
TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting
ML Training

Phil Vallance PVALLANCE@LTSNET.NET
Erebus Oh EOH@LTSNET.NET
Justin Mullins JMULLINS1@LTSNET.NET
Manbir Gulati MANBIRGULATI@GMAIL.COM
Jared Hoffman JHOFFMAN@APPLIED-INSIGHT.COM
Matt Carrick MATTHEW.CARRICK@PERATONLABS.COM

Abstract
TorchSig uses machine learning (ML) to de-
tect and classify digitized radio frequency (RF)
signals. Recent updates and improvements to
TorchSig are given, as well as novel features
for image-only spectrogram generation and train-
ing, reducing memory and computational bur-
dens and making training much faster. A new
GNU Radio out-of-tree (OOT) block is provided
which uses a TorchSig ML model for detecting
signals in real-time.

1. Introduction
TorchSig (TorchSig, a) is an open-source system for ma-
chine learning (ML) of digitized radio frequency (RF) sig-
nals. TorchSig has two main elements: machine learning
models and dataset generation. The system provides for
the training of machine learning models with simulated RF
data in addition to a variety of pretrained downloadable
models. TorchSig also includes a built-in signal genera-
tor for generating and simulating RF signals, impairments
such as noise, and transforms such as resampling a signal to
change its bandwidth. Figure 1 highlights the interconnec-
tions between major components within the TorchSig soft-
ware. This paper gives background information on Torch-
Sig and its software components, a new method for creat-
ing and training against synthetic spectrograms, the intro-
duction of a GNU Radio block for plotting labeled spectro-
grams, and proposes ideas for follow on work.

1.1. Machine Learning Models

TorchSig provides two types of machine learning algo-
rithms, referred to as narrowband and wideband modes.
The narrowband mode (Luke Boegner, 2022a) is applied

Proceedings of the 14 th GNU Radio Conference, Copyright 2024
by the author(s).

Figure 1. A visual representation of the different components
within TorchSig and how they interact with one another.

to IQ samples to perform modulation recognition. It is as-
sumed that the input to narrowband mode has already been
preprocessed by a channelizer in order to isolate a single
signal in frequency, downconvert it to complex baseband
and then isolate the energy in time through an energy de-
tector before applying the modulation recognition capabil-
ity. The narrowband mode is implemented by EfficientNet
models (Tan & Le, 2019) and an XCiT models (Alaaeldin
El-Nouby, 2021).

The wideband mode (Luke Boegner, 2022b) relaxes some
of these constraints by computing a spectrogram or “water-
fall” plot and then performing signal detection in time and



TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting ML Training

frequency and then applies modulation recognition to each
of the detected bursts. Figure 2 displays an example spec-
trogram from the wideband dataset with a couple signals of
varied modulation type, center frequency, bandwidth, and
burst duration. Multiple models are available for the wide-
band mode, including those built on YOLO (Glenn Jocher,
2022). Both narrowband and wideband modes are available
in pretrained models on the TorchSig website (TorchSig, b).

Figure 2. An example spectrogram produced by the TorchSig
wideband dataset.

TorchSig utilizes PyTorch compatible datasets, ensuring
seamless integration with any training workflow that re-
lies on PyTorch data loaders. Data is loaded from a light-
ning mapped database (LMDB) (Nic Watson), which is fast
enough for real-time training across dozens of GPUs. Py-
Torch Lightning is used to train the models due to its mod-
ular code structure, automated logging, and efficient han-
dling of complex training loops and other features. Conver-
gence is typically reached around 90 epochs or the equiv-
alent of 500 million examples, but a strong model can be
trained in under 20 epochs. The narrowband modulations
dataset is fast enough that it can be trained on with real-time
signal generation, allowing training of much larger models
without overfitting.

1.2. Dataset Generation and Sig53

TorchSig has a library of signal modulators to create IQ
signals which are then stored in a database to disk. These
signals can be used as a benchmarking tool for benchmark-
ing algorithms for algorithmic verification and validation,
or performance comparisons between systems. Sig53 is a
TorchSig-produced dataset containing 53 different signals
from the following (Proakis, 2001):

• Frequency shift keying (FSK)

• Minimum shift keying (MSK)

• Quadrature amplitude modulation (QAM)

• Phase shift keying (PSK)

• Orthogonal frequency division multiplexing (OFDM)

• On-off keying (OOK)

• Pulse amplitude modulation (PAM)

The the majority of the modulated signals, with the ex-
ception of OFDM, assume each data symbol is indepen-
dent and identically distributed (IID) (C. Richard John-
son, 2004) and do not have any explicit framing or pro-
tocol structures build into them. On the other hand, the
OFDM modulator incorporates some structure into the sig-
nal through pilot tones and resource blocks.

The narrowband dataset generates a single signal at com-
plex baseband from the Sig53 set with randomized band-
width, signal to noise ratio (SNR), and with the applica-
tion of other transforms and impairments. The wideband
dataset also draws from the Sig53 but generates multiple
signals with varying center frequencies and bandwidths,
also with the application of additional transforms and im-
pairments. More information on the signals, transforms
and impairments can be found in (Luke Boegner, 2022a;b).

1.3. Recent Updates

There have been three new releases of TorchSig in 2024:
0.5.1, 0.5.2 and 0.5.2.1 with more planned. These releases
have incorporated new features, improved signal process-
ing algorithms, improved the overall speed and fixed bugs.
In detail, the releases have changed or added the following:

• Initial release of new image-only dataset tools which
create, transform and extract from spectrograms (Sec-
tion 2)

• 10 times speed improvement through multiprocessing
when using more than 32 workers

• Reduced file size for signals stored to disk by using
different storage datatype

• Improved randomization by fixing bug that caused
some identical signals to be generated

• Tighter bounding boxes for FSK and MSK modula-
tor signals to better isolate those signals in time and
frequency

• Reduced the sidelobes in resampling filters from -60
dB to -90 dB

• Improved anti-aliasing filtering to minimize energy
wrapping around the −fs/2 and +fs/2 boundary
when applying a frequency shift

• Designed a resampling filter to replace the default
within SciPy’s resample poly() (SciPy) function to re-
duce aliasing from sample rate change



TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting ML Training

2. Synthetic Spectrogram Generation and
Training

2.1. Spectrograms

A novel feature has been added to TorchSig for creating and
training with synthetic spectrograms. A spectrogram is an
estimate of the frequency domain as a function of time. In-
cluding the time-dimension allows for better visualization
for time-varying features in signals, such as signal bursts
and frequency hopping. The discrete Fourier transform
(DFT) is applied to a sliding time-window of input sam-
ples, referred to as the short-time Fourier transform (STFT)
(Vaidyanathan, 1993). There are different variants and im-
plementations that build upon the STFT to produce spec-
trograms, to include trade-offs between time and frequency
resolution.

Few-shot object detection on images can be greatly im-
proved by leveraging synthetic data (Lin et al., 2023). The
synthetic data includes impairments and augmentations on
the original data to develop a larger dataset from a smaller
one (Xu et al., 2022). The proposed method uses the
Copy-Paste strategy to increase the size of the spectrogram
dataset to quickly train a model to identify a signal of inter-
est.

Creating spectrograms can be computationally and mem-
ory intensive because of the dependency on the underlying
IQ samples which includes a signal modulator, channel ef-
fects, transforms and impairments, in addition to the com-
putation and memory of the spectrogram itself. The prob-
lem scales quickly as the number of signals in the training
dataset increases. Instead, TorchSig uses a method to cre-
ate synthetic spectrograms where they are built without the
creation of the underlying IQ samples which requires less
computation and less memory.

Two synthetic spectrograms methods are proposed:

• Recycling and reusing previously generated spectro-
grams

• Direct creation of synthetic spectrograms

2.2. Recycling and Reusing Spectrograms

One approach to using spectrograms would be to gener-
ate unique IQ samples and then compute the corresponding
spectrogram. As mentioned, this is computationally and
memory intensive. Instead, a method is proposed to recycle
and reuse previously generated spectrograms for training a
ML model. Rather than generate a large dataset of unique
spectrograms, only a handful of example spectrograms are
needed in order to represent larger datasets capable of train-
ing a YOLO model. Wideband synthetic spectrograms can
then be built by assembling a series of smaller narrow-

band spectrograms. Examples of this usage include Torch-
Sig’s FrequencyHoppingDataset which overlays narrow-
band spectrograms into a randomized hopping pattern over
a wide bandwidth, YOLOImageCompositeDataset which
assembles multiple narrowband spectrograms from differ-
ent protocols into a composite spectrogram, and CFGSig-
nalProtocolDataset is a flexible framework for simulat-
ing protocol-based waveforms using context free grammar
(CFG) (Chomsky, 1956). Figure 3 demonstrates how to
use the FrequencyHoppingDataset. The code takes a set of
narrowband spectrograms and then randomly performs the
frequency hops across the wideband spectrum as seen in
Figure 4.

Figure 3. The code used to generate a frequency hopping pat-
tern from a set of fixed spectrograms using FrequencyHopping-
Dataset.

Figure 4. An example of a wideband synthetic spectrogram gen-
erated from a set of narrowband spectrograms using Frequency-
HoppingDataset.

These datasets assemble these wideband spectrograms
from components stored as images or implemented as user-
defined functions which produce a spectrogram. Images
can be narrowband spectrograms, wideband spectrograms
with a defined bounding box to designate the signal of in-



TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting ML Training

terest, drawn through the OpenCV library (OpenCV Team),
or any portable network graphic (PNG) image. The user-
defined functions can accept parameters to vary the output
and must produce a spectrogram. Image transforms will
then be applied in order to incorporate real-world effects
into the synthetic spectrograms. The transforms include
normalization, dynamic range scaling, blur, Gaussian noise
and random image rescaling.

2.3. Direct Creation of Synthetic Spectrograms

A method is proposed for the direct creation of synthetic
spectrograms and avoiding the creation of IQ samples al-
together. Some waveforms have features frequency do-
main features which can be created directly in the spectro-
gram, avoiding the need to create the underlying IQ com-
pletely. The following proposes creating spectrograms of a
chirp-based waveform similar to LoRa (Knight & Seeber,
2016). Figure 5 demonstrates how a synthetic spectrogram
for a chirp-based waveform can be created directly without
having to create any underlying IQ information using the
CFGSignalProtocolDataset function.

Figure 5. The code for generating a synthetic spectrogram for a
chirp-based waveform is done through the definition of rules on
the ordering and selection of symbols using CFGSignalProtocol-
Dataset.

From the example,

chirp_stream_ds.add_rule(’cfg_signal’,
[’rising_or_falling_stream’] +
[’rising_or_falling_or_null’]*12)

defines the spectrogram to have one initial data symbol
which can be a rising or falling stream, and then up
to 12 additional data symbols. The first data symbol
must be a rising or falling chirp, and then the next 12
can be rising chirp, a falling chirp, or null which is no
data symbol at all. The rules are chained, requiring the
rising or falling stream variable to be defined as a ris-

ing stream or falling stream with equal probability,

chirp_stream_ds.add_rule(
’rising_or_falling_stream’,
’rising_stream’)

chirp_stream_ds.add_rule(
’rising_or_falling_stream’,
’falling_stream’)

A rising stream is defined as between one and three rising
segments,

chirp_stream_ds.add_rule(
’rising_stream’, [’rising_segment’]
+ [’rising_segment_or_null’]*2)

where a rising segment is defined as three rising chirps,

chirp_stream_ds.add_rule(
’rising_segment’,[’rising_chirp’]*3)

Figure 6 gives a synthetic spectrogram that is created using
the reference code.

Figure 6. A synthetic spectrogram from a chirp-based waveform
created using CFGSignalProtocolDataset.

Multiple datasets can be combined into a composite spec-
trogram to create additional variability and complexity for
the ML model to train against. For example, Figure 7 dis-
plays a spectrogram created by FrequencyHoppingDataset
and CFGSignalProtocolDataset and adds transforms to
simulate noise and dynamic range scaling.

3. GNU Radio Blocks for ML Inference and
Display

The out-of-tree (OOT) module gr-spectrumdetect incorpo-
rates a YOLOv8x TorchSig ML model to detect signals in
real time. Figure 8 displays a test flowgraph that is provided
with gr-spectrumdetect for demonstrating how to apply the
specDetect block to detect and label signals in a spectro-
gram, and then plot the result using the spectrumPlot block.
Figure 9 shows the properties for the specDetect block. It
is important to note that parameters need to match what the
pretrained model is expecting. The block parameters are
shown in Figure 9.

From Figure 8, the IQ samples are received from the UHD
USRP Source block and then transformed into a vector.



TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting ML Training

Figure 7. A synthetic spectrogram created through the Frequen-
cyHoppingDataset and CFGSignalProtocolDataset functions for
simulating a frequency hopping waveform and a chirp-based
waveform.

The provided ML model operates on a spectrogram with
a DFT size of 1024 bins and 1024 total DFTs, for a to-
tal number of points of 1024 · 1024 = 1048576. There-
fore the Stream to Vector block transforms the serial input
into a vectorized output with 1048576 samples. Internally,
specDetect computes a 1024x1024 spectrogram using Tor-
chaudio and then applies the wideband ML model to locate
signals within the spectrogram and label them using bound-
ing boxes. The spectrogram and bounding boxes are then
mapped into a dictionary of polymorphic types (PMT) and
sent as a message, intended for plotting by the spectrum-
Plot block. The spectrumPlot block receives the dictionary
of PMTs, displays the spectrogram in a Matplotlib window
and then overlays the bounding boxes to highlight the de-
tections. Figure 10 demonstrates an example of inference
from the YOLOv8x model within the 2.4 GHz industrial
scientific and medical (ISM) band.

Example bash and python scripts are provided within the
gr-spectrumdetect source code to demonstrate the process
of building the provided trained model detect.pt. The
model is trained over the Sig53 wideband dataset using the
same parameters as in the example flowgraph. The gen-
erate.sh script generates the wideband dataset and stores
it as an LMDB. The bash script make yolo.sh converts the
TorchSig LMDB into 1024x1024 YOLO images and text
file labels format. The bash script train.sh uses the Ultra-
lytics YOLOv8 command line to train a YOLOv8x model
for one epoch on the spectrograms. The training starts from
the Ultralytics provided pretrained YOLOv8x model on the

COCO dataset. The first layer of the YOLOv8x model is
frozen while trained with a batch size of 32 and a learn-
ing rate of 0.0033329. The weights have a mean average
precision 50-95 (mAP50-95) of 89.3% when tested against
the impaired wideband Sig53 dataset. Single class mode
is used so the model only learns to detect energy. These
settings were found to work on ISM band data through hy-
perparameter experimentation.

4. Future Work
New features are under development and more are being
planned for TorchSig, including new signal types, addi-
tional features for synthetic spectrogram generation and
modification, and tools for incorporating custom data sets.
Support will be developed for HuggingFace and PyTorch
compatible checkpoints for a variety of model sizes and
use cases, facilitating broader applicability and accessibil-
ity of our models. Additional transforms are being devel-
oped for directly texturing and modifying wideband spec-
trograms to avoid the computation and generation of IQ
samples. Analog modulations amplitude modulation (AM)
and frequency modulation (FM) and their variants are being
developed for inclusion into the signal modulator library.
Label Studio is being integrated which would allow for the
simulated dataset to be supplemented with real world data.

References
Alaaeldin El-Nouby, et al. XCiT: Cross-covariance image

transformers, 2021. URL https://arxiv.org/
abs/2106.09681.

C. Richard Johnson, et al. Telecommunication Breakdown.
Pearson Prentice Hall, Upper Saddle River, NJ, 2004.

Chomsky, Noam. Three models for the description of lan-
guage. IRE Transactions on Information Theory, 2(3):
113–124, 1956. doi: 10.1109/TIT.1956.1056813.

Glenn Jocher, et al. ultralytics/yolov5: v6.1 - TensorRT,
TensorFlow Edge TPU and OpenVINO Export and In-
ference, February 2022. URL https://doi.org/
10.5281/zenodo.6222936.

Knight, Matthew and Seeber, Balint. Decoding lora:
Realizing a modern lpwan with sdr. Proceedings
of the GNU Radio Conference, 1(1), 2016. URL
https://pubs.gnuradio.org/index.php/
grcon/article/view/8.

Lin, Shaobo, Wang, Kun, Zeng, Xingyu, and Zhao, Rui.
Explore the power of synthetic data on few-shot object
detection, 2023. URL https://arxiv.org/abs/
2303.13221.

https://arxiv.org/abs/2106.09681
https://arxiv.org/abs/2106.09681
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://pubs.gnuradio.org/index.php/grcon/article/view/8
https://pubs.gnuradio.org/index.php/grcon/article/view/8
https://arxiv.org/abs/2303.13221
https://arxiv.org/abs/2303.13221


TorchSig: A GNU Radio Block and New Spectrogram Tools for Augmenting ML Training

Figure 8. A flowgraph provided with gr-spectrumdetect which receives IQ samples from the USRP, turns them into a vector, applies ML
inference and plots the resulting labeled spectrogram.

Figure 9. The properties that configure the specDetect block.

Luke Boegner, et al. Large scale radio frequency signal
classification, 2022a. URL https://arxiv.org/
abs/2207.09918.

Luke Boegner, et al. Large scale radio frequency wideband
signal detection & recognition, 2022b. URL https:
//arxiv.org/abs/2211.10335.

Nic Watson, et al. py-lmdb. URL https://github.
com/jnwatson/py-lmdb/.

OpenCV Team. OpenCV. https://opencv.org/.

Proakis, John G. Digital Communications, Fourth Edition.
McGraw-Hill, New York, NY, 2001.

SciPy. scipy.signal.resample poly(). URL https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.signal.resample_poly.
html.

Tan, Mingxing and Le, Quoc. EfficientNet: Rethinking
model scaling for convolutional neural networks. In

Figure 10. An example of ML inference running on live signals in
the ISM Band.

Chaudhuri, Kamalika and Salakhutdinov, Ruslan (eds.),
Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pp. 6105–6114. PMLR, 09–
15 Jun 2019. URL https://proceedings.mlr.
press/v97/tan19a.html.

TorchSig. TorchSig. https://github.com/
torchdsp/torchsig, a.

TorchSig. TorchSig Downloads: Code, Data, Mod-
els, Papers. https://torchsig.com/dist/
downloads.html, b.

Vaidyanathan, P. P. Multirate Systems and Filter Banks.
Prentice Hall, Upper Saddle River, NJ, 1993.

Xu, Yang, Huang, Bohao, Luo, Xiong, Bradbury, Kyle, and
Malof, Jordan M. Simpl: Generating synthetic overhead
imagery to address custom zero-shot and few-shot detec-
tion problems. IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, 15:4386–
4396, 2022. doi: 10.1109/JSTARS.2022.3172243.

https://arxiv.org/abs/2207.09918
https://arxiv.org/abs/2207.09918
https://arxiv.org/abs/2211.10335
https://arxiv.org/abs/2211.10335
https://github.com/jnwatson/py-lmdb/
https://github.com/jnwatson/py-lmdb/
https://opencv.org/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.resample_poly.html
https://proceedings.mlr.press/v97/tan19a.html
https://proceedings.mlr.press/v97/tan19a.html
https://github.com/torchdsp/torchsig
https://github.com/torchdsp/torchsig
https://torchsig.com/dist/downloads.html
https://torchsig.com/dist/downloads.html

