been expected would be a change in the performaves re@presenting a

slight decrease in performance going to global memory from constant memory above 8192 data points. However
visually smoothing the curves shows that the performance curve seems somewhat unaffected. This is not to say that

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
17

Study on Implementing OpenCL in CommoiNGRadio Blocks

using constanmemory does not provide any benefit, just that as the block sizes increase this benefit appears to be
offset by overall processing of larger blocks.

2.6 ACCELERATED LIST

In anysignal processingystemthroughput is going to be limited in part by the slowssnponent. Where

multiply blocks may be capable of exceedih@00 Msps, as soon as you enabfeae complexprocessing block

such as a log10 block the throughput may immediately drop to 40 Msps. Therefore when considering the overall
throughput capaty of a given flowgraph, increasing the performance of the slowest blocks can mean the difference
between maintaining high throughput or not being able to process the datatimeeal his section discusses the
blocks that after analysis demonstratigghificant throughput improvements in OpenCL implementations.

2.6.1 Logl0

Log10 functions have all the hallmark of being good candidates for OpenCL acceleration. The calculations are
atomic and require more CPU cycles than basic add/multiply/subtract operdftom&og10 block is one of the
exceptions to using complex data points. This OpenCL block is designed to only work with float data. The block

builds a kernel string with a few perfor manewithopti ons.

the mat h. And since these values are not expected
them as a parameter. The following code shows the kernel string being built.

srcStdStr =",
if (n_val 1= 1.0) {

sr cStdStr += "#define n_val " + std::to_string(n_val) + " \n"
}
if (n_val!=1.0){

srcStdStr += "#define n_val " + std::to_string(n_val) +" \n"
}
if (k_val!=0.0){

srcStdStr += "#define k_val " + std::to_string(k_val) +"\n"
}

if (useConst)
srcStdStr +="__kernel void op_log10(__constant float * a, __global float

* restrict ¢) { \n";
else
srcStdStr +="__kernel void op_log10(__global float * restrict a,
__global float * restrict) { \n"
srcStdStr +=" size_tindex = get_global_id(0); \n"

if (k_vall=0.0){
if (n_vall=1.0){

srcStdStr +=" c[index] = n_val * log10(afindex]) + k_val; \n"
else {
srcStdStr +=" cfindex] = logl O(afindex]) + k_val; \n"
}
else {
/I Don't even bother with the k math op.
if (n_val!=1.0){
srcStdStr +=" c[index] = n_val * log10(a[index]); \n"
else {
srcStdStr += " c[index] =log10(afindex]); \n"
}

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
18

Study on Implementing OpenCL in CommohGRadio Blocks

}
srcStdStr +="} \n";

2.6.1.1 Data

600,000,000.00

500,000,000.00

400,000,000.00
—e— VM CPU

—e— VM OCL
1070 CPU
—e— 1070 OCL

300,000,000.00

Throughput

—e—970 CPU
—e— 970 OCL
—e—1000M CPU

200,000,000.00

—e— 1000M OCL

100,000,000.00

*—1—0—0—0—0—0—0—0—0—0—0

0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
19

Study on

Timing in Seconds

Implementing OpenCL in CommoiNGRadio Blocks

970 Y 1000M ‘ 1000M
Samples CPU OCL CPU OCL
2048 0.000055/ 0.000035| 0.000046| 0.000022| 0.000049| 0.000029| 0.000089| 0.000055
4096 | 0.000109 | 0.000034| 0.000091| 0.000024| 0.000097| 0.000035| 0.000180| 0.000065
6144 | 0.000163| 0.000041| 0.000137 0.000027| 0.000146| 0.000043| 0.000267| 0.000078
8192 | 0.000220| 0.000049| 0.000184| 0.000030| 0.000197| 0.000050, 0.00036| 0.000092
10240| 0.000274| 0.000044| 0.0002Z | 0.000034| 0.000243| 0.000057| 0.000447| 0.000105
12288| 0.000330| 0.000047| 0.000274| 0.000037| 0.000292| 0.000064| 0.000535 0.000119
14336| 0.000381| 0.000043| 0.000320| 0.000045| 0.000343| 0.000071| 0.000629] 0.000132
16384| 0.000440| 0.000052| 0.000366/ 0.000049| 0.000392| 0.000082] 0.000722| 0.000146
18432| 0.000491| 0.000052| 0.000410| 0.000041| 0.000439| 0.000082] 0.000803| 0.00013
20480| 0.000545| 0.000061| 0.000454| 0.000043| 0.000486| 0.000088| 0.000895| 0.000140
22528| 0.00062| 0.000065| 0.000499| 0.000046| 0.000535| 0.000096| 0.000986| 0.000150
24576| 0.000653| 0.000075| 0.000542| 0.000048| 0.000586| 0.000103| 0.001069| 0.000163

Sample throughput based on time and block size

SEES

2048

VM CPU

37,236,363.64

58,514,285.71

1070 CPU

44,521,739.13

1070 OCL

93,090,909.09

970 CPU

41,795,918.37

970 OCL

70,620,689.66

1000M CPU

23,011,235.96

1000M OCL

37,236,363.64

4096

37,577,981.65

120,470,588.24

45,010,989.01

170,666,666.67

42,226,804.12

117,028,571.43

22,755,555.56

63,015,384.62

6144

37,693,251.53

149,853,658.54

44,846,715.33

227,555,555.56

42,082,191.78

142,883,720.93

23,011,235.96

78,769,230.77

8192

37,236,363.64

167,183,673.47|

44,521,739.13

273,066,666.67

41,583,756.35

163,840,000.00

22,755,555.56

89,043,478.26

10240

37,372,262.77

232,727,272.73

45,110,132.16

301,176,470.59

42,139,917.70

179,649,122.81

22,908,277.40

97,523,809.52

12288

37,236,363.64

261,446,808.5]]

44,846,715.33

332,108,108.1

42,082,191.78

192,000,000.00

22,968,224.30

103,260,504.20

14336

37,627,296.59

333,395,348.84

44,800,000.00

318,577,777.78

41,795,918.37

201,915,492.96

22,791,732.91

108,606,060.61

16384

37,236,363.64

315,076,93.08

44,765,027.32

334,367,346.94

41,795,918.37

199,804,878.05|

22,692,520.78

112,219,178.08

18432

37,539,714.87

354,461,538.46

44,956,097.56

449,560,975.61

41,986,332.57

224,780,487.80

22,953,922.79

141,784,615.38

20480

37,577,981.65

335,737,704.92

45,110,132.16

476,279,069.77

42,139,917.70

232,727,272.73

22,882,681.56

146,285,714.29

22528

36,335,483.87

346,584,615.38

45,146,292.59

489,739,130.43

42,108,411.21

234,666,66657

22,847,870.18

150,186,666.67

24576

37,635,528.33

327,680,000.00]

45,343,173.43

512,000,000.00

41,938,566.55

238,601,941.75

22,989,710.01

150,773,006.13

2.6.1.2 Observations

The results of this block clearly show relatively f&®PU throughput. Meaning that as the sample sizes double, so
does the processing time such that the overall throughput is constant across block sizes.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

20

Study on Implementing OpenCL in CommoiNGRadio Blocks

In contrast the OpenCL implementation clearly shows a performance improvement over the CPU impbementati
even at small block sizesThis performance improvement continues to increase as the block sizes increase. Where
the CPU throughput for the 1070 platform stays constant around 44 Msps, the OpenCL implementation can easily
exceed 150 Mspdn the cas®f the Log10 block, the OpenCL version provides a significant advantage over the
CPU-only block.

2.6.2 SNR Helper

When discussing OpenCL, one way to gain more benefits from kernels is to put more operations in a single call.
The SNR helper block is an examplesuch a block. This sequence of bloakside->log10->Abs could be used

for a basic signal to noise ratio calculator. This block shows how a single kernel could combine these multiple
functions into a single call and demonstrates the benefit gaiokdsiuch an approaciihe following code builds

the kernel string:

srcStdStr += "#define n_val " + std::to_string(n_val) + " \n"
srcStdStr += "#define k_val " + std::to_string(k_val) + " \n"

if (useConst)

__global float * restrict c) { \n"

else

* restrict b, __global float * restrict c) { \n"

srcStdStr +=" size_tindex = get_global_id(0); \n"
srcStdStr +=" float tmpVal = afindex] / b[index]; \n"
srcStdStr +=" tmpVal = n_val * log10(tmpVal) + k_val; \n"
srcStdStr +=" ¢[index] = fabs(tmpVal); \n"

srcStdStr +="} \n"

srcStdStr +="___kernel void op_snr(__constant fl oat * a, __constant float * b,

srcStdStr +="___kernel void op_snr(__global float * restrict a, __global float

2.6.2.1 Data

Throughput

350,000,000.00

300,000,000.00

250,000,000.00 o /M CPU
—e— VM OCL
200,000,000.00
1070 CPU
—e—1070 OCL
150,000,000.00
—e—970 CPU
100,000,000.00 —e—970 OCL
—e— 1000M CPU
50,000,000.00 —e— 1000M OCL

0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
21

Study on Implementing OpenCL in CommoiNGRadio Blocks

Timing in Seconds

VM VM 1070 1070 970 970 1000M ‘ 1000M
Samples CPU OCL CPU OCL CPU OCL CPU OCL
2048 0.000023| 0.000045| 0.000016| 0.000030| 0.000020| 0.000040| 0.000036| 0.000070
4096 | 0.000045| 0.000046| 0.000032| 0.000034| 0.000039| 0.000050, 0.000072| 0.000101
6144 | 0.000068 0.00005| 0.000048| 0.000038| 0.000059| 0.000068| 0.0001® | 0.000115
8192 | 0.000091| 0.000055| 0.000064| 0.000042| 0.000078| 0.000078| 0.000144| 0.000134
10240| 0.000113| 0.000054| 0.000080| 0.000054| 0.000098| 0.000087| 0.000181] 0.000157
12288| 0.000143| 0.000055| 0.000097| 0.000058| 0.000120| 0.000097| 0.000216| 0.000181
14336| 0.000158| 0.000061| 0.000114| 0.000061| 0.000138| 0.000106| 0.000252] 0.000207
16384| 0.000181| 0.000063| 0.000129| 0.000064| 0.000157| 0.000117| 0.000288] 0.000229
18432| 0.000203| 0.000072| 0.000145| 0.000062| 0.000176| 0.000119] 0.000326/ 0.000181
20480| 0.000227| 0.000077| 0.000161| 0.000067| 0.000197| 0.000129| 0.000360| 0.000193
22528| 0.00025| 0.000074| 0.000177| 0.000071| 0.000216| 0.000139| 0.000396| 0.000206
24576| 0.000274| 0.000088| 0.000193| 0.000074| 0.000235| 0.000148| 0.000432| 0.000221

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

22

Study on Implementing OpenCL in CommoiNGRadio Blocks

Sample throughput based on time and blazg& s

SEES

2048

89,043,478.24

45,511,111.11

1070 CPU

128,000,000.0¢

1070 OCL

68,266,666.67

970 CPU

102,400,000.0¢

970 OCL

51,200,000.00

1000M CPU |

56,888,888.89

1000M OCL

29,257,142.86

4096

91,022,222.22

89,043,478.26

128,000,000.0¢

120,470,588.24

105,025,641.09

81,920,000.00

56,888,888.89

40,554,455.45

6144

90,352,941.18§

122,880,000.00

128,000,000.0¢

161,684,210.53

104,135,593.27

90,352,941.18

56,888,888.89

53,426,086.96

8192

90,021,978.02

148,945,454.54

128,000,000.0¢

195,047,619.05

105,025,641.09

105,025,641.03

56,888,888.89

61,134,328.36

10240

90,619,469.03

189,629,629.63

128,000,000.0¢

189,629,629.63

104,48,795.92

117,701,149.45

56,574,585.64

65,222,929.94

12288

85,930,069.93

223,418,181.87

126,680,412.37

211,862,068.97

102,400,000.0¢

126,680,412.37

56,888,888.89

67,889,502.76

14336

90,734,177.22

235,016,393.44

125,754,385.9¢

235,016,393.44

103,884,057.97

135,245,283.07

56,888,888.89

69,256,038.65

16384

90,519,337.02

260,063,492.06

127,007,751.94

256,000,000.00

104,356,687.9(

140,034,188.03

56,888,888.89

71,545,851.53

18432

90,798,029.54

256,000,000.0¢

127,117,241.3§

297,290,322.5§

104,727,272.75

154,890,756.3(

56,539,877.30

101,834,254.14

20480

90,220,264.32

265,974,025.97

127,204,968.94

305,671,641.79

103,959,390.8¢]

158,759689.92

56,888,888.89

106,113,989.64

22528

90,112,000.04

304,432,432.43

127,276,836.16

317,295,774.65

104,296,296.3(

162,071,942.45

56,888,888.89

109,359,223.3¢

24576

89,693,430.66

279,272,727.2%

127,336,787.56

332,108,108.11

104,578,723.4C

166,054,054.05

56,888,888.89

111,208,619.91

2.6.2.2 Observations

Because this block builds upon the Log10 calculation by adding a divide and absolute value operation in a single
kernel, theoverallresultof this block aving a performance increasas as expected in that the OpenCL version
showed significant improvement over the GBty version.

However, there was an anomaly in this block that was continuously reproduced in testing. That is that this block

includes nobnly the log10 calculation, but also performs a divide and absolute value. However the CPU

throughput was actually better than the logihly block. The reason behind this was never identified, however the
result was consistently reproduced.

2.6.3 Complex toArg

The Complex To Arg blocis really the phase calculation from the Complex To Mag Phase block isolated to only
output the phase. The blotékes the inverse tangent of the input complex number and outputs a float as calculated

below:

c[index] = atan2(a

[index].imag,afindex].real);

This block is the first block discussed that uses a trigonometric function and as such requires some additional

discussion.

Trigonometric functions can be costly calls. To address this issue, the GNURadio designers ¢dok a go
performance approach and rather than actually calculating the atan, they use a lookup table to approximate it. The
GNURadio code uses the following line to perform the same calculation:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

23

Study on Implementing OpenCL in CommoiNGRadio Blocks

| outfi] = fast_atan2f(in[i].imag(),in[i].real(); |

There is one wordf caution about trig functions in OpenCL. Specifically around the precision supported by the
device being used. I f the card supports double precis
Support: Yeso or cubhind oPredi siook $eoctitdhmreo iDiohe resul ti
actually be slightly more precise. However, if the device only supports single precision (float), like older graphics

cards, precision will actually suffer and it will show up as noiseéntig functions. Testing with the OpenCL

Signal Source block will give a clear indication of performance. With dguigleision, the OpenCL curve will

actually not have some side frequencies present. Wi t h

Back to the data for this block.
2.6.3.1 Data

450,000,000.00
400,000,000.00

350,000,000.00

300,000,000.00 —e— VM CPU
2 250,000,000.00 —e—VMOCL
5 1070 CPU
;’ 200,000,000.00 —e—1070 OCL
- —e—970 CPU
150,000,000.00 —e—970 OCL

—e—1000M CPU

100,000,000.00 —e— 1000M OCL

50,000,000.00

0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
24

Study on

Timing in Seconds

Implementing OpenCL in CommoiNGRadio Blocks

970 Y 1000M ‘ 1000M
Samples CPU OCL CPU OCL
2048 0.000012| 0.000037| 0.000009| 0.000023] 0.00001| 0.000033| 0.000019| 0.000058
4096 | 0.000023| 0.000042| 0.000018| 0.000027| 0.000021| 0.000044| 0.000038| 0.000078
6144 | 0.000034| 0.000042| 0.000026| 0.000030| 0.000031| 0.000062] 0.000057| 0.000099
8192 | 0.000044| 0.000041| 0.000035| 0.000035/ 0.000042| 0.000072| 0.000076| 0.000120
10240| 0.000056| 0.000051| 0.000042| 0.000036| 0.000052| 0.000072| 0.000096| 0.000104
12288| 0.000067| 0.000057| 0.000051| 0.000039| 0.000062| 0.000082] 0.000115| 0.000120
14336| 0.000082| 0.000059| 0.000059| 0.000042| 0.000073| 0.000091| 0.000134| 0.000134
16384| 0.000090| 0.000066| 0.000066| 0.000047| 0.000084| 0.000101| 0.000153| 0.000150
18432 | 0.000102| 0.000076| 0.000076| 0.000050| 0.000094| 0.000111| 0.000172| 0.000163
20480| 0.000113| 0.000084| 0.000082| 0.000054| 0.000104| 0.000120| 0.000191| 0.000175
22528| 0.000124| 0.000093| 0.000090| 0.000056| 0.000115| 0.000130| 0.000211| 0.000190
24576| 0.000136| 0.0001@ | 0.000097| 0.000061| 0.000125| 0.000140| 0.000230| 0.000203

Sample throughput based on time and block size

SEES

2048

170,666,666.67

55,351,351.35

1070 CPU

227,555,555.56

1070 OCL

89,043,4786

970 CPU

204,800,000.00

970 OCL

62,060,606.06

1000M CPU

107,789,473.68

1000M OCL

35,310,344.83

4096

178,086,956.52

97,523,809.52

227,555,555.56

151,703,703.70

195,047,619.05

93,090,909.09

107,789,473.68

52,512,820.51

6144

180,705,882.35

146,285,714.29

236,307,692.31

204,800,000.00

198,193,548.39

99,096,774.19

107,789,473.68

62,060,606.06

8192

186,181,818.18

199,804,878.05

234,057,142.86

234,057,142.86

195,047,619.05

113,777,777.78

107,789,47%8

68,266,666.67

10240

182,857,142.86

200,784,313.73

243,809,523.81

284,444,444.44

196,923,076.92

142,222,222.22

106,666,666.67

98,461,538.46

12288

183,402,985.07

215,578,947.37

240,941,176.47

315,076,923.08

198,193,548.39

149,853,658.54

106,852,173.91

102,400,000.00

14336

174,829,268.29

242,983,050.85

242,983,050.85

341,333,333.33

196,383,561.64

157,538,461.54

106,985,074.63

106,985,074.63

16384

182,044,444.44

248,242424.24

248,242,424.24

348,595,744.68

195,047,619.05

162,217,821.78

107,084,967.32

109,226,666.67

18432

180,705,882.35

242,526,315.79

242,526,315.79

368,640,000.00

196,085,106.38

166,054,054.05

107,162,790.7Q

113,079,754.60

20480

181,238,938.05

243,809,523.81

249,756,097.56

379,259,259.26

196,923,076.92

170,666,666.67

107,225,130.89

117,028,571.43

22528

181,677,419.35

242,236,559.14

250,311,111.11

402,285,714.29

195,895,652.1

173,292,307.69

106,767,772.5]

118,568,421.05

24576

180,705,882.35

236,307,692.31]

253,360,824.74

402,885,245.90

196,608,000.00

175,542,857.14

106,852,173.91

121,064,039.4]

2.6.3.2

Observations

The newer GTX 1070 card when pessing blocks of 10K or larger clearly shows a performance improvement.
This is important due to the full atan calculation versus the-tased approximation approach in that the result
implies that for actual processed blocks of 10K and bigger the@pegrsion is both faster and more precise than
the CPUbased version.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

25

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.6.4 Complex to Mag Phase

Complex to Mag Phase takes a complex input data stream and splits it into a magnitude and a phase. The magnitude
calculation is a basic square root of squaresutation as shown below from the OpenCL kernel:

| blindex] = sqrt((avalaval)+(bval*bval)); |

In the CPU implementation this is accomplished by a Volk function as shown below:

| volk_32fc_magnitude_32f_u(outo, in, noi); |

The phase is then calculated with an atahrmatching the Complex To Arg calculation as:

| c[index] = atan2(a[index].imag,afindex].real); |

or this for the CPU implementation:

| outfi] = fast_atan2f(in[i].imag(),in[i].real()); |

Because this block not only includes the calculation from the Complex Toadgglation, but also an additional
magnitude calculation. It has all the hallmarks for OpenCL acceleration. Adding the magnitude calculation
increases kernel complexity which generally leads to OpenCL kernel performance gains o@r\CPU
implementatns. And this is exactly the results observed in the data below.

2.6.4.1 Data

350,000,000.00

300,000,000.00

250,000,000.00
—e— VM CPU

—e— VM OCL
1070 CPU
—e— 1070 OCL
—e—970 CPU
—e—970 OCL
—e—1000M CPU
—e— 1000M OCL

200,000,000.00

Throughput

150,000,000.00

100,000,000.00

50,000,000.00

0 5000 10000 15000 20000 25000 30000
Block Size

Timing in Seconds

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
26

Study on Implementing OpenCL in CommoiNGRadio Blocks

VM VM 1070 1070 970 1000M 1000M

CPU OCL CPU OCL 970 CPU OCL CPU OCL
2048| 0.000012| 0.000048| 0.000010| 0.000031| 0.000012| 0.000045] 0.000022| 0.000077
4096 | 0.00M36 | 0.000044| 0.000019| 0.000036| 0.000024| 0.000059| 0.000045/ 0.000095
6144 | 0.000038| 0.000056| 0.000029| 0.000041| 0.000037| 0.00008| 0.000067| 0.000117
8192 | 0.000049| 0.000056| 0.000037| 0.000046| 0.000049| 0.000094| 0.000089| 0.000140
10240| 0.000062| 0.000055| 0.000043| 0.000047| 0.000061| 0.000097| 0.000111] 0.000139
12288| 0.000074| 0.000066| 0.000055| 0.000054| 0.000073| 0.000111| 0.000134| 0.000158
14336| 0.000089| 0.000090| 0.000063| 0.000059| 0.000085| 0.000123| 0.000156/ 0.000175
16384| 0.000098| 0.000075| 0.000071| 0.000063| 0.000097| 0.000137| 0.000178/ 0.000191
18432| 0.000111| 0.000102| 0.000081| 0.000068| 0.000109| 0.000151| 0.000200| 0.000208
20480| 0.000123| 0.000121| 0.000089| 0.000072| 0.000121| 0.000164| 0.000223] 0.000226
22528| 0.000135| 0.000140| 0.000097| 0.000077| 0.000133| 0.000176/ 0.000245] 0.000241
24576| 0.000148| 0.000142| 0.000106| 0.000083| 0.000146| 0.000190| 0.000267| 0.000259

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

27

Study on Implementing OpenCL in CommoiNGRadio Blocks

Sample throughput based on time and block size

SEINIES

2048

170,666,666.67

42,666,666.67

1070 CPU

204,800,000.00

1070 OCL

66,064,516.13

970 CPU

170,666,666.67

970 OCL

45,511,111.11

1000M CPU

93,090,909.09

1000M OCL

26,597,402.6(

4096

113,777,777.78

93,090,909.09

215,578,947.3]

113,777,777.78

170,666,666.67

69,423,728.81

91,022,222.22

43,115,789.47

6144

161,684,210.53

109,714,285.71]

211,862,068.97

149,853,658.54

166,054,054.05

76,800,000.00

91,701,492.54

52,512,820.5]

8192

167,183,673.47

146,285,714.29

221,405,405.41

178,086,956.52

167,183,673.47

87,148,936.17

92,044,943.82

58,514,285.71

10240

165,161,290.37

186,181,818.1§

238,139,534.8¢

217,872,340.43

167,868,852.4¢

105,567,010.31]

92,252,252.25

73,669,064.75

12288

166,054,054.05

186,181,818.1§

223,418,181.87

227,555,555.56

168,328,767.12

110,702,702.7¢

91,701,492.54

77,772,151.9Q

14336

161,078,651.69

159,288,888.89

227,555,555.5€

242,983,050.85

168,658,823.53

116,552,845.55

91,897,435.90

81,920,000.00

16384

167,183,67317

218,453,333.33

230,760,563.3§

260,063,492.06

168,907,216.49

119,591,240.8§

92,044,943.82

85,780,104.71

18432

166,054,054.05

180,705,882.35

227,555,555.5€

271,058,823.53

169,100,917.43

122,066,225.17

92,160,00M0

88,615,384.62

20480

166,504,065.04

169,256,198.35

230,112,359.55

284,444,444.44

169,256,198.35

124,878,048.7§

91,838,565.02

90,619,469.03

22528

166,874,074.07

160,914,285.71]

232,247,422.6§

292,571,428.57

169,33,458.65

128,000,000.0¢

91,951,020.41

93,477,178.42

24576

166,054,054.05

173,070,422.54

231,849,056.6(

296,096,385.54

168,328,767.12

129,347,368.42

92,044,943.82

94,888,030.89

2.6.4.2 Observations

The results were as expeciadhat the OpenCL versions outperformed the @Rly implementations. However

due to the extra calculations, the performance benefit happens slightly later in the curve. Looking at the 1070
platform, the CPU and OpenCL implementations are approximately at 12,288 samples with the OpenCL
performance benefit not showing up until 14336 samples.

It is postulated that the cost of the extra buffer in/fout copy to produce both the magnitude and the phase as output is
the reason for the delayed benefit.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

28

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.7 OFFLOAD LIST

Some blocks showed performance with mixed results depending on the card. For instance all blocks in this list were
actually accelerated on the NVIDIA 1070 card, however the 970 and 1000M cards showed better CPU performance.

Given the timeof writing, NVIDIA has released their 1070 and 1080 cards to address the higher performance
requirements for virtual reality. It is clear that these cards outperform their predecessors based on their results in
this study. In terms of SDR and OpenCL &ecgting GNURadio blocks, this means that these cards can mean the
difference between OpenCL implementations outperforming their CPU equivalents versus not.

While an intuitive conclusion, it is recommended that in order to get the most benefit in Open@le newest
hardware possiblebeused As demonstrated in the data bel ow these i
faccel eratedo on ardlare grougedvtbat way if thie0GNURadia bibck groups

2.7.1 Mag Phase to Complex

The Mag Phse to Complex block performs they opposite function as the Complex to Mag Phase block. Rather than
a single atan call, this block uses 2 trigopnometric functions (sine and cosine) to reverse the process. The OpenCL
kernel below shows the process:

struct ComplexStruct {

float real;

float imag; };

typedef struct ComplexStruct SComplex;

__kernel void magphasetocomplex(__constant float * a, __constant float * b, __global
SComplex * restrict ¢) {

size_tindex = get_global_id(0);

float mag = a[index];

float phase = b[index];

float real = mag*cos(phase);

float imag = mag*sin(phase);

c[index].real = real;

c[index].imag = imag;

}

For data blocks larger than constant memory size the following kernel is used:

struct ComplexStruct {

float real;

float imag; };

typedef struct ComplexStruct SComplex;

__kernel void magphasetocomplex(__global float * restrict a, __global float * restrict
b, _ global SComplex * restrict ¢) {

size_tindex = get global_id(0);

float mag = a[index];

fl oat phase = b[index];

float real = mag*cos(phase);

float imag = mag*sin(phase);

c[index].real = real;

c[index].imag = imag;

}

These kernels can be compared to the GNURadio implementation that does the calculations inline while creating a
new complex sample:

| out[j] = gr_complex (mag[j]*cos(phase[j]),magl[jJ*sin(phaselj])); |

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
29

Study on Implementing OpenCL in CommoiNGRadio Blocks

Because of the cost of processing trigonometric functions the expected result is that the OpenCL kernel should have
performance benefits over the CPU version with suffididodk sizes.

2.7.1.1 Data

300,000,000.00

250,000,000.00

—e— VM CPU
200,000,000.00
- —e— VM OCL
>
g 1070 CPU
g’ 150,000,000.00
o —e— 1070 OCL
ey
= —e—970 CPU
100,000,000.00 —e—970 OCL
—e— 1000M CPU
50,000,000.00 —e— 1000M OCL

0 5000 10000 15000 20000 25000 30000
Block Size

Timing in Seconds

VM 1070 1070 970 ‘ 970 ‘ 1000M ‘ 1000M

OCL CPU OCL CPU OCL CPU OCL
2048 | 0.000017| 0.000037| 0.000014| 0.000032| 0.000014| 0.000045| 0.000026| 0.000073
4096 | 0.000036| 0.000041| 0.000027| 0.000037| 0.000028| 0.000059| 0.000052| 0.000097
6144 | 0.000051| 0.000053| 0.000039| 0.000042| 0.000043| 0.000081| 0.000079| 0.000121
8192 | 0.000069| 0.000049| 0.000053| 0.000048| 0.000057| 0.000094| 0.000104| 0.000147
10240/ 0.000085| 0.000057| 0.000063| 0.000061| 0.000071| 0.000106| 0.000130] 0.000174
12288| 0.000104| 0.000068| 0.000077| 0.000066| 0.000085| 0.000119, 0.000156| 0.000200
14336| 0.000127| 0.000067| 0.000087| 0.000071| 0.000099| 0.000132| 0.000182| 0.000229
16384 | 0.000137| 0.000074| 0.000100| 0.000076| 0.000114| 0.000147| 0.000209| 0.000256
18432| 0.000155| 0.000091| 0.000114| 0.000069| 0.000128| 0.000150, 0.000235| 0.000205
20480| 0.000171]| 0.000101| 0.000126| 0.000075| 0.000142| 0.000163] 0.000261| 0.000219
22528| 0.000187| 0.00014| 0.000137| 0.000079| 0.000156| 0.000177] 0.000287| 0.000239
24576| 0.00021| 0.000162| 0.000152| 0.000087| 0.000170| 0.000190] 0.000313| 0.000260

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
30

Study on Implementing OpenCL in CommoiNGRadio Blocks

Sample throughput based on time and block size

SEINIES

2048

120,470,588.24

55,351,351.35

1070 CPU

146,285,714.29

1070 OCL

64,000,000.00

970 CPU

146,285,714.2

970 OCL

45,511,111.11

1000M CPU

78,769,230.77

1000M OCL

28,054,794.52

4096

113,777,777.78

99,902,439.02

151,703,703.70

110,702,702.70

146,285,714.29

69,423,728.81

78,769,230.77

42,226,804.12

6144

120,470,588.24

115,924,528.30

157,538,461.54

146,285,714.29

142,883,720.93

75,851,851.85

77,772,151.90

50,776,859.50

8192

118,724,637.68

167,183,673.47

154,566,037.74

170,666,666.67

143,719,298.25

87,148,936.17

78,769,230.77

55,727,891.16

10240

120,470,588.24

179,649,122.81]

162,539,682.54

167,868,852.46

144,225,352.11

96,603,773.58

78,769,230.77

58,850,574.71

12288

118,153,846.15

180,705,882.35

159,584,415.58

186,181,818.18

144,564,705.88

103,260,504.20

78,769,230.77

61,440,000.00

14336

112,881,889.76

213,970,149.25

164,781,609.20

201,915,492.96

144,808,080.81

108,606,060.61

78,769,230.77

62,602,620.09

16384

119,591,240.88

221,405,405.41

163,840,000.00

215,578,47.37

143,719,298.25

111,455,782.31

78,392,344.50

64,000,000.00

18432

118,916,129.03

202,549,450.55

161,684,210.53

267,130,434.78

144,000,000.00

122,880,000.00

78,434,042.55

89,912,195.12

20480

119,766,081.87

202772,277.23

162,539,682.54

273,066,666.67

144,225,352.11

125,644,171.78

78,467,432.95

93,515,981.74

22528

120,470,588.24

160,914,285.71

164,437,956.20

285,164,556.96

144,410,256.41

127,276,836.16

78,494,773.52

94,259,414.23

24576

117,028,571.43

151,703,703.70

161,684,210.53

282,482,758.62

144,564,705.88

129,347,368.42

78,517,571.88

94,523,076.92

2.7.1.2 Observations

What was observed from this run was that the OpenCL version actually perfoorsdtihan the CPU version for
all but the new 1070 card. In fact for the 970 and 1000M cards, the OpenCL performance never exceeded the CPU
performance. However the 1070 card started to exceed the CPU performance at 8192 processed data samples.

2.7.2 Signal Saurce

The signal source block provides a number of capabilities within a GNURadio flowgraph. While it can be used as a
source in and of itself, it is also used to shift signals in the frequency domain with a complex multiply block.

The most common usesegproducing sine and cosine waves of specific amplitudes. However interestingly when
producing complex signals, the sine and cosine signals use the sanfdatadeal = cos(), data.imag = sin()).

The OpenCL implementation of this function for completadzoints is shown below:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

31

Study on Implementing OpenCL in CommoiNGRadio Blocks

struct ComplexStruct {
float real;
float imag;

3
typedef struct ComplexStruct SComplex;

__kernel void sig_complex(const float phase, const float phase_inc, const float ampl,
__global SComplex * restrict) {

size_t index = get_global_id(0);

float dval = (float)(phase+(phase_inc*(float)index));
srcStdStr +=" c[index].real = (float)(cos(dval) * ampl);
srcStdStr +=" c[index].imag = (float)(sin(dval) * ampl);

}

This can be compared against the GNURadio ©Rly implementation shown below:

output[i] = gr_complex(gr::fxpt::cos(d_phase) * d_ampl, gr::fxpt::sin(d_phase) *
d_ampl);

2.7.2.1 Data

700,000,000.00

600,000,000.00

500,000,000.00

—e— VM CPU

o —e— VM OCL

2 400,000,000.00

g 1070 CPU

3 —e—1070 OCL

£ 300,000,000.00

. —e—970 CPU
200,000,000.00 —e—970 OCL

—e—1000M CPU

100,000,000.00 —e—1000M OCL

0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
32

Study on

Timing in Seconds

Implementing OpenCL in CommoiNGRadio Blocks

970 Y 1000M ‘ 1000M
Samples CPU OCL CPU OCL
2048| 0.000008| 0.000027| 0.000006| 0.000013| 0.000007| 0.000021| 0.000010| 0.000036
4096 | 0.000015| 0.000032| 0.000012| 0.000016| 0.000014| 0.000028| 0.000020| 0.000044
6144 | 0.000023| 0.000036| 0.000017| 0.000019| 0.000021| 0.000036/ 0.000030| 0.000053
8192 | 0.000031| 0.000038| 0.000023| 0.000021| 0.000028| 0.000043| 0.000040| 0.000062
10240| 0.000038| 0.000043| 0.000029| 0.000024| 0.000034| 0.000050, 0.000050, 0.000070
12288| 0.000046| 0.000044| 0.000034| 0.000027| 0.000041| 0.000056| 0.000060, 0.000081
14336| 0.000053| 0.000051| 0.000040| 0.000029| 0.000038| 0.000062| 0.000070| 0.000090
16384| 0.000060| 0.000056| 0.000046| 0.000031| 0.000043| 0.000069] 0.000080| 0.000099
18432| 0.00007| 0.000074| 0.000052| 0.000034| 0.000049| 0.000077| 0.000090, 0.000109
20480| 0.000079| 0.000062| 0.000057| 0.000037| 0.000054| 0.000083| 0.000099| 0.000116
22528| 0.000083| 0.000086| 0.000063| 0.000039| 0.000060| 0.000089| 0.000109| 0.000128
24576| 0.000094| 0.000073| 0.000069| 0.000042| 0.000065| 0.000097| 0.000119| 0.000137

Sample throughput based on time and block size

Samples

2048

VM CPU

256,000,000.00

75,851,851.85

1070 CPU
341,333,333.33

1070 OCL
157,538,461.54

970 CPU
292,571,428.57

970 OCL
97,523,809.52

1000M CPU
204,800,000.00

1000M OCL
56,888,888.89

4096

273,066,666.67

128,000,000.00

341,333,333.33

256,000,000.00

292,571,42&%7

146,285,714.29

204,800,000.00

93,090,909.09

6144

267,130,434.78

170,666,666.67

361,411,764.71

323,368,421.05

292,571,428.57

170,666,666.67

204,800,000.00

115,924,528.30

8192

264,258,064.52

215,578,947.37

356,173,913.04

390,095,238.10

292,571,428.57

190,511,627.91

204,800,000.00

132,129,032.26

10240

269,473,684.21

238,139,534.88

353,103,448.28

426,666,666.67

301,176,470.59

204,800,000.00

204,800,000.00

146,285,714.29

12288

267,130,434.78

279,272,727.27

361,411,764.71

455,111,111.11

299,707,317.07

219,428,571.43

204,800,000.00

151,7083,703.70

14336

270,490,566.04

281,098,039.22

358,400,000.00

494,344,827.59

377,263,157.89

231,225806.45

204,800,000.00

159,288,888.89

16384

273,066,666.67

292,571,428.57

356,173,913.04

528,516,129.03

381,023,255.81

237,449,275.36

204,800,000.00

165,494,949.49

18432

263,314,285.71

249,081,081.08

354,461,538.46

542,117,647.06

376,163,265.31

239,376,623.38

204,800,000.00

169,100,917.43

20480

259,240,506.33

330,322,580.65

359,298,245.61

553,513,513.51

379,259,259.26

246,746,987.95

206,868,686.87

176,551,724.14

22528

271,£21,686.75

261,953,488.37

357,587,301.59

577,641,025.64

375,466,666.67

253,123,595.51

206,678,899.08

176,000,000.00

24576

261,446,808.51

336,657,534.25

356,173,913.04

585,142,857.14

378,092,307.69

253,360,824.74

206,521,008.40

179,386,861.31

2.7.2.2 Observations

In this block, both the 970 and 1000M cards showed worse performance in the OpenCL implementation. However
the 1070 card outperformed even the faster CPU starting at 819s samples processed.

There is one otherery important observation from developing the signal source block. That is that the accuracy of
the sin() and cos() functions implemented by OpenCL platforms varies. The anomaly showed up during testing

when comparing the OpenCL version of a signat@®to the native version aaplemented in this flowgraph

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

33

Study on Implementing OpenCL in CommoiNGRadio Blocks

Signal Source
Sample Rate: 2. 4M
Wawveform: Cosine Throttle
|: Frequency: 1M Sample Rate: 2 4M
Amplitude: 1
Offset: 0

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 2 am

OpencCL Signal Source
OpenCL Platform Type: Any
OpenCL Device: Any
Waveform: Cosine I
Sample Rate: 2.4M
Frequency: 1M
Amplitude: 1
Debug: Off

The net result on the VM was the following curves:

J Opencl Testsigsource (S E R
] — GNURadio
0
— OpenCL
20 —
=
m -40-|
0
£]
T o0
It 60
o i
2
E -80
[-
[:4 4
-1004
-120+
a0 T . (\
—_—r T T[T
-1.000 -0.500 0.000 0.500 1.000
Frequency (MHz)

At first the assumption was there was an error with the code, however after doing some research it turns out it is an

OpenCL anomaly. Runninaccuracy tests on different platforms showed the following results as output from test
clenabled:

This is the run result from running on the Intel CPU OpenCL driver:

maximum error OpenCL versus gnuradio table lookup cos/sin: 0.000056/0.000054 |

Running thesame tests on the 1000M and 1070 card produced the following outcome:

maximum error OpenCL versus gnuradio table lookup cos/sin: 0.000009/0.000009 |

According to the OpenCL specification, sin and cos accuracy are implemersjagicific. Which means thdie
OpenCL code was correct however the precision of the results may vary. This did not have a notable visual impact
when shifting signals as in the following comparative flowgraph:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
34

Study on Implementing OpenCL in CommoiNGRadio Blocks

File Source
File: ._remate_lock_2 4M.iq
Repeat: Yes

Throttle
Sample Rate: 2.4M

Signal Source
Sample Rate: 2.4M
Waveform: Cosina
Frequency: -1M
Amplituda: 1
Offset: 0

OpenCL Signal Source
OpencL Platform Type: Any
OpenCL Device: Any
Waveform: Cosine
Sample Rate: 2.4M
Frequency: -1M
Amplitude: 1
Debug: Off

QT GUI Frequency Sink
FFT Size: 1.024k

Center Frequency (Hz): 0
Bandwidth (Hz): 2.4M

This produced the following frequency curves showing the shift is d¢orrec

b Opencl Testsigsource

[Fa T E

— GNURadio

-204

-40 -

.60

-80 -

Relative Gain (dB)

-100

-120

140 -

— OpenCL

However it means that if precision is important, the native block may be preferred, and a more efficient way of
getting rid of the center frequency DC spike on devices that do not remove it in their driver would be to use
something like my correctigdck (found herdnttps:/fithubhcom/ghostopl4/gcorrectiq.gi} which has been timed

at 280+ MSP%nd can skip the signal source and multiply requirement or overhead of combining those fimctions

the XLATING FIR filter by simply doing this:

osmocom Source
Device Arguments: hackrf
Sample Rate (sps): 4M
Cho: Frequency (Hz): 303M
Cho: Freq. Corr. (ppm): 0
Cho: DC Offset Mode: Off
Cho: 10 Balance Mode: Off
Cho: Gain Mode: Manual
Cho: RF Gain (dB): 0
Cho: IF Gain (dB): 32
Cho: BB Gain (dB): 12

I

QT GUI Frequency Sink
FFT Size: 1.024k
Center Frequency (Hz): 202M
Bandwidth (Hz): 4M

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

35

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.7.3 Quadrature Demod

The quadrature demod block is used for Frequency Shift Keying decoding, one of the three primary digital data
transmission modes (with the other two being amplitude shift keying [ASBatOff Keying (OOK)] and Phase

Shift Keying (PSK). This block performs the following calculations to produce a demodulated signal (note some
optimizations for if gain is set to 1 or some other value):

srcStdStr =",
if (f_gain !=1.0) {
srcStdStr +=" #define GAIN " + std::to_string(f_gain) + " \n"
}
srcStdStr += "struct ComplexStruct { \n"
srcStdStr += "float real; \n";
srcStdStr += "float imag; }; \n";
srcStdStr += "typedef struct ComplexStruct SComplex; \n";
srcStdStr +="___kernel void quadDemod(__glo bal SComplex * restrict a, __global float *
restrict) { \n";
srcStdStr +=" size_tindex = get_global_id(0); \n"
srcStdStr +=" float a_r=a[index+1 J].real; \n"
srcStdStr +=" float a_i=a[index+1 l.imag; \n";
srcStdStr +=" float b_r=a[index].re al; \n"
srcStdStr +=" float b_i= - 1.0 * afindex].imag; \n"
srcStdStr +=" float multCCreal = (a_r * b_r) - (a_i*b_i); \n"
srcStdStr += " float multCCimag = (a_r * b_i) + (a_i * b_r); \n"
if (f_gain I=1.0)
srcStdStr +=" c[index] = GAIN * atan 2(multCCimag,multCCreal); \n"
else
srcStdStr +=" ¢[index] = atan2(multCCimag,multCCreal); \n";
srcStdStr +="} \n"

This can be compared to the GNURadio implementation which uses a Volk block to do the calculations. The Volk
block ultimately performshte following calculation:

volk_32fc_x2_multiply_conjugate_32fc(&tmp[0], &in[1], &in[0] , houtput_items);
for(inti = 0; i < noutput_items; i++) {
outfi] = f_gain * gr::clenabled::fast_atan2f(imag(tmpl[i]), real(tmpli]));

Where the volk_32fc_x2_ multiply_conjugate_32fc function performs the following calculation:

volk_32fc_x2_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, const Iv_32fc_t*
aVector,

const lv_32fc_t* bVector, uns igned int
num_points)

Iv_32fc_t* cPtr = cVector;
const Iv_32fc_t* aPtr = aVector;
const Iv_32fc_t* bPtr= bVector;
unsigned int number = 0;

for(number = 0; number < num_points; number++)
*cPtr++ = (*aPtr++) * Iv_conj(*bPtr++);
}

}

Note highlighted in the code the in[1] and in[0] parameters passed to the Volk function. This implies that each
sample is actually multiplied by the conjugate of the subsequent data point to produce theTbigpuakes sense
because mathematically multiptg a complex number by its complex conjugate simply produces a real number

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
36

Study on Implementing OpenCL in CommoiNGRadio Blocks

(the imaginary part cancels itself out to zerdhis subsequent conjugate calculatisrreflected in the OpenCL
implementation with the index+1 referertoematch the Volk caldation. Care was takein the codevhen creating
the buffers to allow for the potential for datasize+1 to be accessed as in the CPU implementation.

2.7.3.1 Data
450,000,000.00
400,000,000.00

350,000,000.00

—e— VM CPU
300,000,000.00

= —e—\/M OCL

% 250,000,000.00 1070 CPU

>

g 200,000,000.00 —e—1070 OCL

= —e— 970 CPU
150,000,000.00 970 OCL
100,000,000.00 —e— 1000M CPU

—e—1000M OCL
50,000,000.00

0 5000 10000 15000 20000 25000 30000
Block Size

Timing in Seconds

1070 1070 970 1000M

Samples CPU OCL
2048| 0.000014| 0.000042| 0.000009| 0.000024| 0.000011| 0.000033| 0.000021| 0.000058

4096 | 0.000028| 0.000051| 0.000018| 0.000029| 0.000023| 0.000044| 0.000042| 0.000068
6144 | 0.000043| 0.000064| 0.000028| 0.000033| 0.000034| 0.000054| 0.000063| 0.000080
8192 | 0.000057| 0.000074| 0.000035 | 0.000037| 0.000046| 0.000064| 0.000084| 0.000092
10240/ 0.000070| 0.000088| 0.000043| 0.000037| 0.000057| 0.000072| 0.000105| 0.000107
12288| 0.000086| 0.000092| 0.000053| 0.000040| 0.000068| 0.000082| 0.000126| 0.000122
14336| 0.000099| 0.000113| 0.000059| 0.000043| 0.00M80 | 0.000092| 0.000147| 0.000138
16384 | 0.000115| 0.00013| 0.000069| 0.000047| 0.000098| 0.000103| 0.000168| 0.000153
18432| 0.00013| 0.000135| 0.000076| 0.000051| 0.000103| 0.000112| 0.000189| 0.000168
20480| 0.000144 0.000156| 0.000085| 0.000054| 0.000114| 0.000122| 0.000210| 0.000181
22528 0.000156| 0.000162| 0.000092| 0.000059| 0.000126| 0.000131] 0.000231| 0.000195
24576| 0.000157| 0.000176| 0.000100] 0.000065| 0.000138| 0.000141] 0.000252| 0.000208

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
37

Study on Implementing OpenCL in CommoiNGRadio Blocks

Sample throughput based on time and block size

1070 CPU

10700CL

970 CPU

970 OCL

1000M CPU

1000M OCL

SEES

2048

146,285,714.29

48,761,904.76

227,555,555.56

85,333,333.33

186,181,818.18

62,060,606.06

97,523,809.52

35,310,344.83

4096

146,285,714.29

80,313,725.49

227,555,555.56

141,241,379.31]

178,086,956.52

93,090,909.09

97,523,809.52

60,235,294.12

6144

142,883,720.93

96,000,000.00

219,428,571.43

186,181,818.18

180,705,882.35

113,777,777.78

97,523,809.52

76,800,000.00

8192

143,719298.25

110,702,702.70

234,057,142.86

221,405,405.41

178,086,956.52,

128,000,000.00

97,523,809.52

89,043,478.26

10240

146,285,714.29

116,363,636.36

238,139,534.88

276,756,756.76

179,649,122.81

142,222,222.22

97,52,809.52

95,700,934.58

12288

142,883,720.93

133,565,217.39

231,849,056.60

307,200,000.00

180,705,882.35

149,853,658.54

97,523,809.52

100,721,311.48

14336

144,808,080.81

126,867,256.64

242,983,050.85

333,395,348.84

179,200,000.00

155,826,086.96

97,523,809.52

103,884,057.97

16384

142,469,565.22

126,030,769.23

237,449,275.36

348,595,744.68

167,183,673.47

159,067,961.17,

97,523,809.52

107,084,967.32

18432

141,784,615.38

136,53,333.33

242,526,315.79

361,411,764.71

178,951,456.31

164,571,428.57

97,523,809.52

109,714,285.71

20480

142,222,222.22

131,282,051.28

240,941,176.47

379,259,259.26

179,649,122.81

167,868,852.46

97,523,809.52

113,49,171.27

22528

144,410,256.41

139,061,728.40

244,869,565.22

381,830,508.47

178,793,650.79

171,969,465.65

97,523,809.52

115,528,205.13

24576

156,535,031.85

139,636,363.64

245,760,000.00

378,092,307.69

178,086,956.52

174,297,872.34

97,523,809.52

118,153,846.15

2.7.3.2 Observations

Thi s

bl

ock

shows

mi

xed

per f or ma ntdthe blwek size deaches 10gdab c e s s e d

the OpenCL implementation actually starts to outperform the CPU ineplastion. And a much more significant

performance gain is achieved on the newer 1070 hardware.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

38

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.8 ENABLED LIST

The modules discussed in this section represent functionaréhat may be used in common flow graphs such as a
basic complex multiply or corestit multiply blockbut whose performance was not categorized as accelerated or
offloaded In the original design goal of this project, and prior to having a more thorough understanding of both
GNURadio operations and OpenCL, it was not understood whg tilesks had not been implemented in OpenCL.

Therefore to address others having the same thought processes as mine prior to the study, these blocks are included
along with the performance comparisons of each.

2.8.1 Multiply /Add/Subtract/Multiply Conjugate

Within the grclenabled code, there are a number of blocks that are all implemented in a single class. These blocks
share common traits such as 2 inputs and 1 output, and only differ in the calculation performed. While only the
Multiply operation is presendehere, the block also provides the following operations:

1 Add
1 Subtract
1 Multiply Conjugate

The following code shows the OpenCL kernel construction for the complex data types:

srcStdStr = "struct ComplexStruct { \n";

srcStdStr += "float real ;\n"

srcStdStr += "float imag; }; \n"

srcStdStr += "typedef struct ComplexStruct SComplex; \ n";

fnrName = "op_complex";

if (useConst)

srcStdStr +="___kernel void op_complex(__constant SComplex * a,
__constant SComplex * b, _ global SComplex * restrict c) { \n";
else
srcStdStr +="___kernel void op_complex(__global SComplex * restrict
a, _ global SComplex * restrict b, __global SComplex * restrict c) { \n";
if (d_operatorType = MATHOP_ EMPTY)
srcStdStr +=" size_t index = get_global_id(0); \n";

switch (d_operatorType) {
case MATHOP_MULTIPLY:

srcStdStr +=" float a_r=a[index].real; \n";

srcStdStr +=" float a_i=a[index].imag; \n";

srcStdStr +=" float b_r=b[index].real; \n";

srcStdStr +=" float b_i=b[index].imag; \n";

srcStdStr +=" c[index].real = (a_r*b_r) - (a_i*b_i); \n";
srcStdStr += " c[index].imag = (a_r * b_i)+ (a_i*b_r); \n"
break;

case MATHOP_ADD:

srcStdStr += " c[index].real = afindex].real + b[index].real; \n";
srcStdStr += " c[index].imag = afindex].imag + b[index].imag; \n";
break;

case MATHOP_SUBTRACT:

srcStdStr += " c[index].real = afindex].real - b[index].real; \n";
srcStdStr += " c[index].imag = afindex].imag - b[index].imag; \n";
break;

case MATHOP_MULTIPLY_CONJUGATE:
numParams = 2;
fnName = "op_complex";

srcStdStr = "struct ComplexStruct { \n"

srcStdStr += "float real; \n"

srcStdStr += "float imag; }; \n";

srcStdStr += "typedef struct ComplexStruct SCompl ex; \ n";

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
39

Study on Implementing OpenCL in CommoiNGRadio Blocks

if (useConst)

srcStdStr +="___kernel void op_complex(__constant SComplex * a,
__constant SComplex * b, __global SComplex * restrict c) { \n";
else
srcStdStr +="___kernel void op_complex(__global SComplex * restrict
a, __global SComplex * restrict b, __global SComplex * restrict c) { \ n";
srcStdStr += " size_tindex = get_global_id(0); \'n";
srcStdStr +=" float a_r=a[index].real; \ n";
srcStdStr +=" f loat a_i=a[index].imag; \n"
srcStdStr += " float b_r=b[index].real; \ n";
srcStdStr +=" float b_i= - 1.0 * b[index].imag; \n"
srcStdStr +=" c[index].real = (a_r *b_r) - (a_i*b_i); \ n";
srcStdStr += " cfindex].imag = (a_r *b_i) + (a_i * b_r); \n"
numConstParams = 2;

break;

}
srcStdStr += "} \n";

2.8.1.1 Data

2,500,000,000.00

2,000,000,000.00

—— VM CPU
5 1,500,000,000.00 ‘/.\ —e— VM OCL
o
< 1070 CPU
S
o —o— 1070 OCL
e
£ 1,000,000,000.00 o970 CPU
oo o o o o oo _ o —e—9700CL
500,000,000.00 —e—1000M CPU
—e— 1000M OCL
0 5000 10000 15000 20000 25000 30000
Block Size

Timing in Seconds

VM 1070 1000M

Samples CPU OCL
2048| 0.000@1 | 0.000044| 0.000001| 0.000031| 0.000002| 0.000050| 0.000003| 0.000085

4096 | 0.000003| 0.000052| 0.000004| 0.000039| 0.000003| 0.000077| 0.000006| 0.000123
6144 | 0.000004| 0.000057| 0.000006| 0.000045| 0.000005| 0.000088| 0.000009| 0.000116
8192 | 0.000006| 0.000066| 0.000004| 0.000050| 0.000006| 0.000108| 0.000012| 0.000136
10240/ 0.000007| 0.000065| 0.000009| 0.000057| 0.000008| 0.000127| 0.000015| 0.000159
12288| 0.000008| 0.000078| 0.000010| 0.000062| 0.000010] 0.000147| 0.000018| 0.000180

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
40

Study on

Implementing OpenCL in CommoiNGRadio Blocks

14336| 0.000010| 0.000365| 0.000008| 0.000069| 0.000011| 0.000165| 0.000021| 0.000200
16384| 0.000013| 0.000142| 0.000010] 0.000076| 0.000014| 0.000186| 0.000024| 0.000219
18432| 0.000018| 0.000158| 0.000011]| 0.000082| 0.000015| 0.000204| 0.000027| 0.000242
20480| 0.000021| 0.00014| 0.000019| 0.000088| 0.000016| 0.000222| 0.000033| 0.00259
22528| 0.000018| 0.000147| 0.000012| 0.000095| 0.000019| 0.000243| 0.000036| 0.000279
24576| 0.000026| 0.000222| 0.000023| 0.000102| 0.000020| 0.000261| 0.000036| 0.000300

Sample throughput based on time and block size

SEES

2048

2,048,000,000.0¢

46,545,454.55

1070 CPU

2,048,000,000.0¢

1070 OCL

66,064,516.13

970CPU

1,024,000,000.0C

970 OCL

40,960,000.00

1000M CPU

682,666,666.67

1000M OCL

24,094,117.65

4096

1,365,333,333.33

78,769,230.77

1,024,000,000.00

105,025,641.03

1,365,333,333.35

53,194,805.19

682,666,666.67

33,300,813.01

6144

1,536,000,000.00

107,789,473.68

1,024,000,000.00

136,533,333.33

1,228,800,000.0C

69,818,181.82

682,666,666.67

52,965,517.24

8192

1,365,33,333.33

124,121,212.12

2,048,000,000.0¢

163,840,000.00

1,365,333,333.33

75,851,851.85

682,666,666.67

60,235,294.12

10240

1,462,857,142.86

157,538,461.54

1,137,777,777.78

179,649,122.81

1,280,000,000.0C

80,629,921.8

682,666,666.67

64,402,515.72

12288

1,536,000,000.00

157,538,461.54

1,228,800,000.00

198,193,548.39

1,228,800,000.0C

83,591,836.73

682,666,666.67

68,266,666.67

14336

1,433,600,000.00

39,276,712.33

1,792,000,000@

207,768,115.94

1,303,272,727.27

86,884,848.48

682,666,666.67

71,680,000.00

16384

1,260,307,692.3]

115,380,281.69

1,638,400,000.00

215,578,947.37

1,170,285,714.2¢

88,086,021.51

682,666,666.67

74,812,785.39

18432

1,024,000,000.0¢

116,658,227.85

1,675,636,363.64

224,780,487.80

1,228,800,000.0¢

90,352,941.18

682,666,666.67

76,165,289.26

20480

975,238,095.24

146,285,714.29

1,077,894,736.84

232,727,272.73

1,280,000,000.0¢

92,252,252.25

620,606,060.61

79,073,359.07

22528

1,251,555,555.54

1583,251,700.68

1,877,333,333.33

237,136,842.11

1,185,684,210.55

92,707,818.93

625,777,777.78

80,745,519.71

24576

945,230,769.23

110,702,702.7Q

1,068521,739.13

240,941,176.47

1,228,800,000.0C

94,160,919.54

682,666,666.67

81,920,000.00

2.8.1.2 Observations

This basic multiply block is very revealing. It clearly shows that for very simple operations the cost of moving the
data to the graphiasard and back exceeds the amount of time it takes for the CPU to perform the multiply
operation. The graph clearly shows the CPU outperforms OpenCL by almost an order of magnitude.

After reviewing the data, the cyclic nature of the CPU results appeaesattributed to the fact that the
measurements down to 1 microsecond accuracy may be the cause. Some blocks only differ from their predecessor
for the 1070 hardware by2 microseconds. If the timers are rounding up/down to produce an integer, it would
explain the wild swings in throughput. In other words 1 microsecond versus 2 microseconds in timing would give
the impression of doubling or halving the throughput rates.

In either case, this block could be capable of processing GSPS due to thersplicity of the calculations. This

can be compared against the GPUs that can only proce000@SPS.

One could argue that for current SDR hardware capable of samplingiaé2 2 MISPS, that this 16800 MSPS rate
is sufficient to offload processing &0GPU. However as noted later there is a price to pay for running multiple

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

41

Study on Implementing OpenCL in CommoiNGRadio Blocks

blocks with separate contexts in the same flowgraph which could actually decrease performance. So this is not
recommended.

The other observation from the results is in regariédQpenCL CPU results, in other words OpenCL running on
the Intel CPU driver. The effect of this driver really amounts to a less efficient version ethmedidling. What is
evident from the result is that the OpenCL CPU version slightly outperforrae@iRidonly version for the VM
version. This implies that this block could benefit from a true multithreading implementation if true acceleration
were desired.

2.8.2 Multiply/Add Const
2.8.21 Data

6,000,000,000.00

5,000,000,000.00

4,000,000,000.00 —e—VM CPU
. —e— VM OCL
b=y 1070 CPU
2 3,000,000,000.00
o —e—1070 OCL
e
= —e—970 CPU
2,000,000,000.00 —e—970 OCL
—e— 1000M CPU
1,000,000,000.00 —e—1000M OCL
0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
42

Samples

Study on Implementing OpenCL in CommoiNGRadio Blocks

Timing in Seconds

1070 1070 1000M 1000M

Samples VM CPU VM OCL | CPU OCL 970 CPU 970 OCL CPU OCL
2048| 0.000001] 0.000034| 0.000001| 0.000021] 0.000001] 0.000034] 0.000001] 0.000059
4096| 0.000001] 0.000041| 0.000001| 0.000026/ 0.000001] 0.000048] 0.000002] 0.000082
6144| 0.000002| 0.000044| 0.000002| 0.000031] 0.000002| 0.000063] 0.000003] 0.0(0104
8192| 0.000003| 0.000057| 0.000002| 0.000036/ 0.000004| 0.000079| 0.000005 0.000125
10240| 0.000004 0.000059| 0.000002| 0.000039| 0.000003] 0.000086/ 0.000006] 0.000111
12288| 0.000005/ 0.000057| 0.000003| 0.000044| 0.000004] 0.000099] 0.000007| 0.000126
14336| 0.000005/ 0.000058| 0.000004| 0.000048| 0.000004| 0.000112] 0.000008| 0.000143
16384| 0.000006/ 0.000074| 0.000005| 0.000052| 0.000005 0.000125| 0.000009] 0.000157
18432| 0.000007| 0.000078| 0.000005| 0.000057| 0.000006 0.000139| 0.000011] 0.000173
20480| 0.000009| 0.000083| 0.000007| 0.000061] 0.000007| 0.000153| 0.000013| 0.000187
22528| 0.00001| 0.000141| 0.000007| 0.000066/ 0.000008| 0.000165/ 0.000015/ 0.000203
24576| 0.000018| 0.000129| 0.000007| 0.000070| 0.000009| 0.000179] 0.000018/ 0.000215

VM CPU

Sample throughput based on time and block size

1070 CPU

1070 OCL

970 CPU

970 OCL

1000M CPU

1000M OCL

2048

2,048,000,000.0(

60,235,294.12

2,048,000,000.0¢

97,523,809.52

2,048,000,000.0¢

60,235,294.12

2,048,000,000.0(¢

34,711,864.41

4096

4,096,000,0000

99,902,439.02

4,096,000,000.00

157,538,461.54

4,096,000,000.0¢

85,333,333.33

2,048,000,000.0(

49,951,219.51

6144

3,072,000,000.0¢

139,636,363.64

3,072,000,000.0¢

198,193,548.3¢

3,072,000,000.0¢

97,523,809.3

2,048,000,000.0(¢

59,076,923.08

8192

2,730,666,666.61

143,719,298.25

4,096,000,000.00

227,555,555.56

2,048,000,000.0(

103,696,202.53

1,638,400,000.0(

65,536,000.00

10240

2,560,000,000.0(

173,559,322.03

5,120,00,000.00

262,564,102.56

3,413,333,333.3

119,069,767.44

1,706,666,666.61

92,252,252.25

12288

2,457,600,000.0(

215,578,947.31

4,096,000,000.0¢

279,272,727.27

3,072,000,000.0(

124,121,212.17

1,755,428,571.43

97,523809.52

14336

2,867,200,000.0(

247,172,413.79

3,584,000,000.0(

298,666,666.67

3,584,000,000.0(

128,000,000.00

1,792,000,000.0(¢

100,251,748.25

16384

2,730,666,666.61

221,405,405.4]

3,276,800,000.0(

315,076,923.08

3,276,800,000.00

131,072,000.00

1,820,444,444.44

104,356,687.9(

18432

2,633,142,857.14

236,307,692.31

3,686,400,000.0(

323,368,421.05

3,072,000,000.0(

132,604,316.55

1,675,636,363.64

106,543,352.6(

20480

2,275,555,555.54

246,746,987.95

2,925,714,285.71

335,737,704.97

2,925,714,285.71

133,856,209.15

1,575,384,615.3§

109,518,716.5§

22528

2,252,800,000.0(

159,773,049.65

3,218,285,714.2

341,333,333.33

2,816,000,000.0(

136,533,333.33

1,501,866,666.61

110,975,369.46

24576

1,365,333,333.3]

190,511,627.9]

3,510,857,142.8¢

351,085,714.29

2,730,666,666.61

137,296,089.3¢

1,365,333,333.33

114,306,976.74

2.8.2.2 Observations

This block performed very similarly to the Niply block.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

43

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.8.3 Complex to Mag

Complex to Mag is a block used for a number of applications, however in digital data processing it is most
commonly used to demodulate ASK/OOK signals. Given the goal of covering all three primary digital data modes
(ASK/FSK/PSK), it was logical to include this block in the study.

This block is simply implemented in OpenCL as a square ffagjuares as shown in the code below which builds
the kernel:

srcStdStr ="
srcStdStr += "struct ComplexStruct { \n"
srcStdStr += "float real; \'n";
srcStdStr += "float imag; }; \n"
srcStdStr += "typedef struct ComplexStruct SComplex; \n";
if (useConst)
srcStdStr +="__kernel void complextomag(__constant SComplex * a,
__global float * restrict c) { \n"
els e
srcStdStr +="__kernel void complextomag(__global SComplex * restrict a,
__global float * restrict c) { \n"
srcStdStr +=" size_tindex = get_global_id(0); \n"
srcStdStr +=" float aval = afindex].imag; \ n"
srcStdStr +=" float bval = afindex].real; \ n"
srcStdStr +=" c[index] = sqrt((aval*aval)+(bval*bval)); \n"

srcStdStr +="} \n";

This can be compared against the GNURadio implementation which uses the following Volk call:

| volk_32fc_magnitude_32f _u(out, in, no utput_items);

This calculation can ultimately be seen in the generic version of the Volk call:

volk_32fc_magnitude_32f_generic(float* magnitudeVector, const Iv_32fc_t*

complexVector, unsigned int num_points)

{
const float* complexVectorPtr = (float*)comp lexVector;
float* magnitudeVectorPtr = magnitudeVector;
unsigned int number = 0;
for(number = 0; number < num_points; number++){

const float real = *complexVectorPtr++;
const float imag = *complexVectorPtr++;
*magnitudeVectorPtr++ = sqrtf ((real*real) + (imag*imag));

}

}

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
44

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.8.3.1 Data

3,000,000,000.00

2,500,000,000.00

2,000,000,000.00 —————0—0—0 0 VM CPU
- —e— VM OCL
= 1070 CPU
S 1,500,000,000.00
3 —e—1070 OCL
ey
= /\\‘\Mo/' —e—970 CPU
1,000,000,000.00 —e—970 OCL

—e—1000M CPU

—0—0—_, o900 —0—0—0—0—9

PUES —snan=S

0 5000 10000 15000 20000 25000
Block Size

500,000,000.00 —e— 1000M OCL

30000

Timing in Seconds

VM VM 1070 1070 970 ‘ 970 ‘ 1000M ‘ 1000M
Samples CPU OoCL CPU OCL CPU OCL CPU OCL
2048| 0.000001| 0.000031| 0.000001| 0.000022| 0.000002| 0.000032| 0.000003| 0.000057
4096| 0.000002| 0.000033| 0.000002| 0.000026| 0.000003| 0.000043] 0.000006| 0.000074
6144| 0.000003| 0.000038| 0.000003| 0.000030| 0.000005| 0.000061] 0.000009| 0.000094
8192| 0.000004| 0.000037| 0.000004| 0.000033| 0.000007| 0.000071| 0.000013| 0.000112
10240 0.000005| 0.000047| 0.000004| 0.000035| 0.000009| 0.000070| 0.000016| 0.000095
12288| 0.000006| 0.000046| 0.000005| 0.000038| 0.000010| 0.000081| 0.000019| 0.000109
14336 0.000007| 0.000044| 0.000006| 0.000041| 0.000012| 0.000091| 0.000022| 0.000122
16384 | 0.000008| 0.000054| 0.000007| 0.000044| 0.000014| 0.000100| 0.000025| 0.000135
18432 | 0.000009| 0.000054| 0.000008| 0.000048| 0.000015| 0.000110| 0.000028| 0.000147
20480 0.000010| 0.000079| 0.000009| 0.000051| 0.000017| 0.000119| 0.000031| 0.000158
22528| 0.000011| 0.000074| 0.000010| 0.000054| 0.000019| 0.000129| 0.000034| 0.000169
24576| 0.000013| 0.000®2 | 0.000011| 0.000058| 0.000020| 0.000138| 0.000038| 0.000182

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

45

VM CPU

Study on Implementing OpenCL in CommoiNGRadio Blocks

Sample throughput based on time and block size

1070 CPU

1070 OCL

970 CPU

970 OCL

1000M CPU

1000M OCL

Samples

2048

2,048,000,000.00

66,064,516.13

2,048,000,000.00

93,090,909.09

1,024,000,000.00

64,000,000.00

682,666,666.67

35,929,824.56

4096

2,048,000,000.00

124,121,212.12

2,048,000,000.00

157,538,461.54

1,365,333,333.33

95,255,813.95

682,666,666.67

55,351,351.35

6144

2,048,000,000.00

161,684,210.53

2,048,000,000.00

204,800,000.00

1,228,800,000.00

100,721,311.48

682,666,666.67

65,361,702.13

8192

2,048,000,000.00

221,405,405.41

2,048,000,000.00

248,242,424.24

1,170,285,714.29

115,30,281.69

630,153,846.15

73,142,857.14

10240

2,048,000,000.00

217,872,340.43

2,560,000,000.00

292,571,428.57

1,137,777,777.78

146,285,714.29

640,000,000.00

107,789,473.68

12288

2,048,000,000.00

267,130,434.78

2,457,600,000.00

323,368,421.05

1,228,800,000.00

151,703,703.70

646,736,842.11

112,733,944.95

14336

2,048,000,000.00

325,818,181.82

2,389,333,333.33

349,658,536.59

1,194,666,666.67

157,538,461.54

651,636,363.64

117,508,96.72

16384

2,048,000,000.00

303,407,407.41

2,340,571,428.57

372,363,636.36

1,170,285,714.29

163,840,000.00

655,360,000.00

121,362,962.96

18432

2,048,000,000.00

341,333,333.33

2,304,000,000.00

384,000,000.00

1,228,80,000.00

167,563,636.36

658,285,714.29

125,387,755.10

20480

2,048,000,000.00

259,240,506.33

2,275,555,555.56

401,568,627.45

1,204,705,882.35

172,100,840.34

660,645,161.29

129,620,253.16

22528

2,048,000,000.00

304,432,432.43

2,252,800,000.00

417,185,185.19

1,185,684,210.53

174,635,658.91

662,588,235.29

133,301,775.15

24576

1,890,461,538.46

267,130,434.78

2,234,181,818.18

423,724,137.93

1,228,800,000.00

178,086,956.52

646,736,82.11

135,032,967.03

2.8.3.2 Observations

Again the results were very comparable to the Multiply and Multiply Const blocks with the CPU outperforming the
GPU. There was one anomaly in the data that was most evident in the 1070 hardware and that waslthenmusu

going from 8192 to 10240 data points. The test was rerun several times and each time the result was consistent.
The reason for this jump is unknown.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

46

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.9 POOR PERFORMANCE LIST

In general, hiereareimplementations of variousore signal processirfgnctions in OpenCL Most specifically

these are basic Fast Fourier Transforms (FFT), both forward and reverse, along with signabfileersall of the

mat erials available on the Internet regardyiamdy executin
vendorspecific implementations such as cuFFT, the expected result was that the OpenCL implementations would
outperform the CPU implementations. However the data indicates a different outcome within the context of real

time SDR processing. And oa the underlying root causes were understood it did make sense. As ahissult, t

group provided the greatest surprise intéetdataresults

Before reviewing the data, some speculation in terms oftimge blocks performed worisebe in order. Mny of

the sample code about doing FFT transforms in OpenCL were geared towards offline processing. In offline
processing, blocks or batches of data could be process
performance gains with large data blacktowever for reatime processing these blocks are much smaller and

must be processed in a tirgensitive way. For GNURadio this equates to processing the blocks provided by the

scheduler.

Because an FFT transform works on a complex data set matohsimgito the FFT size (in other words a 2048

point FFT would process 2048 data points at a time), moving these blocks individually to the GPU and back pays
the performance cost of the memory copiestioned earlier It is possible that more focus on &aprocessing

within the coddor the FFT and reverse FFT blocksuld improve performance, however problems were
encountered with clFFT throwing exceptions while using batches. This may be more programmatic thisors
implementatiorthan problems wit the library

However any improvements in the FFT blocks would not be realized in the filter code since the filter calculations
haveacarf or war d fitail 06 necessit at Integns ¢ fitdrs, deVemlooptisnsWweee done s
explored. Given the filter transition width and type, a series of taps are generated. Smaller transition widths

produce more taps which require more processing and adjustments to the block sizes. These taps can be applied in
either a time domain or frequency daim however in general the frequency domain application does not take as

much processing power and produces exactly the same result. However what this requires is a forward FFT to get
the data into the frequency domain, application of the taps, theemsed-FT to get the transformed signal out.

This process producéisatfi t athiatlwas mentionetthat needs to be applied to the next block before it can be
processed, which means processing needs to be dsaguantiathunks. Not an optimal implemtztion for

OpenCL in that buffer read/writes need to be executed to move each block to the card. This incurs quite a time
penalty over the CPU implementation.

These root causes do account for the letlianexpected performance seen in the data presentkd next
subsections.

2.9.1 FFT Forward

The forward FFT calculation was implemented in OpenCL using the clFFT library as shown below.

Setup:

[* Setup clFFT. */

clfftSetupData fftSetup;

err = clfftinitSetupData(&fftSetup);
err = clfftSetup(&fftSetup);

err = clfftCreateDefaultPlan(&planHandle, (*context)(), dim, clLengths);

[* Set plan parameters. */
err = clfftSetPlanPrecision(planHandle, CLFFT_SINGLE);

if (dataType==DTYPE_COMPLEX) {

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
47

Study on Implementing OpenCL in CommoiNGRadio Blocks

err = clfftSetLayout(planHandle, CLFFT_COMPLEX_INTERLEAVED,
CLFFT_COMPLEX_INTERLEAVED);
}
else {
err = clfftSetLayout(planHandle, CLFFT_REAL, CLFFT_REAL);
}

clfftSetPlanScale(planHandle, CLFFT_BACKWARD, 1.0f); // By default the backward scale is
set to 1/N so you have to set it here.

/lerr = clfftSetResultLocation(planHandle, CLFFT_INPLACE); // In - place puts data back in
source queue. Not what we want.

err = clfftSetResultLocation(planHandle, CLF FT_OUTOFPLACE);

/I using vectors we don't want to change the output multiple since 1 item will be an fft
worth of data.
1 set_output_multiple(fftSize);

/* Bake the plan. */
err = clfftBakePlan(planHandle, 1, &(*queue) (), NULL, NULL);

Note the highlighted line required for reverse transforms. For some reason the cIFFT library applies a scaling factor
by default to reverse transforms. This factor is 1/N where N is the FFT size. This can be overridden with the
highlighted line but must be done explicitly or the results would be scaled down and not match toelCPU
implementation results.

The actual transform is then executed at runtime with the following code:

err = clfftEnqueueTransform(planHandle, fftDir, 1 , &((*queue)()), O,
NULL, NULL, &((*aBuffer)()), &((*cBuffer)()), NULL);

Note the same code is used for both forward and reverse transforms, the only difference is the fftDir flag which
indicates whether the transform is forward or reverse.

2.9.1.1 Data

700,000,000.00
600,000,000.00

500,000,000.00

—e— VM CPU
- —e— VM OCL
3 400,000,000.00
< ~o—0—"%—¢ _o—0—90—9 1070 CPU
3 —e— 1070 OCL
£ 300,000,000.00
= ‘\._MW —e-9rocry
200,000,000.00 —e—970 OCL
—e—1000M CPU
100,000,000.00 —e—1000M OCL
0 5000 10000 15000 20000 25000 30000
Block Size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
48

Study on Implementing OpenCL in CommoiNGRadio Blocks

Timing in Seconds

1070 1070 1000M 1000M

VMCPU VMOCL CPU OCL 970 CPU 970 OCL CPU OCL
2048| 0.000005| 0.000147| 0.000007| 0.000071| 0.000005 0.000063| 0.000008| 0.000101
4096| 0.000011] 0.000203| 0.000017| 0.000142| 0.000009 0.000125| 0.000017| 0.000203
6144| 0.0000B | 0.000562| 0.000016/ 0.000202| 0.000013 0.000186| 0.000026/ 0.000308
8192| 0.000022| 0.000386/ 0.000020, 0.000241| 0.000019 0.000249| 0.000033] 0.000401
10240| 0.000027| 0.000413| 0.000019| 0.000275| 0.000023| 0.000292+G10| 0.000042| 0.000503
12288| 0.000032| 0.000547| 0.00®21| 0.000347| 0.000027 0.000350| 0.000049] 0.000602
14336| 0.000037| 0.000922| 0.000022| 0.000361| 0.000033 0.000409| 0.000060, 0.000704
16384| 0.000044| 0.000975| 0.000026/ 0.000387| 0.000038 0.000505| 0.000069| 0.000806
18432| 0.000049| 0.000801| 0.000030| 0.000476/ 0.000Q14 0.000535| 0.000080, 0.000900
20480| 0.000054| 0.001200/ 0.000032| 0.000491| 0.000048 0.000584| 0.000088 0.000999
22528| 0.000060| 0.002420| 0.000035| 0.000499| 0.000051 0.000646| 0.000101] 0.001104
24576| 0.000066| 0.000931| 0.000040| 0.000564| 0.000058 0.000701| 0.00016G | 0.001202

Sample throughput based on time and block size

SENES

2048

409,600,000.00

13,931,972.79

1070 CPU

292,571,428.57

1070 OCL

28,845,070.42

970 CPU

409,600,000.00

970 OCL

32,507,98.51

1000M CPU

256,000,000.00

1000M OCL

20,277,227.72

4096

372,363,636.36

20,177,339.90

240,941,176.47

28,845,070.42

455,111,111.1%

32,768,000.00

240,941,176.47

20,177,339.90

6144

384,000,000.00

10,932,384.34

384,000,000.00

30,415,841.58

472,615,384.62

33,032,258.06

236,307,692.31

19,948,051.95

8192

372,363,636.36

21,222,797.93

409,600,000.00

33,991,701.24

431,157,894.74

32,899,598.39

248,242,424.24

20428,927.68

10240

379,259,259.26

24,794,188.86

538,947,368.42

37,236,363.64

445,217,391.30

#VALUE!

243,809,523.8]

20,357,852.88

12288

384,000,000.00

22,464,351.01

585,142,857.14

35,412,103.75

455,111,111.11

35,108,571.43

250,775,510.20

20,411,960.13

14336

387,459,459.46

15,548,806.94

651,636,363.64

39,711,911.36

434,424,242.42

35,051,344.74

238,933,333.33

20,363,636.36

16384

372,363,636.8

16,804,102.56

630,153,846.15

42,335,917.3]]

431,157,894.74

32,443,564.36

237,449,275.36

20,327,543.42

18432

376,163,265.3]

23,011,235.96

614,400,000.00

38,722,689.08

418,909,090.91

34,452336.45

230,400,000.00

20,480,000.00

20480

379,259,259.26

17,066,666.67]

640,000,000.00

41,710,794.30

426,666,666.67

35,068,493.15

232,727,272.73

20,500,500.50

22528

375,466,666.67

9,309,090.91

643,657,142.86

45,146,292.59

441,725,490.20

34,873,065.02

223,049,504.95

20,405,797.10

24576

372,363,636.36

26,397,422.13

614,400,000.00

43,574,468.09

423,724,137.93

35,058,487.87

234,057,142.86

20,445,923.46

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

49

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.9.2 FFT Reverse
2.9.21 Data

700,000,000.00

600,000,000.00

500,000,000.00
—e—VM CPU
- —e—VM OCL
3 400,000,000.00
g 1070 CPU
3 —e—1070 OCL
£ 300,000,000.00
= —e—970 CPU
/\/‘\._._.’._‘\’_. —e—970 OCL

200,000,000.00
—e—1000M CPU

—e—1000M OCL

100,000,000.00
0 5000 10000 15000 20000 25000 30000
Block Size

Timing in Seconds

VM 1070 1070 970 ‘ Y0 ‘ 1000M 1000M
SE TS OCL CPU OCL CPU OCL CPU OCL
2048 | 0.000006| 0.000118| 0.000006| 0.000059| 0.000004| 0.000063| 0.000009| 0.000100
4096 | 0.000011| 0.000167| 0.000008| 0.000094| 0.000009| 0.000126| 0.000016| 0.000202
6144 | 0.000015| 0.000305| 0.000011| 0.000137| 0.000013| 0.000187| 0.000025| 0.000302
8192 | 0.000022| 0.000455| 0.000014| 0.000177| 0.000019| 0.000250, 0.000035| 0.000403
10240| 0.000027| 0.000500| 0.000017| 0.000264| 0.000022| 0.000294| 0.000@!2 | 0.000502
12288| 0.000031| 0.000755| 0.000020| 0.000291| 0.000027| 0.000351| 0.000053| 0.000611
14336| 0.000036| 0.000880| 0.000023| 0.000396| 0.000034| 0.000410| 0.000062| 0.000701
16384| 0.000041| 0.000821| 0.000026| 0.000380| 0.000037| 0.000499| 0.000071| 0.000801
18432| 0.000046| 0.000826| 0.000029| 0.000418| 0.000041| 0.000535| 0.000077| 0.000901
20480| 0.000055| 0.000878| 0.000032| 0.000463| 0.000045| 0.000582| 0.000086| 0.000995
22528| 0.000060| 0.001817| 0.000035| 0.000487| 0.000054| 0.000647| 0.000099| 0.001107
24576| 0.000066| 0.001424| 0.000039| 0.000491| 0.000055| 0.000703| 0.000108| 0.001197

Sample throughput based on time and block size

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

50

Study on Implementing OpenCL in CommoiNGRadio Blocks

SEINIES

2048

VM CPU

341,333,333.33

17,355,932.20

1070 CPU

341,333,333.33

1070 OCL

34,711,864.41

970 CPU

512,000,000.00

970 OCL

32,507,936.51

1000M CPU

227,555,555.56

1000M OCL

20,480,000.00

4096

372,363,636.36

24,526,946.11

512,000,000.00

43,574,468.09

455,111,111.11%

32,507,936.51

256,000,000.00

20,277,227.72

6144

409,600,000.00

20,144,262.30

558,545,454.55

44,846,715.33

472,615,384.62

32,855,614.97

245,760,000.00

20,344,370.86)

8192

372,363,636.36

18,004,395.60

585,142,857.14

46,282,485.88

431,157,894.74

32,768,000.00

234,057,142.84

20,327,543.42

10240

379,259,259.24

20,480,000.00

602,352,941.18

38,787,878.79

465,454,545.45

34,829,931.97

243,809,523.81

20,398,406.37

12288

396,387,096.77

16,275496.69

614,400,000.00

42,226,804.12

455,111,111.11

35,008,547.01

231,849,056.60

20,111,292.96

14336

398,222,222.22

16,290,909.09

623,304,347.83

36,202,020.20

421,647,058.82

34,965,853.66

231,225,806.45

20,450,784.59

16384

399,609,756.10Q

19,956,151.04

630,153,846.15

43,115,789.47

442,810,810.81

32,833,667.33

230,760,563.38

20,454,431.96

18432

400,695,652.17

22,314,769.98

635,586,20&0

44,095,693.78

449,560,975.61

34,452,336.45

239,376,623.38

20,457,269.70

20480

372,363,636.39

23,325,740.32

640,000,000.00

44,233,261.34

455,111,111.11

35,189,003.44

238,139,534.88

20,582,91467

22528

375,466,666.67

12,398,459.00

643,657,142.864

46,258,726.90

417,185,185.19

34,819,165.38

227,555,555.56

20,350,496.84

24576

372,363,636.39

17,258,426.97

630,1583,846.15

50,052,953.16

446,836,363.64

34,958,748.22

227,555,555.56

20,531,328.32

2.10 FILTERS

Filters turned out to show quite a variety of performance variation in testing. The number of taps in the specified
filter along with FIR versus FFT versions both affedtee ultimate throughput of the OpenCL implementation.

Befor e

di

SCuUSSi

ng

t he

resul

ts, it

6s i

mportant

firdes.low_pass filter as an example. This filter takes gain, a sampling rateffdrequency, and a transition
frequency as the minimum parameters. As seen below, the number of taps varies with sample rate, cutoff, and
transition values. Each set was generated with gain 1 (however changing the gain did not impact the taps):

Desciption: 10 MSPS, 100 KHz Filter, 20% transition
Filter: firdes.low_pass(1, 10e6, 100e3, 0.2*100e3)

Taps: 1205

Description: 2.4 MSPS, 100 KHz Filter, 20% transition
Filter: firdes.low_pass(1, 2.4e6, 100e3, 0.2*100e3)

Taps: 289

Description: 10 MSPS, 50 KHzilter, 20% transition
Filter: firdes.low_pass(1, 10e6, 50e3, 0.2*50e3)

Taps: 2409

Description: 10 MSPS, 50 KHz Filter, 30% transition
Filter: firdes.low_pass(1, 10e6, 50e3, 0.3*50e3)

Taps: 1607

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

51

to

under

Study on Implementing OpenCL in CommoiNGRadio Blocks

Description: 10 MSPS, 50 KHz Filter, 10% transition
Filter: firdes.low_pass(1, 10e6, 50e3, 0.1*50e3)
Taps: 4819

The point of this exercise is that changing any one of the parameters can have an impact on the number of taps. So
to understand filter performance, one must measure it based on the number ofriagus)dtter that for each of the

filters and sampling rates in use to determine appropriate performance. Luckignailed includes a command

line tool called testlfilter that takes the number of taps as a commeedparameter and measures perfaroga

across all 4 filter types:

1. OpenCL FIR Filter
2. GNURadio FIR Filter
3. OpenCL FFT Filter
4. GNURadio FFT Filter

The first draft of this report did not take enough into account. This section has been reworked to support a more
thorough filter analysis. The omkange over the rest of the document was that the NVIDIA 1070 system was
changed to Ubuntu 16.04 LTS in between the first round of testing due to issues with the PFB Arbitrary Resampler
on the version of Debian (potentially due to the 4.9 kernel orikalk loptimizations). This does have an impact on
GNURadioffilter results in that CPU calculations did appear to run slightly slower on the 4.4 kernel over the 4.9
kernel.

The following OpenCL implementation was used for the time domain calculatiod®ws a number of

optimizations such as defining the number of taps as a constant rather than passing it as a parameter (if the number
of taps changes, the kernel is recompiled). Note that this version does attempt to optimize if the hardware supports
Fusel Multiply/Add (FMA) operations. Also, if the number of taps supports it, the kernel is optimized to pass the
taps in constant memory for improved speed.

"#define K "+ std::to_string(d_ntaps)

struct ComplexStruct {
float real;
float imag;
3
typedef st ruct ComplexStruct SComplex;

__kernel void td_FIR_complex

(__global const SComplex * restrict InputArray, // Length N

__constant float * FilterArray, // Length K

__global SComplex *restrict OutputArray // Length N+K -1

)
{
size_t gid=get_global_id(0);
/I Perform Compute
SComplex result;
result.real=0.0f;
result.imag=0.0f;
for (int i=0; i<K; i++) {

Code to check if FMA support is present

if (hasSingleFMASupport) {
/I gid+i doesn't crash because we pass the larger buffer to the device
and zero out the additional memory

kernelCode +=" result.real = fma(FilterArray[K -1-
i],InputArray[gid+i].real,result.real); \n"

kernelCode +=" result.imag = fma(FilterArray[K -1-
il,InputArray[gid+i].imag,result.imag); \n"

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
52

Study on Implementing OpenCL in CommoiNGRadio Blocks

else {
kernelCode +=" result.real += FilterArray[K -1-
i[*InputArray[gid+i].real; \n";
kernelCode +=" result.imag += FilterArray[K -1-
iI*InputArray[gid+i].imag; \n"

OutputArray[gid].real = result.real;
OutputArray[gid].imag = result.imag;

}

There were a number of examples on ttieriret of implementingme-domain filteringwith barriers and copying
the data to local memory, however this approach was focused on FPGA implementations. When this approach was

attempted on GPUb&s in combinat i oadthrawwekcaptionsateuntiom@nst ant me
presumably due to lack of dwoard memory. Therefore this approach with constant memory for the taps and global
memory for the filter data was the best that could be

Given the flexibility in the giclenabled code it is possible to use a faster implementation when the OpenCL type is
set to Accelerator, however an expensive FPGA was not available to test for this study so this implementation was
left in the code for FPGA6s as well for compatibility.

Thefrequency domain implementation can be seen in the followindgimearoutine leveraging the clFFT forward

and reverse transforms. Note that since it had previously been proven in the Multiply block that the CPU multiply
function was faster, the FFT calations are done in OpenCL and the multiply to apply the taps is done on the CPU.
In the code below, the GNURadio block code is commented out with the OpenCL implementation immediately
following it.

for(inti = 0; i < ninput_items; i += d_fft_filter - >d_nsamples) {
/I Move block of data to forward FFT buffer
/*

memcpy(d_fwdfft - >get_inbuf(), &input[i], d_fft_filter ->d_nsamples *
sizeof(gr_complex));

/I zero out any data past d_fft_filter - >d_nsamples to fft_size

for(j = d_fft_filter - >d_nsamples; j < d_fft_filter - >d_fftsize; j++)

d_fwdfft - >get_inbuf()[j] = 0;
/I Run the transform
d_fwdfft ->execute(); // compute fwd xform
*/

gueue - >enqueueWriteBuffer(*aBuffer,CL_TRUE,0,d_fft_filter - >d_nsampl es*dataSize,(void
*)&in[il);

gueue - >enqueueWriteBuffer(*aBuffer,CL_TRUE,d_fft_filter -
>d_nsamples*dataSize,(d_fft_filter ->d_fftsize - d_fft_filter - >d_nsamples)*dataSize,(void
*)zeroBuff);

err = clfftEnqueueTransform(planHandle, CLFFT_FORWARD, 1, &(*queue)(), 0, NULL, NULL,
&(*aBuffer)(), &(*cBuffer)(), NULL);
err = clFinish((*queue)());

/I Get the fwd FFT data out

1 gr_complex *a = d_fwdfft - >get_outbuf();
gueue - >enqueueReadBuffer(*cBuffer,CL_TRUE,0,d_fft_filter ->d_fft size*dataSize,(void
*tmpFFTBuff);

gr_complex *a;
a=(gr_complex *)tmpFFTBuff;

gr_complex *b = d_fft_filter - >d_xformed_taps;

/I set up the inv FFT buffer to receive the complex multiplied data
1 gr_complex *c = d_invfft - >get_inbuf();

gr_complex *c;

c=(gr_complex *)ifftBuff;

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
53

Study on Implementing OpenCL in CommoiNGRadio Blocks

/I Original volk call. Might as well use SIMD / SSE
/I I've tried, but this VOLK CALL JUST CRASHES! DON"T USE IT UNTIL | KNOW WHY

IIvolk_32fc_x2_multiply_32fc_a(c, a, b, d_fft_filter - >d_fftsize);
for (k=0;k<d_fft_filter - >d_fftsize;k++) {
ck] = a[k] * b[k];
}
1 memcpy(d_invfft - >get_inbuf(),(void *)c,d_fft_filter - >d_fftsize*dataSize);
gueue - >enqueueWriteBuffer(*aBuffer,CL_TRUE, 0,d_fft_filter - >d_fftsize*dataSize,(void

*)ifftBuff);

/I Run the inverse FFT

/I d_invfft - >execute(); /I compute inv xform

err = clfftEnqueueTransform(planHandle, CLFFT_BACKWARD, 1, &(*queue)(), 0, NULL, NULL,
&(*aBuffer)(), &(*cBuffe r)(), NULL);

err = clFinish((*queue)());

/I outdata = (gr_complex *)d_invfft - >get_outbuf();

queue - >enqueueReadBuffer(*cBuffer,CL_TRUE,0,d_fft_filter - >d_fftsize*dataSize,(void
*tmpFFTBuff);

gr_complex *outdata;
outda ta=(gr_complex *)tmpFFTBuff;

I
/I Unmodified GNURadio flow
/I add in the overlapping tall

for(j = 0; j < d_fft_filter - >tailsize(); j++)
outdata[j] +=d_f ft_filter - >d_tail[j];
/I copy d_fft_filter - >d_nsamples to output buffer and increment for decimation!
j =dec_ctr;
while(j < d_fft_filter - >d_nsamples) {

*output++ = outdatal[j];
j += decimation();
}

dec_ctr = (G - d_fft filter - >d_nsamples);

I
/I stash the tail

/I memcpy(&d_tail[0], outdata + d_fft_filter - >d_nsamples,tailsize() *
sizeof(gr_complex));
memcpy(&d_fft_fi Iter - >d_tail[0], outdata + d_fft_filter - >d_nsamples,d_fft_filter -

>tailsize() * dataSize);

Before presenting the data, there is another dimension to filter testing. FFT filters require specific block sizes to
match up with FFT bins. Therefore &g humber of taps changes, so does this block size. The test tatfiltest

takes this into account, however what it means is that the data below was run for time domain samples with the
number of samples specified. Whereas the FFT transforms wewathutheir necessary block size which may be
higher or lower. Testlfilter does tell you the block size used for each run in its output for further analysis. This is
important in the context of OpenCL and the number of bytes transferred to har&aaeise more bytes can mean
higher throughput, one can see some variations in the FFT OpenCL transforms that at first glance may not make
sense. However if one considers that the block sizes changed for the FFT transforms, it makes sense.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
54

2.10.1.1 Data

Throughput

300,000,000.00

250,000,000.00

200,000,000.00

150,000,000.00

100,000,000.00

50,000,000.00

Study on Implementing OpenCL in CommoiNGRadio Blocks

Filter Analysis

I| L J"h ‘il“ .l|h L ..|i

FFT

1070 1070 1070 1070 970 970 970 970 1000M1000M1000M 1000M
OCL cpu OCL cpu OCL CPU OCL CPU OCL CPU OCL CPU OCL CPU OCL CPU
FIR FIR FFT FFT FIR FIR FFT FFT FIR FIR FFT FFT FIR FIR FFT
Platform
Throughput
Taps VM OCL FIR VM CPU FIR VM OCL FFT VM CPU FFT
100 Taps 22,885,616.00 21,404,476.00 1,075,628.00 161,624,064.00
300 Taps 12,312,318.00 7,563,402.00 2,938,967.75 151,332,832.00
1000 Taps 4,089,88.75 1,325,223.12 3,470,441.00 98,806,104.00
2000 Taps 2,051,149.62 362,435.88 2,928,042.25 80,466,240.00
4000 Taps 1,065,685.25 97,455.12 4,383,777.00 62,140,540.00
8,000 Taps 545,208.06 433,145.47 6,661,933.50 54,585,396.00
‘ Taps 1070 OCL FIR 1070 CPU FIR 1070 OCL FFT 1070 CPU FFT
100 Taps 76,546,064.00 18,979,310.00 2,743,087.75 224,000,912.00
300 Taps 66,045,096.00 12,235,497.00 3,736,149.50 238,450,976.00
1000 Taps 75,889,568.00 2,359,690.00 8,852,358.00 160,946,704.00
2000 Taps 35,378,960.00 1,693,756.00 11,923,301.00 140,503,680.00
4000 Taps 26,616,328.00 209,474.69 20,767,786.00 98,766,816.00

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).

55

m 100 Taps
m 300 Taps
1000 Taps
W 2000 Taps
m 4000 Taps
W 8000 Taps

Study on Implementing OpenCL in CommoiNGRadio Blocks

8,000 Taps 16,599,522.00 204,850.78 | 26,284,392.00 ‘ 89,369,280.00

970 OCL FFT 970 CPU FFT

970 OCL FIR

970 CPU FIR
100 Taps 83,844,648.00 26,843,200.00 2,084,594.38 155,215,264.00
300 Taps 71,128,776.00 10,141,627.00 6,673,140.50 148,326,640.00
1000 Taps 46,703,180.00 808,101.50 7,343,295.50 104,844,624.00
2000 Taps 30,493,560.00 1,790411.00 8,603,805.00 89,385,872.00
4000 Taps 18,013,690.00 375,857.19 14,012,486.00 64,487,392.00
8000 Taps 11,443,021.00 26,349.91 16,937,466.00 63,031,420.00
. 1000MOCL 1000MCPU

Taps FIR FIR 1000M OCL FFT 1000M CPU FFT
100 Taps 36,492,792.00 18,272,636.00 1,098,577.50 104,363,320.00
300 Taps 16,995,168.00 8,430,986.00 3,586,630.50 98,818,272.00
1000 Taps 5,948,145.50 1,122,462.25 4,286,220.50 63,277,876.00
2000 Taps 3,082,568.50 379,239.84 5,294,612.50 53,444,016.00
4000 Taps 1,555,993.25 91,996.01 8,386,413.50 40,870,868.00
8000 Taps 766,855.8 43,131.77 9,624,576.00 37,386,076.00

2.10.1.2 Observations

As is probably expected, an entieport could be done on filters. In general, the &R8ed FFT filters showed an
order of magnitude better performance over the otherdiltAnd as expected, the OpenCL implementation of the
FIR filters outperformed their CPU equivalents. However the Opdmeed FFT performance continued to
improve as the number of taps increased, indicating that for very large tap sets the OpenQGerRRa@yfibe the
best.

There was also decreasing performance with FIR filters as tap count increased countered by increasing FFT speed.
This again is as expected in that the number of loops inkiamed convolution increase with tap size taking more
calcuktions per point. This reaches a tradeoff point in number of taps where the FIR filter is faster up to an
equilibrium tap size, then after which the FFT is faster. The graph below shows this tradeoff for the NVIDIA 1070.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
56

Study on Implementing OpenCL in CommoiNGRadio Blocks

FFT Versus FIR NVIDIA 1070
90,000,000.00

80,000,000.00
70,000,000.00
60,000,000.00

50,000,000.00
= 1070 OCL FIR

Axis Title

40,000,000.00 e 1070 OCL FFT
30,000,000.00
20,000,000.00

10,000,000.00

100 Taps 300 Taps 1000 Taps 2000 Taps 4000 Taps 8000 Taps

In general the best recommeridatis to treat taps as a design point in your flowgraphs. Take a look at the filter
parameters and determine the number of taps in the specific filter(s) you are using and uselfittertesl to
profile each of the 4 filters to select the one wlita best performance.

2.10.2 Costas Loop

In the original study, a Costas Loop was not included. This was due to the nature of the algorithm with sequential
calculations that do not lend themselves to massively parallel processing. However after this stodypheed, a
follow-up project (gifast) was started to look at ways to optimize Gstlded blocks for some additional

performance improvements. Since al®b speed gain was achieved in that project on the Costas Loop, the code
was at least considereddammanslated in its optimized form into OpenCL to see how it would perform.

In order to implement this block in OpenCL, the method of OpenCL processing had to be different. Rather than
parallel data processing, an OpenCL thaked processing approach wasen with a work queue size of 1 and all

of the data passed as a sindimensional input array. The result is that the algorithm runs as a single thread on a
single core.

Performance was as expected (poor) tirimoratme\NVIDIA1070he GPUG s

Testing Costas Loop performance with 8192 items...
OpenCL Context: GPU

OpenCL Run Time: 0.011528 s (710622.437500 sps)

CPU only Run Time: 0.000462 s (17721346.000000 sps)

One can see that it only achieved about 72D gmples/sec. Not enough to even process in realtime at low
sampling rates.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
57

Study on Implementing OpenCL in CommoiNGRadio Blocks

Because the code runs as a single task on a single core, increasing the data set size does not impact the overall
throughput. In other words the throughput rate stays flatasina when running on the CPU. This can be seen
when moving to a 16384 block size:

Testing Costas Loop performance with 16384 items...
OpenCL Context: GPU
OpenCL Run Time: 0.023313 s (702798.437500 sps)

CPU only Run Time: 0.000922 s (17774404 .000000 sps)

As seen above, the throughput stays right around that 700,000 samples/sec range. This result agrees with
expectations in running on a single core.

One rationale behind ultimately i ncl udiOpegCLtaddithegri n t hi s
clenabled code includes the ability to run on this Opeer@dbled hardware as long as it appears as a standard

OpenCL Accelerator device. Itis possible that performance could be different on these alternate platforms, so the

block was itimately included.

2.11 ANOTE ON FRAMES AND SAMPLES / SEC

There are a number of notes of caution in actually using OpenCL accelerated blocks. In some cases, the size of the
data blocks processed may needé¢ at a minimum of 8192, 10244F larger to achievOpenCL performance

gains. This means making the GNURadio buffers at least twice that so that the scheduler would actually pass that
much data to the block.

The GNURadio documentation cautions against adjusting these values unless you know spedtifitgiy are

doing and how it will impact the flowgraph. This section is strictly conjecture (yet to be tested), however it stands to
reason that the real value in OpenCL block usage comes from SDR hardware at higher datatiagesvords

cards samng at 20 MSPS or higher)

In reatltime processing there is a concept of frames and frames per second. In this case a frame can be thought of as
a single pass on a block of data provided to a blotiou assume a linear progression as is generalgroéd

with CPU-only blocks, doubling the block size doubles the processing time but halves the frame rate. This can be
best understood with an example:

If it takes .01 seconds to process a block of data, this translates to 100 frames pefléeddndMultiply that

times the size of the block and that would give you your throughput. So if 8192 data points are received, 8192

samples / frame x 100 frames/sec = 819,200 samples / sec. In many implementations both the throughput and frame
rate are importat. For instance, the human eye may requir8@frames/sec in a video stream to see smooth

motion. If you decrease this to 5 frames/sec the video gets very choppy. The sameceonapphyfor reattime

signal processing in that if we want to pracesr data in real time, we have to not only be aware of throughput but

also frame rateln other words if we made our block size so big that we were only processing 1 frame / sec, our

fl owgraphs and our output woulpld fil ookd choppy just 1ik

If you take aslower SDR producing 2.4 MSPS, increasing thefer size per frame may make the signal choppy as
in the video example. Moving to a 16K buffer over an 8K buffer would generally cut the frame rate in half.

However, it stands to reasdmat if you go from a 2.4 MSPS data streaman rttsdr dongldgo a 20 MSPS data
streamon a HackRFyou are increasing the required throughput per second by 8.3 times. Or on an Airspy running at
10 MSPS the throughput would be 4.17 times the 2.4 MSPS rate

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
58

Study on Implementing OpenCL in CommoiNGRadio Blocks

This implies that given the same buffer size, GNURadio needs to process more frames / sec to maintain throughput.

In a realworld example, if the default 8192 buffer setting is used, lets assume the scheduler sends us half that every
frame (Giatdd imetart but just for argumentds sakeoand to n
2.4 MSPS atl096samplesGNURadio would process about 58&8mes / sec. For 20 MSPS, this increases&8

frames / sec!

In this 20 MSPS case, it még okay to increase the buffer size comparably which would produce the same frame

rate. In other words 20 MSPS with 8192 samples/frame * 8.3 factor (20/2.4) equals a buffer setting tf 67164

produce the same frame ratgsing this setting would prodethe same frames / sec at 20 MSPS as 8192 at 2.4

MSPSbut pass more data per frame which would be more conducive to OpenCL acceleatidenly adjusting

the buffer to 32K or 64K to get OpenCL block sizes abo

Thereforewhile speculation, it stands to reason that increasing buffer sizes to 32K for 10 MSPS or 64K for 20

MSPS. Because we simply took the default setting of 8192 to get these numbers, remember that the scheduler
would generally send about half that, which meethat for 10 MSPS, a 32K buffer setting would generally produce

16K frame sizes. For 20 MSPS and 64K buffer sizes this means generally that blocks may be around 32K samples /
frame. These line up much better with gegformance curves where OpenCLprrforms the CPU.

Based on this line of thought, it stands to reason that one could use larger buffer sizes without impacting GNURadio
flowgraphs and gain the benefit of OpenCL with larger block sizes, but only at higher SDR sample rates. This
actuallystands to reason in that if your goal is to process higher throughput through a flowgraph, it is because you
are feeding it more samples per second. Otherwise at low sample rates thalZp&rformance for 2.4 MSPS is
sufficient andeacceleratdm 6t even requir

2.12 MULTIPLE SIMULTANEOU S BLOCKS

While one may think that using as many Opergiabled blocks in a single flowgraph as possible would improve
performance, running multiple kernels on a single graphics card does impact performance. A mefieatiarf
and this makes intuitive sense. Running a @Rensive application along with another Gitltensive application
will not only effect each but the system as a whole as they will compete to take full advantage of the CPU.

The same applies to GBUs . Per formance benefits are calculated on
advantage of GPU hardware. Attempting to run multiple blocks simultaneously, each attempting to take full

advantage of a GPU will inevitably effect each other. Thewatig tests with testlenabled demonstrate this

effect.

This result is for the naction kernel running with an 8192 block size and nothing else rupnitige 1070
hardware The result is 36 microsecond runtimes.

Testingno - action kernel (return only) co nstant operation to measure OpenCL overhead
This value represent the 'floor' on the selected platform. Any CPU operations have to

be slower than this to even be worthy of OpenCL consideration unless you're just

looking to offload.

OpenCL INFO: Math Op Con st building kernel with __constant params...

Max constant items: 8192

OpenCL INFO: Math Op Const building kernel with __constant params...

OpenCL Context: GPU

OpenCL Run Time: 0.000036 s (225498704.000000 sps)

Running testlenabled in a continuoushile loop to load the GPU like this:

while true; do test - clenabled 128000; done |

Then running testlenabled in a separate commandmpt immediately shows the impact of the other running
calculations:

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
59

Study on Implementing OpenCL in CommoiNGRadio Blocks

Testing neaction kernel (return only) constant opepatio measure OpenCL overhead

This value represent the 'floor' on the selected platform. Any CPU operations have to be slower than this to even be
worthy of OpenCL consideration unless you're just looking to offload.

OpenCL INFO: Math Op Const buildingrkesl with __constant params...
Max constant items: 8192

OpenCL INFO: Math Op Const building kernel with __constant params...
OpenCL Context: GPU

OpenCL Run Time: 0.000116 s(70560704.000000 sps)

The result was an increased runtime to 116 microseéondsver 3. 2 ti mes sl ower . And
impact of one other block running at any given time. Running additional blocks could only have additional negative
impacts on performance.

Tests were then run on tB&0 hardware which actually comtad 2 GTX 970 cards. The baselineaution kernel
test for 8192 data points was 73 microseconds shown below.

Testing no - action kernel (return only) constant operation to measure OpenCL overhead

This value represent the 'floor' on the selected platform. Any CPU operations have to
be slower than this to even be worthy of OpenCL consideration unless you're just

looking to offload.

OpenCL INFO: Math Op Const building kernel with __constant params...

Max constant items: 8192

OpenCL INFO: Math Op Const buildin g kernel with __constant params...
OpenCL Context: GPU
OpenCL Run Time: 0.000073 s (111518528.000000 sps)

The same while loop was executed using the second graphics card with the following line:

while true; do test - clenabled -- device=0:1 128000;done |

testclenabled was then simultaneously run on the first graphics card to test the impact of running 2 blocks on 2
different cards. Then net result was a minimal impact as shown below:

Testingno - action kernel (return only) constant operation to measure Op enCL overhead
This value represent the 'floor' on the selected platform. Any CPU operations have to

be slower than this to even be worthy of OpenCL consideration unless you're just

looking to offload.

OpenCL INFO: Math Op Const building kernel with __cons tant params...

Max constant items: 8192

OpenCL INFO: Math Op Const building kernel with __constant params...

OpenCL Context: GPU

OpenCL Run Time: 0.000077 s (105756552.000000 sps)

Note the increase from 73 to 77 microseconds. Multiple runs do yarydw microseconds so this can be within
within normal performance variances, however it stands to reason that other shared resources within the computer
may contribute to some delay while both are running simultaneously.

In either case these tests desteoate that using multiple OpenCL blocks on multiple cards can maintain the
performance gains and allow multiple blocks to be used simultaneously.

2.13 CLOCK RECOVERY

MM Clock Recoverywas another digital data block that was up for OpenCL implementaimsideation. In
reviewing the GNURadio cod#he blockappeared to hawequential calculations in theach successive iteration
requires the pr evilkeuhe Cdstasdoop whictives dt lend igsélf cothle massivelyparallel

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
60

Study on Implementing OpenCL in CommoiNGRadio Blocks

architectue of OpenCL processindn addition, some other timing tests on the native block showed very high
throughput rates, making it not worth OpenCL conversion at this time.

The sequential nature of the camdn be seen in the code below taken from the GNUWRadck recovery
general_work function:

if (write_foptr) {
while (00 < noutput_items && ii < ni) {
d_p_2T =d_p_1T;
d p 1T=d_p OT;
d_p_OT =d_interp - >interpolate(&in[ii], d_mu);

d_c 2T=d_c_1T;

d_c 1T=d_c_OT;

d_c_OT =slicer_0d eg(d_p_0T);
x=(d_c_0T - d_c_2T) *conj(d_p_1T);
y=(d_p_OT - d_p_2T) * conj(d_c_1T);
u=y - X

mm_val = u.real();
outfoo++] =d_p_OT;

I/ limit mm_val

mm_val = gr::branchless_clip(mm_val,1.0);

d_omega =d_omega + d_gain_omega * mm_val;

d_omega= d_omega _mid + gr::branchless_clip(d_omega -d_omega_mid ,
d_omega_lim);

d_mu=d_mu+d_omega + d_gain_mu * mm_val;
i+=(int)floor (d_mu);
d_mu -= floor (d_mu);

I/ write the error signal to the second output
foptrloo -1] =mm_val;

if (ii <0)// clamp it. This should only happen with bogus input
i =0;
}
}

If any readers have OpenCL implementations for these remaining blocks they could be worth timing and
incorporating into giclenabled.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
61

Study on Implementing OpenCL in CommoiNGRadio Blocks

2.14 INSTRUMENTATION AND GR-FOSPHOR

This study specifically did natttempt to implement arigstrumentation as the GROSPHOR block already exists

to providean OpenClimplementation Also, by the time the study got to the point to consider instrumentation, the
poor performancefd-FT transforms in OpenCL for retiime processing were understood and were speculated to
show up in instrumentation like a Frequency Sink as well.

However the study did take a cursory look at the performancefogghor with the hindsight of the rétuof this
study. What was observed was tgatosphor has a significamegativeimpact on a system. Tests were performed
with a flowgraph with a constant source feeding a 2MSPS throttle block idsmnor on the 1070 system. The
net result was #tt 2 of the CPU cores still wefibm near zerdo 100% utilization. This may be unacceptable if
other highCPU blocks are in a flowgraph.

For comparison, the same test was then performed with the standard QT Frequency sink on the 1070 system and the
CPU usage was considerably | ower. CPU6s showed only no

This indicates that CRbased visualization is actually more efficient and the use of the GPU for visualization, at
least based on FFT transforms, is less efitcéd would actually put a higher load on the system. This makes
sense in the context of the results of this study where FFT transforms, fundamental to frequency displays perform
better on the CPU than on the GPU.

If the overall goal of a flowgraph witbpenCL blocks is to process higher throughput or relieve some of the CPU
intensive calculations,n@ alternative in providing visualization with frequency, time, and/or phase plots to consider
if this is the case is to use a TCP or UDP source/sink contirtatsend the data to a second computer dedicated to
visualization. That way signal instrumentation would not impact processing of the same signal.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
62

Study on Implementing OpenCL in CommoiNGRadio Blocks

3 Conclusions

Software Defined Radio provides a great opportunity for researchehobhyiststo engagén a field of study that

has historically been too costly. However as technologies emerge, more artthnawélth andhroughputare
required. Generalized CPU6s continue to evolve and as
hardwarethroughput continues to improve as CPUs become faster.

However as computers provide the platform to enabl e SD
abletobas s e d . This includes graphi cs c ahigleendwpplicitionp.o wer f ul
GNURadio is arguably one of the most utilized open source SDR platforms available. Therefore in the process of
evolution it becomes a next logical step to evaluate which types of digital signal processing blocks could benefit

from CPU offloading through OpenCL. This should not just be limited to a single card or a single type of card

within a computer, but should be scalable to allow all cards to be utilized with the discretion of the designer to

determine which blocks run on wh cards.

This is the goal of the grlenabled project:

The ability to use OpenCL for the most common GNURadio blasks! in digital data processing

The ability to take full advantage of all OpenCapable hardware simultaneously

The ability to have ta flowgraph designer determine which blocks run on which cards

Develop a solid understanding of which blocks can benefit from OpenCL, and by design which blocks will
not

< <K<

With the software developed during this study and the data collected, several itngmrtdnsions were reached.
Some of these conclusions were obvious and simply confirmed assumptions, while others were quite revealing.
First, not all blocks implemented in OpenCL running on GPU hardware demonstrate acceleration. In fact blocks
could becategorized in 3 categories: 1. Those that provide acceleration, 2. Those that provide offloading or mixed
results based on hardware and/or block size, and 3. Those implemented in OpenCL but exhibiting performance
worse than their CPU version.

Of the blo&s implemented in this project the following blocks showed acceleration when executed in OpenCL.:

1. Logl0

2. Complex To Arg

3. Complex To Mag/Phase

4. A custom Signal To Noise Ratio Helper that executes a dixiiaghgy10->Abs sequence

The following blocks showed mixeat offload performance:

1. Mag/Phase To Complex (OpenCL performed better only for blocks above 8K for the 1070, and 18K for the
970 and 1000M)

2. Signal Source (OpenCL outperformed CPU only for the 1070 for 8K blocks and above)

3. Quadrature Demodulation (OpenCLrfeemed better only for blocks above 10K)

4. FIR Filters

The remaining blocks tested showed worse throughput in OpenCL implementations. These blocks were:

Multiply

Add

Subtract

Complex Conjugate
Multiply Conjugate
Multiply Constant

ok wNE

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
63

Study on Implementing OpenCL in CommoiNGRadio Blocks

7. Add Constant
8. Complex to Mg
9. Forward FFT
10. Reverse FFT
11. FFT Filters

Instrumentation is also a very important part of most flowgraphs.F&Rhor has been around for some time and

actually uses a fifo and a separate application along with OpenGL and OpenCL to offload FFT transfigrms alo

with graphics rendering. However testingfgsphor with a constant source and a 2 MSPS throttle into both a

standard QT Frequency Sink and dagphor sinkon the 1070 hardwardearly demonstrated that using OpenGL

and OpenCL for visualization pus even higher load on a CPU tHaRU offloading. This is actually inline with

the findings of this study. Since FFT transforms are fundamental to frequency displays and it has been demonstrated
here that FFT transforms can perform worse than CPU implaiens for SDR block sizes, poorer performance

from gr-fosphor should be expected.

The real benefit of OpenCL acceleration will come from higher sampling rates where increased buffer sizes can be
used without negatively effecting frame rates. This @imiportant in realizing OpenCL acceleration in that some
blocks only outperform their CPU counterparts when provided sufficiently large block sizes. This makes intuitive
sense in that OpenCL acceleration may be most beneficial at higher throughpuhextethe load on the CPU

may increase to unacceptable levels. This should be kept in mind along with how GNURadio and its scheduler
handle maximum and operational block sizes where the scheduler will [generally] attempt to send about half the
maximum bdfer size to a block during each frame. This default buffer size is 8192, so the default block size that
could be expected without making any changes would be 4096. This may not be sufficient to achieve OpenCL
acceleration for some blocks.

Overall this sudy proved very enlightening. With the exceptioringproving PSK and MM Clock Recovery
processingvhich had sequential calculations not conducive to OpenCL parallel processing, the study met all of its
goals of providing implementations of most comméwtks that could run on useelectable OpenCL devices and

studied the process from signal source through visualization for both ASK and FSK signals. However the study also
demonstrated that not all blocks experience better performance on OpenCL hamtaiasdaheir CPidnly

counterpartgor a variety of reasons

One final conclusion could be reached on appropriate use of OpenCL bldukgre@test benefit would be derived
from identifying all blocks used in your flowgraph that are in the OpenCL aatelgdist. From this short list, start
with the block that provides the most benefit and use that block on your OpenCL hardware. If you have multiple
cards repeat this process with one block for each card. If you have multiple versions of the sasakectiod, will

not matter. However if you have different cards of varying performancengguvant to assign the most
computationally intensive blocks to the bpstforming hardwareTestclenabled can be used to determine actual
throughput for the blek in question.

Proceedings of the 7th GNU Radio Conference, Copyright 2017 by the author(s).
64

