
Design and Implementation of LoRa Physical Layer in GNU Radio

Tapparel Joachim JOACHIM.TAPPAREL@EPFL.CH

Telecommunication Circuits Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

Andreas Burg ANDREAS.BURG@EPFL.CH

Telecommunication Circuits Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland

Abstract
LoRa is the physical layer of LoRaWAN, one
of the most popular low-power wide-area net-
work (LPWAN) technologies for the Internet
of Things (IoT). LoRa uses a proprietary chirp
spread spectrum modulation. The modulation is
used together with error correction coding and
interleaving to achieve long-range communica-
tion with low energy consumption. In the past
years, many reverse engineering attempts have
been made and led to an overall understanding of
the encoding and modulation scheme used by the
physical layer of LoRa. In this paper, we present
in detail all the signal processing operations re-
quired to transmit and receive a LoRa frame for
all the modes that are supported by commercial
devices. We further develop the synchronization
methods used by our open-source implementa-
tion of a LoRa transceiver that is fully compatible
and has been tested extensively with commercial
LoRa devices. Finally, we evaluate the perfor-
mance of our LoRa transceiver implemented in
GNU Radio and available on GitHub.

1. Introduction
In the last decade, low-power wide-area network (LPWAN)
technologies have gained popularity for their ability to pro-
vide long-range communication with low energy consump-
tion. Among the many technologies that have been devel-
oped, LoRaWAN has emerged as one of the most popular
and widely deployed solutions. While the medium access
control (MAC) layer LoRaWAN is an open standard, its
physical layer, simply named long range (LoRa) (Seller
& Sornin, U.S. Patent 9 252 834, Feb. 2016), is pro-
prietary and has motivated many reverse engineering at-
tempts. Those attempts have led to an overall understand-
ing of the encoding and modulation scheme used by the

Proceedings of the 14 th GNU Radio Conference, Copyright 2024
by the author(s).

Whitening Encoding Interleaving Gray
mapping

LoRa
modulation

Data bits

Header
insertion

CRC
insertion

Preamble
insertion

Optional
Required

Figure 1. LoRa transmitter chain

physical layer of LoRa. As LoRa uses a chirp spread
spectrum (CSS) modulation that presents many interesting
properties, it has been the subject of multiple research pa-
pers that have analyzed its performance and proposed im-
provements. However, the details that would allow com-
patibility with commercial devices are mostly overlooked
or simplified for the sake of analysis. In this paper, we
present a detailed description of the LoRa physical layer
used by commercial devices. These insights have enabled
the implementation of a LoRa transceiver that is fully com-
patible with commercial devices and offers new evaluation
possibilities by using the open-source GNU Radio software
in conjunction with off-the-shelf LoRa transceivers.

Contributions: We provide a comprehensive overview of
the LoRa physical layer, covering modulation, frame struc-
ture, and frame detection for all modes supported by com-
mercial LoRa devices. Furthermore, we provide detailed
insights into our open-source GNU Radio LoRa transceiver
and assess the performance of our implementation with
both simulation and experimental evaluation.

2. LoRa Frame Generation
A LoRa frame is composed of a preamble, a header, a pay-
load, and a cyclic redundancy check (CRC) code. Fig-
ure 1 illustrates the operations required for constructing a
frame. In the following, we detail each of these operations
and provide the equations required to implement them in a
transceiver. All following operations performed on binary
values are using modulo-2 arithmetic unless specified oth-
erwise.

Design and Implementation of LoRa Physical Layer in GNU Radio

Figure 2. Whitening operation on one byte of data

Figure 3. Explicit header structure, where L is the payload length
in bytes, C indicates the presence of a CRC, P is the number of
parity bits, and where H is the header checksum.

2.1. Whitening

The transmitter chain starts with a whitening operation that
is used to randomize the data before encoding, removing
any data specific binary patterns. The whitening opera-
tion consists in an XOR operation between the data and a
pseudo-random sequence. As proposed in (Xu et al., 2023),
the pseudo-random sequence can be generated by a linear
feedback shift register (LFSR) with a feedback polynomial
of x8+x6+x5+x4+1. For each step of the LFSR, one byte
of the pseudo-random sequence is generated. Each input
byte D = [D0 . . . , D7], represented with right-MSB, is
whitened as illustrated in Figure 2. After the whitening,
each byte is split into nibbles, whereof the low nibble is
first and the high nibble is second.

2.2. PHY Header

The PHY header is an optional field that is used to carry
information necessary to decode the frame. The header
is composed of the following information: the payload
length, the presence of a payload CRC, the code rate, and a
header checksum. The structure of the five codewords com-
posing the header is illustrated in Figure 3. Note that con-
trary to the payload, the nibbles in the header are ordered
high nibble first, low nibble second. The header checksum

hc is computed using the linear equation

hc = G · h, (1)

where h is a vector of the header bits [L7, L6, . . . , C]T , and
where G is the generator matrix given by

G =


1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0 0 1
0 1 0 0 1 0 0 1 1 0 1 0
0 0 1 0 0 1 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 1 1

 . (2)

The presence of the header is not mandatory if all the afore-
mentioned parameters are known in advance by the re-
ceiver. The transmission mode that does not include the
PHY header is referred to as implicit header mode, as op-
posed to the explicit header mode.

2.3. Payload CRC

An optional cyclic redundancy check (CRC) of two bytes
is computed over the payload to allow the receiver to ver-
ify the integrity of the decoded data. The CRC is com-
puted using the generator polynomial CCITT-16, that is de-
scribed by x16+x12+x5+1. It is important to note that the
CRC is only computed over the payload and not over the
header. Furthermore, the last two bytes of payload are not
included in the CRC computation, but instead are XORed
to the CRC output.

2.4. Encoding

LoRa defines the number of parity bits P ∈ {1, . . . , 4},
which corresponds to code rates 4

4+P . The code parameters
(8, 4) to (6, 4) are based on hamming code with cropped
parity bits, while (5, 4) corresponds to a single bit check-
sum. The codeword c that corresponds to the whitened data
w = [w[0] . . . w[3]] is given by

c =

{
w · G0 if P = 1,
w · G1 otherwise, (3)

with the two generator matrices given by

G0 =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

 , (4)

G1 =


1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

 . (5)

For P < 4, the codeword c is cropped to the first (4+P)
bits.

Design and Implementation of LoRa Physical Layer in GNU Radio

1 2 3 40 5
1 2 3 40 5
1 2 3 40 5
1 2 3 40

Standard

LDRO

5
1 2 3 40 5
1 2 3 40 5
1 2 3 40 5

1
2

3
4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

2 22222

SF

In next block
with LDRO 1

2
3

4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

1

3
4

0

5

2 222

Figure 4. Illustration of interleaving of one block for SF=7 and
P=2 (i.e., code rate 4/6) without and with low data rate optimiza-
tion (LDRO)

2.5. Interleaving

Multiple codewords are interleaved using a diagonal block
interleaver. The interleaver is used to spread the bits of a
codeword over multiple symbols to improve the error cor-
rection capability of the code. The size of an interleaver
block is given by the number of bits in a codeword, i.e.,
(4+P), and by the spreading factor (SF) used. The inter-
leaver takes an SF× (4+P) binary matrix D in which each
row is a codeword and each column is a bit of the codeword
and outputs an interleaved matrix I of size (4+P) × SF.
The diagonal interleaving is defined by the equation

Ii,j = D[i−(j+1)] mod SF,i , (6)

with i ∈ {0, . . . , 3+P} and j ∈ {0, . . . ,SF−1}. LoRa de-
fines a low data rate optimized mode (LDRO) that reduces
the number of bits in an interleaver block to (SF−2) ×
(4+P). After interleaving, two bits are appended to each
interleaved codeword: a parity bit Pi computed from XOR-
ing the SF−2 bits of the interleaved codeword and a zero.
The interleaving of a block with SF = 7 and P = 2 is
illustrated in Figure 4.

2.6. Gray Mapping

Each row of the interleaved matrix is interpreted as gray
encoded binary values. The gray mapping operation is used
to convert the gray encoded values to a decimal value. After
the gray mapping, each symbol s only differs by one bit
from symbols s ± 1. As discussed in Section 3.2.2, some
hardware impairments increase the likelihood of mistaking
a symbol for an adjacent one, therefore the gray mapping
minimizes the number of errors when such demodulation
mistakes occur. The gray mapping used by LoRa is given
by

s = [Ii ⊕ (Ii ≫ 1) + 1] mod SF, (7)

where Ii is the i-th row of the interleaved matrix, where ⊕
denotes the binary XOR operation and where ≫ denotes
the binary right shift operation. Note that the gray map-
ping used by LoRa includes an arbitrary offset of +1 to the
mapped values.

2.7. Fixed Parameters for First Interleaver Block

In order to fully decode a LoRa frame, the receiver needs
to know some information contained in the header, such as
the payload length, the presence of a CRC, and the code
rate. However, the receiver does not know the header be-
fore decoding the first interleaver block. To solve this issue,
the first block is encoded with a fixed set of parameters that
are independent of the user-defined parameters. The first
interleaver block is encoded with the most robust code rate
of 4/8 and, for SFs larger than six, interleaved using the low
data rate optimized mode. For SF five and six, LDRO is
not used to allow the entire explicit header to fit in the first
interleaver block. This choice of parameters maximizes the
probability to correctly decode the header content. It is
important to note that the first block always uses the pa-
rameters mentioned, even if the transmission uses implicit
header mode, i.e., no header is transmitted.

2.8. LoRa Modulation

LoRa uses a linear chirp spread spectrum (CSS) modula-
tion that is defined by two transmission parameters: the
spreading factor (SF) and the signal bandwidth B. Each
LoRa symbol is a linearly increasing frequency chirp com-
posed of N = 2SF chips that carry SF ∈ {5, . . . , 12} bits
of information. The frequency of a baseband symbol with
value s ∈ {0, . . . , N−1} spans the entire signal bandwidth
B during the symbol duration Ts = N

B . The frequency of
the symbol starts at

(
sB
N − B

2

)
and increase by B

N for each
chip until it reaches the maximum frequency B

2 . The fre-
quency then folds back to −B

2 and continues to increase
linearly for each subsequent chip, as illustrated on Fig-
ure 5. When sampled at a frequency fs, the fold in fre-
quency occurs at the sample nfold = (N − s) fs

B . As de-
scribed in (Afisiadis et al., 2019; Chiani & Elzanaty, 2019),
the baseband signal of a LoRa symbol sampled at a fre-
quency fs can be written as

xs[n] = e
j2π

(
n2

2N (B
fs
)
2
+(s

N − 1
2−u[n−nfold])(B

fs
)n

)
, (8)

where n ∈ {0, . . . , N fs
B } and where u[n] denotes the unit

step function. The LoRa modulation also supports linearly
decreasing frequency chirps, referred to as downchirps.
Downchirps are obtained by taking the complex conjugate
of the upchirps xs[n]. Typically, LoRaWAN uses the up-
chirp modulation for the uplink and the downchirp modu-
lation for the downlink to avoid interference between the
two directions.

Design and Implementation of LoRa Physical Layer in GNU Radio

Ns =

Preamble︷ ︸︸ ︷
4.25 +Nup +

Payload︷ ︸︸ ︷
8︸︷︷︸

First interleaver block

+

⌈
2D − SF + 4C + 5H + 2u(SF-7)

SF − 2L

⌉
· (4+P) (10)

Time

Fr
eq
ue
nc
y

Figure 5. Spectrogram of LoRa symbols delimited by red dashed
lines

Time

2.25 DownchirpsNup Upchirps

Fr
eq

ue
nc

y

Figure 6. Spectrogram of the preamble of a LoRa frame

2.9. Preamble

For frame synchronization, the LoRa frame starts with a
preamble that is composed of a sequence of symbols known
by both the transmitter and the receiver. The preamble is
composed of Nup repetitions of a reference upchirp (i.e.,
modulated symbol with value zero x0) followed by two
modulated symbols called sync word and finally two and
a quarter downchirps (i.e., the complex conjugate of refer-
ence upchirp). The preamble structure is illustrated in Fig-
ure 6. The number of repetition of the reference upchirp
Nup can be chosen in the range {6, . . . , 65535}, with eight
being the most common value for LoRaWAN. The sync
word, sometimes referred to as network identifier, is used
to identify frames sent on the same network. Typical val-
ues for the sync word Sw are 0x34 for LoRaWAN and
0x12 for private networks. However, any value in the range
{0x10, . . . , 0xFF} is valid. Some transceivers define the
sync word as a 16-bit value that is equivalent to the 8-bit
representation given by the relation 0xXY = 0xX4Y4 The
value of the two modulated symbols Sw,0 and Sw,1 that
correspond to Sw are given by

Sw,0 = (Sw ≫ 4) · 8,
Sw,1 = (Sw ∧ 0x0F) · 8,

(9)

WhiteningSynchro-
nization

De-
modulation

Gray
demapping

De-
interleaving Decoding

Header
extraction

Data
bits

CRC
check

Figure 7. LoRa receiver chain

where ∧ denotes the bitwise AND operation.

The number of symbols composing the final LoRa frame
Ns can be computed using (10), where D denotes the
length of data in byte, C denotes the presence of a payload
CRC, H denotes the use of the explicit header mode, and
L indicates the use of LDRO. The corresponding duration
of the frame is given by

Tframe = Ns
2SF

B
. (11)

3. LoRa Frame Detection
In this section, we present the operations necessary to de-
tect a LoRa frame. We describe the functioning of the
demodulation, the frame synchronization, and the soft-
decision decoding for the receiver chain illustrated in Fig-
ure 7.

3.1. Demodulation

As discussed in (Chiani & Elzanaty, 2019), the demodula-
tion of a LoRa signal sampled at a sampling rate equal to
the bandwidth can be efficiently performed in two steps: a
dechirping operation followed by a discrete Fourier trans-
form. Indeed, the symbol estimate ŝ can be obtained by
computing the correlation between the received symbol yl

and all possible symbol xs as

ŝl = argmax
s∈{0,...,2SF}

∣∣corr(yl,xs)
∣∣ . (12)

The correlation between the received symbol y and the sig-
nal of a symbol candidate xs can be expressed as

corr(yl,xs) =
N−1∑
n=0

y[n]x∗
s[n] =

N−1∑
n=0

y[n]x∗
s[n]x0[n]x

∗
0[n]︸ ︷︷ ︸

=1

,

(13)
where ·∗ denotes the complex conjugate operation. After
reordering of the terms and some straightforward algebraic

Design and Implementation of LoRa Physical Layer in GNU Radio

simplifications, the correlation can be expressed as

corr(yl,xs) =

N−1∑
n=0

(y[n]x∗
0[n])︸ ︷︷ ︸

Dechirping

·e−j2π s
N n. (14)

One can notice that each correlation with a candidate sym-
bol xs corresponds to computing one Fourier coefficient of
the received signal multiplied by the conjugate of the refer-
ence symbol x0. This observation allows to take advantage
of the fast Fourier transform (FFT) algorithm to compute
all the correlations with a reduced complexity. The output
bin of the DFT that has the highest magnitude provides the
best estimate of the transmitted symbol. The demodulation
operation is finally given by

ŝl = argmax
k∈{0,...,2SF}

∣∣Ỹ l[k]
∣∣, (15)

Ỹl = DFT
(
yl ⊙ x∗

0

)
, (16)

where ⊙ denotes the element-wise multiplication opera-
tion, where yl = [y[lN] . . . y[N + lN − 1]] denotes the
samples of the l-th received symbol, and where x0 =
[x0[0] . . . x0[N − 1]].

3.2. Frame Synchronization

The receiver chain starts with a frame synchronization op-
eration that is used to detect the start of a LoRa frame, es-
timate the most critical offsets introduced by hardware im-
pairments, and compensate digitally those offsets in the re-
ceived IQ samples. In the following sections we summarize
the synchronization steps required to correctly detect sym-
bol and refer to the corresponding papers for the detailed
derivations and evaluation of the different estimators.

3.2.1. PREAMBLE DETECTION

The reception of a LoRa frames starts with the detection
of the preamble. The receiver demodulate symbols from
an arbitrary starting time offset using (16). The identi-
fication of a preamble relies on the repetition of the up-
chirps present in the preamble of a frame. The demodulated
values will repeat themselves irrespective of the CFO and
STO. However, the presence of CFO and STO introduces
a higher probability to mistake a symbol value for an ad-
jacent one. After finding repetitions of same demodulated
values, within a margin of ±1 symbol value, the receiver
can perform a first rough synchronization. The rough syn-
chronization compensates for the combination of all off-
sets by assuming that only STO is present. Note that this
is a necessary step for the correct estimation of the STO
discussed later. The receiver simply shifts the input sam-
ples by the value of the repeating symbol. After this rough
synchronization the symbol repetitions in the preamble are
demodulated as symbols with value zero.

Time

Fr
eq
ue
nc
y

CFO
STO

Figure 8. Illustration of the effects of CFO and STO on the LoRa
spectrum for fs = B

0

50

100

A
m

p
lit

u
d

e

0 20 40 60 80 100 120

Symbol

No offset

Integer CFO

Integer+fractional CFO

CFO
int

CFO
frac

Figure 9. Illustration of the effects of integer and fractional CFO
on the output of the symbol demodulation |Ỹ |

3.2.2. OFFSET ESTIMATION AND COMPENSATION

The main hardware offsets that affect the reception of a
LoRa frame are the sampling time offset (STO) and carrier
frequency offset (CFO). As illustrated on Figure 8 the STO
shifts the received symbol in time while the CFO shifts the
signal in the frequency domain. When the sampling rate
is equal to the bandwidth, the CFO rotates the symbol be-
tween −B/2 and B/2. As described in (Xhonneux et al.,
2022), it is convenient to separate the CFO ∆fc and STO τ
into an integer and fractional components as

∆fc =
B

N
(LCFO + λCFO), τ =

LSTO + λSTO

B
, (17)

with Lx ∈ Z and λx ∈ [−0.5, 0.5). Figure 9 illustrates the
different effect that the integer and fractional CFO have on
the output of the symbol demodulation. While the integer
CFO shifts the entire spectrum, the fractional offset spreads
the symbol energy into adjacent frequency bins. As the ef-
fects of both types of offsets on the despread symbol are
very different, it is beneficial to estimate the integer and
fractional parts separately. The STO has an impact on the
received symbol similar to the CFO due to the linear chirp
modulation. In the remainder of this section, we detail the
methods used to estimate and compensate the fractional
and integer offsets. Note that all estimators are using the
despread signal, i.e., after the dechirping and DFT opera-
tions, as the received (spread) LoRa signal can be far below
the thermal noise floor.

Fractional CFO Estimation (Bernier et al., 2020) pro-
poses a method to estimate the fractional CFO λ̂CFO based
on the phase rotation between consecutive symbols which
as been extended in (Xhonneux et al., 2022) to include all

Design and Implementation of LoRa Physical Layer in GNU Radio

the upchirps of the preamble as

λ̂CFO =
1

2π
∠

Nup∑
l=2

2∑
p=−2

Ỹ l[i+p] · Ỹ l−1[i+p]

 , (18)

where i = argmaxk |Ỹ l[k]| and where ∠(·) denotes the
argument of a complex number. The estimator is indepen-
dent of the other offsets present in the received signal as
only the fractional CFO contributes to the linear rotation of
the phase of each symbol. The fractional CFO can then be
compensated in the received signal using

y′[n] = y[n] · e−j2π
λ̂CFO
N

B
fs

n, n ∈ N0. (19)

Fractional STO Estimation After compensation of the
fractional CFO, the dechirped signal only contains a pure
frequency tone. However, due to the fractional STO, the
frequency is located between two bins of the DFT. We use
the general frequency estimator proposed in (Yang & Wei,
2011) to obtain the fractional STO based on the values of
the DFT bins. When applied to our specific case, the fre-
quency estimator can be expressed as

λ̂STO =
N

2π

P [i+ 1]− P [i− 1]

u(P [i+ 1] + P [i− 1]) + vP [i]
, (20)

P =

Nup∑
l=1

∣∣DFT2SF(yl ⊙ x∗
o)
∣∣2 , (21)

u =
64 ·N

(π5 + 32π)
, v =

uπ2

4
, (22)

where i = argmaxk(P [k]), where DFTn denotes a DFT
with a zero-padding of size n. The compensation of the
fractional STO can be done by oversampling the received
signal by a factor fs/B, shifting the samples by ⌈fs/B·λ̂STO⌋,
and downsampling the signal to the original sampling rate
with the right offset.

Integer CFO and STO Estimation After compensation
of the fractional offsets, the integer CFO and STO can be
estimated using the method proposed in (Bernier et al.,
2020; Xhonneux et al., 2022). The preamble of LoRa in-
cludes two and a quarter downchirps at its end. While
both CFO from STO cause a similar shift on the upchirps
values, the effects of both offsets on the downchirps are
opposite. Therefore, the demodulation of the upchirps
gives a symbol value sup = (LCFO + LSTO) mod N while
the demodulation of the downchirps gives a symbol value
sdown = (LCFO − LSTO) mod N . Based on the demodu-
lated values sup and sdown, the integer parts of the CFO and
STO can be estimated as

L̂CFO =
1

2
ΓN [(sup + sdown) mod N] , (23)

where
ΓN [k] = k −N · u(k − N

2
). (24)

Finally the integer STO can be estimated as

L̂STO = (sup − L̂CFO) mod N. (25)

Similarly to their fractional counterparts, the integer offsets
can be compensated using (19) for the CFO and a shift of
L̂STO samples for the STO.

Sampling Frequency Offset As the duration of a LoRa
frame can be up to several seconds, the receiver has to ac-
count for the sampling frequency offset (SFO) present in
the received signal. The SFO causes a linear increase (or
decrease) of the STO over time. While negligible for small
frame durations, the SFO can lead to an STO accumulation
larger than half a chip duration and cause every symbol to
be mistaken by an adjacent one. As both the CFO and STO
are caused by the same hardware impairments, i.e., the lo-
cal oscillator imprecision, an SFO estimate ∆̂fs can be ob-
tained from the CFO estimation using the simple relation

∆̂fs = ∆̂fc

fs
fc

, (26)

where fc denotes the carrier frequency of the LoRa signal.
The SFO can then be compensated by either periodically
dropping (or duplicating) a sample. For every sample re-
ceived, the receiver accumulates a sample time offset of
∆fs/fs. The receiver compensates the accumulated STO by
dropping (or duplicating) a sample every

⌈
B

2∆fs

⌋
received

samples. This period corresponds to the time it takes for the
STO to accumulate a duration of half a sample. After the
estimation of all offsets discussed previously, the receiver
can compensate each of them in the remaining samples of
the frame that contains data.

3.3. Frame Decoding

Each of the transmitter block has a counterpart in the re-
ceiver chain. While the demapping, deinterleaving and
dewhitening are trivally reversible based on the transmit-
ter description, the decoding require a more complex ap-
proach. The decoding can be done using hard-decision de-
coding or soft-decision decoding.

The hard-decision decoding of codes using 2 to 4 parity bits
P is done with the help of a syndrome S. This syndrome
of each of the received codeword can be obtained by

S = c · HT
P , (27)

where HP denotes a submatrix composed of the first P
rows and 4+P columns of the matrix

H =


1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1

 . (28)

Design and Implementation of LoRa Physical Layer in GNU Radio

Table 1. Number of detectable and correctable errors for different
code rates

Code rate Detectable Correctable
4/5 1 0
4/6 2 0
4/7 1 1
4/8 2 1

For the code rate 4/5, the syndrome is computed by XORing
of all the bits of the codeword. Depending on the number of
parity bit used, a syndrome can either be unique and allow
error correction or not and only allow error detection. The
number of errors that can be detected and corrected for each
code rate is summarized in Table 1.

For soft-decision decoding, the receiver does not take any
decision on the received bits before the decoding step.
The demodulation outputs the probability of every possi-
ble transmit symbol hypothesis, instead of only the most
probable symbol value. As discussed in (Tapparel et al.,
2021), the log-likelihood ratio (LLR) of each bit of a row
of the interleaver block Il can be computed from the DFT
of the dechirped signal as

Il[m] = max
s̄:gm(s̄)=1

[
log I0

(√
P

σ2

∣∣∣Ỹ l[s̄]
∣∣∣)] (29)

− max
s̄:gm(s̄)=0

[
log I0

(√
P

σ2

∣∣∣Ỹ l[s̄]
∣∣∣)] , (30)

where I0 denotes the modified Bessel function of the first
kind, where gm(s̄) denotes the m-th bit of the symbol s̄ in
the Gray labeling, where P denotes the power of the re-
ceived signal, and where σ2 is the variance of the white
noise at the receiver. The LLR of each bit of the interleaver
block can then be deinterleaved using the same method as
the hard-decision decoding. Finally, the LLRs is fed to
a soft-input decoder such as the one proposed in (Müller
et al., 2011) to obtain the decoded payload.

4. Implementation and Results
In this section, we present some particularities of the imple-
mentation of the LoRa transceiver in GNU Radio. We then
present results obtained from simulated and experimental
measurements.

4.1. GNU Radio Transceiver

All the previously described functionalities have been im-
plemented in GNU Radio to build a fully functional LoRa
transceiver. The implementation is an out-of-tree mod-
ule for GNU Radio available on GitHub (gr-lora sdr). All
the blocks present in the block diagram of the transmitter
and receiver chains are implemented as distinct GNU Ra-

dio blocks. The flowgraphs presented on Figure 10 can be
used to transmit and receive LoRa frames using any SDR
supported by GNU Radio. A flowgraph is a synchronous
dataflow graph where each block processes a chunk of data
and passes it to the next block. However, as LoRa trans-
mits discrete frames, each block needs to know when a
frame starts and ends. Furthermore, the first interleaver
block is encoded using a fixed set of parameters and has to
be treated differently than the other interleaver blocks. To
manage these different parts of a frame, two tags are gener-
ated per frame and attached to specific samples: one at the
start of the frame that contains relevant information for the
processing of the whole frame and one at the end of the first
interleaver block. Furthermore, the receiver needs to know
the content of the explicit header to process the payload.
While waiting for the header to be decoded, the synchro-
nization block buffers samples until the header content has
been successfully recovered. Once the header content is
known, an asynchronous message is sent to the synchro-
nization block with all the header information. The header
information is then added to the tags located at the end of
the first interleaver block to be propagated to the rest of the
receiver chain.

4.2. Results

In this section, we evaluate our GNU Radio LoRa re-
ceiver implementation. We first present results obtained
from simulated AWGN channels and then compare the re-
sults with experimental measurements obtained from two
LoRa transceivers based on software-defined radios for
both transmission and reception.

Figure 11 shows the frame error rate (FER) for spread-
ing factor seven in a simulated additive white Gaussian
noise (AWGN) channel using hard and soft-decision de-
coding. The simulations are performed on GNU Radio us-
ing the LoRa blocks described in the previous section. The
FER is computed on the frame with a payload of 16 bytes
for which the preamble has been detected by the receiver.
We can observe the advantages that soft-decision decod-
ing provides, as the error rate of the (6, 4) code with soft-
decision decoding is equivalent to the error rate of the (8, 4)
code that uses hard-decision decoding. Both experiments
achieve similar error correction capabilities while reducing
the number of transmitted bits by ∼ 25%.

Figure 12 shows the FER obtained from a simulated
AWGN channel and from USRP measurements. The ex-
perimental measurements were performed using the GNU
Radio implementation of the transceiver and NI-2920
USRPs for transmission and reception. To enable compari-
son with simulated performance and to allow the reproduc-
tion of the results, the USRPs are connected via a coax-
ial cable to restrict the transmission channel to an AWGN

Design and Implementation of LoRa Physical Layer in GNU Radio

Figure 10. GNU Radio flowgraph for the LoRa transmitter (top) and receiver (bottom)

−12 −10 −8
10−2

10−1

100

SNR (dB)

Fr
am

e
E

rr
or

R
at

e

Code Hard Soft
(8, 4)
(6, 4)

Figure 11. Frame error rate for spreading factor seven in a simu-
lated AWGN channel using hard and soft-decision decoding

channel. In addition to AWGN, both STO and CFO are
present in the hardware (but are ideal in the simulation) due
to the lack of synchronization between the two USRPs. We
can observe that the error rates of the experimental testbed
stay within 1 dB from the simulated curves, demonstrating
the proper functioning of the synchronization and overall
implementation of our LoRa transceiver.

5. Conclusion
In this paper, we presented the modulation and coding
scheme of LoRa and detailed the operations necessary to
build and detect a LoRa frame compatible with commer-
cial devices. We then described our open-source imple-
mentation of a LoRa transceiver in GNU Radio and pre-
sented results obtained from simulated and experimental
measurements. We finally showed that our GNU Radio im-
plementation of the LoRa transceiver only suffers from a
loss of 1 dB SNR between simulated AWGN and experi-
mental measurements that included hardware impairments.

−18 −16 −14 −12 −10 −8 −6

10−2

10−1

100

SNR (dB)

Fr
am

e
E

rr
or

R
at

e

SF7 SF9
Sim.
Exp.

Figure 12. Frame error rate for SF7, code (6, 4), and soft-decision
decoding for a simulated AWGN channel and USRP measure-
ments

References
Afisiadis, Orion, Cotting, Matthieu, Burg, Andreas, and

Balatsoukas-Stimming, Alexios. On the error rate of the
LoRa modulation with interference. IEEE Trans. Wirel.
Commun., 19(2):1292–1304, 2019.

Bernier, Carolynn, Dehmas, François, and Deparis, Nico-
las. Low complexity LoRa frame synchronization for
ultra-low power software-defined radios. IEEE Trans.
Commun., 68(5):3140–3152, 2020.

Chiani, Marco and Elzanaty, Ahmed. On the LoRa modula-
tion for IoT: Waveform properties and spectral analysis.
IEEE Internet Things J., 6(5):8463–8470, 2019.

gr-lora sdr. A fully-functional GNU Radio software-
defined radio implementation of a LoRa transceiver.
URL https://github.com/tapparelj/
gr-lora_sdr. Accessed: Sept. 14, 2024.

Müller, Benjamin, Holters, Martin, and Zölzer, Udo. Low
complexity soft-input soft-output hamming decoder. In
2011 50th FITCE Congress - ”ICT: Bridging an Ever

https://github.com/tapparelj/gr-lora_sdr
https://github.com/tapparelj/gr-lora_sdr

Design and Implementation of LoRa Physical Layer in GNU Radio

Shifting Digital Divide”, pp. 1–5, 2011. doi: 10.1109/
FITCE.2011.6133448.

Seller, Olivier B. A. and Sornin, Nicolas. Low power long
range transmitter, U.S. Patent 9 252 834, Feb. 2016.

Tapparel, Joachim, Xhonneux, Mathieu, Bol, David, Lou-
veaux, Jérôme, and Burg, Andreas. Enhancing the re-
liability of dense LoRaWAN networks with multi-user
receivers. IEEE Open J. Commun. Soc., 2:2725–2738,
2021. doi: 10.1109/OJCOMS.2021.3134091.

Xhonneux, Mathieu, Afisiadis, Orion, Bol, David, and
Louveaux, Jérôme. A low-complexity LoRa synchro-
nization algorithm robust to sampling time offsets. IEEE
Internet Things J., 9(5):3756–3769, 2022. doi: 10.1109/
JIOT.2021.3101002.

Xu, Zhenqiang, Tong, Shuai, Xie, Pengjin, and Wang, Jil-
iang. From demodulation to decoding: Toward complete
lora phy understanding and implementation. ACM Trans.
Sen. Netw., 18(4), jan 2023. ISSN 1550-4859.

Yang, Cui and Wei, Gang. A noniterative frequency esti-
mator with rational combination of three spectrum lines.
IEEE Transactions on Signal Processing, 59(10):5065–
5070, 2011. doi: 10.1109/TSP.2011.2160257.

