Ultra-wideband SDR architecture for AMD RFSoCs
and PYNQ based GNU Radio blocks

Marius Siau&iulis
Louise H. Crockett
Robert W. Stewart

MARIUS.SIAUCIULIS @ STRATH.AC.UK

Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, Scotland, UK

Abstract

The AMD RFSoC (Radio Frequency System on
Chip) architecture has gained significant atten-
tion within the Software Defined Radio (SDR)
community for its integration of Radio Fre-
quency (RF) frontend, FPGA fabric and Linux-
capable Arm-based processing system in a single
package. Despite its accessibility to researchers
via the RFSoC 2x2 and RFSoC 4x2 development
board platforms, its adoption within the GNU
Radio community has been limited. This work
demonstrates the potential of combining RFSoC
with GNU Radio by utilizing a bidirectional
QSFP network link to transmit and receive a
wideband Orthogonal Frequency-Division Mul-
tiplexing (OFDM) signal. Using the remote pro-
cedure calls we are able to control the Tx/Rx
center frequency and RFSoCs Digital Up/Down
Converter (DUC/DDC) rates from the host PC to
achieve runtime configurable bandwidth. Addi-
tional signal inspection and visualisation is im-
plemented using existing GNU Radio GUI wid-
gets and analysis blocks.

1. Introduction

In recent years, advances in Analogue-to-Digital and
Digital-to-Analogue converter (ADC and DAC) technol-
ogy have increased achievable sampling rates to multi-
ple Giga Samples per Second (GSPS). These high sam-
pling sampling rates help to enable diverse applications in-
cluding radio astronomy [1][2], wireless communications
[4], instrumentation [3], and quantum computing research
[5][6]. In each case the data converters are interfaced with
processing resources suitable for the task, which may in-
clude general purpose Central Processing Units (CPUs),
and often the parallel processing capabilities of a Field Pro-
grammable Gate Array (FPGA), or FPGA-based System

Proceedings of the 13" Annual GNU Radio Conference,
Copyright 2023 by the author(s).

on Chip (SoC). In this paper, we specifically consider the
AMD Zynq UltraScale+ Radio Frequency SoC (RFSoC),
which has the added advantage of combining high speed
ADCs and DACs with FPGA logic, a processing system,
and other supporting resources on a single integrated de-
vice.

Developing systems for SoC devices in general can be chal-
lenging for non-specialists, due to the learning curve of the
design tools and processes. Enabling access to these pow-
erful platforms from the user’s familiar domain-specific
tools widens access to them, and is an important consider-
ation of this research. This paper focuses on Software De-
fined Radio (SDR) applications, and demonstrates how the
widely adopted and popular GNU Radio tool can be used
in conjunction with the RFSoC device and the PYNQ soft-
ware/hardware framework (further introduced in Section 2)
to form a flexible prototyping environment. GNU Radio is
the most popular Free and Open Source Software (FOSS)
SDR development toolkit, and it has enabled a plethora of
academic and industrial research endeavors to date, due to
its inherent flexibility and ease-of-use. In this work, we
specifically consider applications requiring high rate data
transfer from / to the RFSoC device.

This work aims foster greater adoption of the RFSoC plat-
form by the GNU Radio community, by providing a refer-
ence design targeting the AMD RFSoC 4x2 board [7]. The
RFSoC 4x2 is a modestly priced board with four receive
and two transmit channels, which is extensively supported
via open-source hardware and software [8], reference and
demonstration designs [9], a book [10], and other learning
and supporting materials [11].

Other tooling options are available for the design of SDR
systems based on RFSoC and related platforms. One of
these is MathWorks Communications Toolbox with Zynq
SDR Support [12], which offers radio-in-the-loop capabil-
ities enabling quick iterations during the prototyping stage.
In the research community, the CASPER [13] project is
an example of a specialist community developing their
own custom RFSoC-targeting tools, built upon MathWorks
Simulink and Python, to best serve their processing needs.

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

However, these proprietary tools may not fall within the fi-
nancial budget of all potential users, or they may wish to
take a different approach.

This paper presents a novel design that leverages the Quad
Small Form-factor Pluggable (QSFP) network interface to
establish an up to 100GBit/s bi-directional data link be-
tween GNU Radio, running on a Personal Computer (PC),
and the RFSoC 4x2 for arbitrary radio signal transmission
and reception. The QSFP network is used to send signals
generated on the PC to RFSoC where they are interpo-
lated and mixed to Radio Frequency using the integrated
Digital Up Converter (DUC), to be transmitted via the RF
Digital to Analogue Converter (RF-DAC). The RF-DAC
is connected via loopback cable to RF Analogue to Digi-
tal Converter (RF-ADC) where the RF signal is sampled,
decimated and demodulated using a Digital Down Con-
verter (DDC). The Complex IQ (In Phase and Quadrature)
samples are then sent back to the PC over the QSFP data
link. Due to the high speed RF-ADCs and RF-DACs found
on the RFSoC platform, a QSFP network interface is nec-
essary to facilitate transmission of signals generated off-
board.

The remainder of this paper is organised as follows. In Sec-
tion 2, the RFSoC 4x2 board and the PYNQ framework are
introduced, as well as a high level overview of the design
architecture is presented. Section 3, gives a walkthrough of
the hardware architecture. Section 4 considers the software
architecture distributed between the board and PC imple-
mentations. Section 5 discusses the experimental results.
The current status of PYNQ based GNU Radio block de-
velopment is given in Section 6. Finally, in Section 7, the
conclusions are drawn.

2. System Architecture

This section gives a quick introduction to the AMD RFSoC
4x2 development board and the AMD PYNQ framework.
It then provides a high level overview of the design archi-
tecture and hardware setup.

2.1. RFSoC 4x2

The RFSoC 4x2 board (Figure 1) has been developed by
AMD [15] in partnership with Real Digital [16] as a suc-
cessor to the previously available RFSoC 2x2 board which
was based on Gen 1 RFSoC architecture (the RFSoC 4x2
features a Gen 3 RFSoC, ZU48DR device). In addition to
Zynq™ UltraScale+™ based FPGA Programmable Logic
(PL) and an Arm-based applications Processing System
(PS), the RFSoC 4x2 incorporates 4x 14-bit RF-ADCs and
2x 14-bit RF-DACs with maximum sampling rates of 5
Giga-Samples per Second (GSPS) and 9.85 GSPS, respec-
tively [17]. 10 MHz to 10 GHz rated RF baluns have been

incorporated into the Printed Circuit Board (PCB) of the
development platform. This integration facilitates direct
connection of antennas or other external signal sources and
sinks through SubMiniature version A (SMA) coaxial con-
nectors, thereby streamlining the prototyping process. A
QSFP28 Ethernet interface is also present on the board
that supports various network configurations with maxi-
mum throughput of 100Gbit/s.

MicroSD

DACA @
Ethernet
DACB @
ADCA QSFP28
ADCB &) IiRFSoC 4
ADCC £ i USBS3 Host
8
g 1 AMDQ
ADCD fli e USB 3 composite
SYNC |)
IN i d Mini-DisplayPort
CLKIN
Power status LEDs

LEDs; Buttons; i
1PPS - L2 com

Switches

@ i
SYZYGY 2x Pmod
Figure 1. RFSoC 4x2 development board
2.2. PYNQ

AMD PYNQ [14] is an open-source project for System on
Chip (SoC) devices, that exposes Intellectual Property (IP)
cores within the FPGA fabric as a collection of Python ob-
jects. It provides Python Application Programming Inter-
faces (APIs) to conveniently load and manage FPGA bit-
streams (called overlays), discover user controllable IPs,
handle PL interrupts, and interact with memory mapped
interfaces. Additionally, it provides drivers for commonly
used IP blocks such as a Direct Memory Access (DMA)
IP that can be used for large data transfers between PS and
PL. With the release of the RFSoC 2x2 board, PYNQ was
extended to include Python wrappers for RFSoC-specific
functionality:

« xrfclk - to configure external RF reference clocks

e xrfdc - controlling and interacting with the RF Data
Converters (RFDCs)

e xsdfec - drivers for Soft-Decision Forward Error Cor-
rection (SD-FEC) integrated block

Operating System (OS) images for officially supported
boards [19], made by AMD and their partners, come with
JupyterLab [18] web-based interactive development envi-
ronment pre-installed, and ready to use out of the box.
PYNQ can also be easily ported to other ZYNQ (arm) and
ZYNQ Ultrascale+ (aarch64) based boards [20] making it
a platform agnostic framework.

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

2.3. Architecture overview

The prototype platform is based on a Commercial Off-The-
Shelf (COTS) workstation PC with a QSFP Network In-
terface Card (NIC) connected to the RFSoC 4x2 develop-
ment board via an optical cable. GNU Radio flowgraph
running on the PC is used to generate a baseband signal
that is sent over the QSFP network using User Datagram
Protocol (UDP). The RF-DAC channel B can be connected
via loopback cable to RF-ADC channel B to facilitate flex-
ible bandwidth signal introspection and visualisation using
a Graphics Processing Unit (GPU) accelerated gr-fosphor
[21] Out-Of-Tree (OOT) module. If connected to RF-ADC
channel C, the received signal is decimated by a factor of 40
using the RFSoC’s integrated DDC to reduce the amount of
captured data and make the subsequent demodulation pro-
cess less resource intensive. A high level overview diagram
of the prototype platform is shown in Figure 2.

PC

GNU OFDM

e ¥

Radio Tx 9

GNU samples QSFP28
r-fosphor €———

Radio : p NIC

Ethernet
A

1/Q samples 1 r
! JupyterLab over UDP

Ethemet| RFSOC 4X2 | oorpog \
(PS | control [PL
PYNQ + Network Layer ‘

" AXI4-S |
Switch

ADC_C
ADC_D

Loopback cable(s)
or antenna(s)

~=» ADC_A

m
[©]
[a]
<
A
1
'

~
~

Figure 2. High level overview of the prototype platform

3. Hardware Architecture

In our previous work [22] we presented an open-source
hardware and software design for high speed RF sample
offload from RFSoC to a PC using the QSFP network in-
terface. This work extends the previous design to include a
receive channel that is used to drive the RF-DAC.

The QSFP network interface was built utilising the Ultra-
Scale+ Integrated 100G Ethernet Subsystem, which pro-
vides the Physical and Data link Open Systems Intercon-
nection (OSI) model layer functionality. This includes the

Ethernet Media Access Controller (MAC), Physical Cod-
ing Sublayer (PCS) and Reed-Solomon Forward Error Cor-
rection (RS-FEC) components. The functionality of the
upper OSI layers is achieved using the open-source Net-
work Layer kernel [23] IP, which includes Address Res-
olution Protocol (ARP), Internet Control Message Proto-
col (ICMP) and UDP transport layer capabilities. The
aforementioned cores, alongside supporting architecture
and Clock Domain Crossing (CDC) data First In, First Out
(FIFO) buffers are grouped into a design hierarchy to facil-
itate straightforward reuse of the network subsystem.

The receiving side of the Network Layer kernel IP parses
the received packets and compares the socket information
to the socket table. If the socket information matches the
socket table entry, the packets are considered valid and are
passed to the AXI4-Stream interface. If the socket informa-
tion does not match the socket table entry, the data pack-
ets are still streamed over the AXI4-Stream link, but the
TVALID signal is kept low indicating they are invalid. As
the GNU Radio UDP sink block chooses a random avail-
able port on each run, the socket table needs to be updated
with the sender’s port number during runtime.

In this design, the data packets received from the QSFP net-
work are passed to a custom netlayer_tuser IP that extracts
sender’s and receiver’s IP addresses, as well as ports, from
the AXI4-Stream TUSER data path, and presents them to
the PS over the AXI4-Lite interface. Additionally the 1P
can be used to override the TVALID signal and force the
packets to become valid as a way to overcome the issue
of random port selection. Once the packets are considered
valid, they are passed to the RF-DC core where a Digital Up
Converter (DUC) interpolates the signal from 61.44 MSPS
to the RF-DAC sampling rate of 4915.2 MSPS (a factor of
80). Gen 3 RFSoC DUC:s are capable of interpolation rates
of up to x40, thus a supplementary Image Reject (IMR)
stage is required to achieve the additional x2 interpolation.

RF-DAC channel B is configured as the output in this de-
sign and, due to the board’s integrated RF baluns, it can
drive an antenna or loopback cable directly. Optional ana-
logue filters and variable gain amplifier can be chosen to
condition the output signal.

As in our previous design, RF-ADC channel B is config-
ured as a flexible bandwidth sampler for signal introspec-
tion using a remote gr-fosphor based flowgraph. It is capa-
ble of capturing RF signals at a maximum sampling rate
of 2457.5 MSPS and a minimum of 307.2 MSPS. Con-
sidering the transmitted wideband OFDM signal is around
60 MHz wide even at the lowest sampling rate of 307.2
MSPS, too much unnecessary data is captured for efficient
signal demodulation using GNU Radio. An additional RF-
ADC Channel C is enabled with its Digital Down Con-
verter (DDC) set to x40 decimation to allow reception of

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

Options
Title: OFDM Tx
Description: OFDM ...nsmitter
Output Language: Python
Generate Options: No GUI
Run Options: Prompt for Exit

Vector Source
Vector: range(0, 96)

Variable Variable Variable Variable Variable Variable Variable Variable

10:fftlen | [1D:samprate | | ID:length tag key | | ID:packetlen | | ID:header mod 1D: payload mod 1D:gsfp_ip ID: packet size

Value:64 | | Value:6144M | | Value:packet len | | Value: 96 Value: <gnuradi. f6c1dd3f30> | | Value: <gnuradi..foc12c05b0> | | Value: 192.168.4.99 | | Value: 4.096k
Variable Variable Variable Variable Variable Variable Variable

1D: sync_word1 1D: sync_word2 ID: occupied carriers 1D: pilot_cariers 1D: pilot_symbols | | ID:header_formatter 1D: rolloff

value: 0.0, 0., 0.,0, Value:[0,0,0,0,0,0, Value: [-26,-2..24,25,26] | | Value:(-21,-7,7,21) | | Value:(1,1,1,-1) | | Value:<gnuradi.f6c12c23b0> | | value:0

Stream to Tagged Stream

Stream CRC32
Mode: Generate CRC

Packet Header Generator
Formatter Object: <g..adc30>
Length Tag Name: packet_len

Chunks to symbols
Symbol Tabl

Packet Length: 96
Length Tag Key: packet len

Tags:
Repeat: Yes

Length tag name: packet len
Packed: Yes

Repack Bits
Bits per input byte: 3
Bits per output byte: 2

set_symbol_table| Dimension:

Virtual Sink
Stream ID: Pre-OFDM

Tagged Stream Mux
Length tag names: packet_len
Chunks to symbols

Symbol Table:-1.4..1.41421]

set_symbol table| Dimension: 1

OFDM Carrier Allocator
FFT length: 64 FFT
Occupied Carriers:[-.., 26] FFT Size:64 OFDM Cyclic Prefixer Tag Gate Throttle
Virtual Source Pilot Carriers: (-2...7,21) Forward/Reverse: Reverse FFT Length: 64 Multiply Const. 5 g(P— G = eI Virtual Sink.
‘Stream ID: Pre-OFDM Pilot Ssymbols:(1,1,1,-1) Window: CP Length(s): 16 Constant: 50m SIWPIIS; e. S :m::‘ e ‘Stream ID: Tx Signal
Sync Words: (0.0....0,0, 0] Shift: Yes Length Tag Key: packet len L imit:hone
Length tag key: packet_len Num. Threads: 2
Shift Output: Yes
Probe Rate
in| Min Update Time (ms): 1k me)- """ H Ennt
- Complex To Ishort Update Alpha: 150m Message Debug
Stream ID: Tx Signal
Vector Output: No UDP Sink
Address: 192.168.4.99
Destination Port: 62.781k
1" Header: None
UDP Packet Data Size: 4.096k
send Null Packet as EOF: No
Figure 3. OFDM Transmitter GNU Radio flowgraph
3 . QT GUI Chooser
the transmitted signal at a reasonable rate of 122.88 MSPS. options T prm— —
Author: Marsiau " samp_rate 1D: center_F 1D: ip_address
: : 41 Output Language: Python Caneto e Label: Center f...ency (MHz): Value: 10.42.0.230
The sampling rate could be further reduced using additional et onguog= ot | | s optons: PR
. Default option: 2.4576G Start: -2.0976G XMLRPC Client
fabric decimation stages if desired. O stog 209756 asress: 1042020
QT GUI Graphic Item Label 0: d = 2, fs = 2457.6e6 Step: 1m Port: 8.08k
File: .. ssets/rfsoc-pyng.png :!p;:r; 1ﬂ1 Z:EEG‘ZH - Callbacic set decimation
3 v iEE=d, = Variable :
AXI4-Stream outputs of both ADCs go through individ- BT e ST
. . A . QT GUI Tab Widget Label 2:d =8, fs = 6144e6 | | ore: 500 T
ual stages of I/Q interleaving and TDATA width repacking 10: g ot Opton 3: 30721 e
¢ . | Num Tabs: Label 3: d = 16, fs = 307.2e6 Variable Port: 8.08k
to achieve a 32-byte wide, stream before being passedto e i e
N Value: 4.096k Variable: 800

a AXI4-Stream switch IP which facilitates the runtime se-
lection of active ADC output. The selected stream is then
passed to the Network Layer kernel IP where it is encap-
sulated into UDP packets of user-selectable length and sent
over the QSFP network interface.

4. Software Architecture

A modified OFDM transmitter (Figure 3) based on the ex-
ample design from the gr-digital package is used to gen-
erate wideband OFDM signals throttled to 61.44 MSPS,
which are converted to interleaved 16-bit IQ samples and
transmitted via the QSFP network using the UDP network
sink. The flowgraph is configured with the Graphical User
Interface (GUI) disabled to achieve better performance and
stability.

The primary components of the receiver flowgraph (Fig-
ure 4) are the UDP source block, configured to accept
jumbo packets, data reinterpretation, and gr-fosphor [21]
GPU accelerated, real-time spectrum visualisation inter-
face blocks. Additional QT widget and XMLRPC Client
blocks are present in the design, to facilitate runtime se-
lectable RF-DC center frequency and DDC decimation
rate. The QT GUI Waterfall sink provides an alternative
waterfall view with slower update speed.

The software architecture for the RFSoC 4x2 board part of

UDP Source
Port: 60.133k
Header: None
Notify Missed Frames: Ves

IShort To Complex
Scale Factor: 32,767k
Vector Input: No

fosphor sink (Qt)
Center Frequency (Hz): 500M
span (Hzk 245766

lout—Piin

@.

Src 05 If No Data: No Message Debug
store.
Enable IPv6 Support: No sore| PDU Vectors: On
QT GUI Waterfall Sink
print_pdul

FFT Size: 4096
Center Frequency (Hz): B00M
Bandwidth (Hz) 245766

Probe Rate

Min Update Time (ms): 1 |rater = — rint

Update Alpha: 150m - Message Debug
S 1) vectors on
lprint_pdu

Figure 4. gr-fosphor based receiver flowgraph

the design is written the in Python programming language
using the web-based JupyterLab environment. The PYNQ
framework is used to load the designed bitstream, configure
the QSFP network interface and provide initial configura-
tion for the RF-DCs. Additionally, the Jupyter notebook
starts a XML-RPC server in a separate thread to facilitate
the remote RF-DC control.

As discussed in Section 3, the port the of GNU Radio
UDP sink remains unknown until runtime. However it is
required by the netlayer IP to validate the received UDP
packets. Once the QSFP network is configured and estab-
lished between the PC and the RFSoC 4x2 development
board, the PYNQ MMIO library can be used to query the
netlayer_tuser IP for the sender’s port number and update
the socket table accordingly.

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

5. Experimental Results

This section discusses the resource utilization of the im-
plemented hardware design as well as tests carried out to
confirm the functionality of the GNU Radio flowgraph.

5.1. Hardware Resource Utilization

Table 1 provides a summary of the PL hardware resource
utilization required to implement the discussed design for
the RFSoC 4x2 development board. The entire design con-
sumes approximately 11% of the available Look-Up Tables
(LUTs), 12% of the available Flip-Flops (FFs), and 6% of
the available Block RAMs (BRAMs). This leaves a sig-
nificant portion of the device unoccupied, allowing for the
implementation of additional functionality such as hard-
ware interpolation/decimation stages. The design’s rela-
tively modest hardware resource consumption can be at-
tributed to the utilization of hardened RFSoC resources,
including digital up and down converters, as well as the
gigabit transceivers.

Table 1. Hardware Resource Utilisation.
(target part: XCZU48DR)

Resource Used | Utilisation
LUT 45276 10.65%
LUTRAM 3906 1.83%
Flip-Flops 100827 11.85%
Block RAM 61 5.65%
GTY Transceivers 4 25%

5.2. Network Test Results

To drive the RF-DAC at 4915.2 MSPS a 61.44 MSPS in-
put signal has to be supplied to the RFSoCs DDCs set up
with factor 80 interpolation. The network throughput (R)
required to send the input signal can be calculated using the
following equation:

R=BxCxQ (D

where bandwidth (B) is the RF-DAC sampling rate, chan-
nels (C) = 2 for complex (I and Q) data, and the RF-DAC
resolution (Q) is 14 bits with 2-bit padding, giving 16 bits
total for the RFSoC Gen 3 ZU48DR device present on the
RFSoC 4x2 board.

The design was tested with Throttle block (configured to
61.44 MSPS) placed before the UDP Sink and Tx Signal
conversion from float to interleaved short IQ samples, as
well as with throttle block removed and flowgraph uncon-
strained. Tests were repeated with realtime scheduling en-
abled, but showed no significant performance improvement

over the default scheduling policy. The sampling rate re-
sults were acquired using the Probe Rate and Message De-
bug blocks, whilst the network throughput test results were
acquired from the client system using the nload [24] net-
work monitoring application for Linux systems. The re-
sults are summarized in Table 2.

Table 2. Network Throughput Test Results.

Test Sampling Rate Measured Avg.
es

(MSPS) Throughput (GBit/s)
Expected 61.44 1.94
Throttled 61.44 1.85
Unthrottled 64.65 1.92

Figure 5 shows the spectrum of the transmitted wideband
OFDM signal that was captured by RFSoC RF-ADC chan-
nel B and displayed using the GNU Radio gr-fosphor
block.

The test results show that the system is capable enough to
generate a stable 61.44 MSPS OFDM signal and send it
over the OFDM network interface in real time. The re-
ported network use is slightly less than expected but this
is consistent with previous results and still under investiga-
tion.

6. Further Investigations

Within the SDR community, there has been, a few attempts
to offload parts of the processing flow to FPGA on ZYNQ-
based devices, namely GNU Radio ZYNQ support that was
a result of the 2013 Google Summer of Code project [25]
and RFNoC [26] project developed by “Ettus Research”
which is mostly aimed at USRP SDRs. Both of these ap-
proaches offer limited design flexibility and support only a
limited amount of development boards and devices. Since
the release 3.8 of GNU Radio, when Python 3 support was
officially added, it has been possible to utilize the PL ab-
straction layers provided by the PYNQ framework. This
could provide a platform agnostic and easily extensible way
to achieve FPGA acceleration of GNU Radio flowgraphs.

The remainder of this section considers the author’s
progress with running GNU Radio directly on RFSoC
based platforms, and developing GR blocks based on the
PYNQ framework for FPGA bitstream management, data
transactions between PS and PL, as well as RFSoC-specific
functionality.

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

gr-fosphor | waterfall

RFSoC-PYNG'

Sample rate: |d = 16, fs=307.2e6 ~

Center frequency (MHz):

750.00000

.......

Figure 5. OFDM signal Spectrum

6.1. Board Setup

The installation of GNU Radio on the target RFSoC 4x2
development board has been achieved using a combination
of the radioconda [27] package repository and miniforge
[28] installer with the mamba [29] package manager in its
base environment. This app roach allows GNU Radio to be
installed on linux-aarch64 platforms (such as the RFSoC
4x2 PS) without the need to build it from source. The ra-
dioconda default environment can be further extended us-
ing pip [30] to install the necessary PYNQ libraries.

Although GNU Radio Companion can be run directly on
the board and accessed by connecting a monitor, mouse and
keyboard, a far more convenient option is to use a Virtual
Network Computing (VNC) or Remote Desktop Protocol
(RDP) connection to access the board’s display remotely.
Alternatively, GR flowgraphs can be developed on a PC in
a clone of the board’s environment, then transferred onto
the board for use.

6.2. gr-pynq

An out-of-tree module of PYNQ based GNU Radio blocks
called gr-pynq has been in development to cover some of
the most commonly used functionality. The blocks are
written in Python and use PYNQ libraries to control the
hardware. Example gr-pynq blocks are shown in Figure 6
and the development status of the blocks is summarized in
Table 3.

7. Conclusions

In this paper, we highlight RFSoCs unique combination of
RF frontend, FPGA fabric, and Linux-capable Arm-based
processing system within a single chip, and present a novel

PYNQ Overlay
1D: pyng_overlay_0
Bitstream: None
dtbo: None
Download bitstream: True
Ignore the driver version: Falze

DMA Sink
DMA block name: none
DMA buffer size: 1.024k
Data is complex: True
Block input data type: Float 32
Cacheable buffer: True

Figure 6. gr-pynq blocks

Table 3. PYNQ-based GNU Radio block development status

Block name Function Status | Testing
Loads and manages Done | Done
Overlay FPGA bitstreams
) PS to PL DMA Done | Done
DMA Sink transfer
PL to PS DMA Done WIP
DMA Source transfer
Controls external RF | WIP WIP
xrfelk reference clocks
. Controls the RF WIP WIP
xrfdc tile Data Converters

design that leverages the QSFP network interface to estab-
lish a bi-directional data link between GNU Radio, running
on a PC, and the RFSoC 4x2 for wideband OFDM signal
transmission and reception. Although OFDM is used as an
example, the design supports any arbitrary waveforms gen-
erated by GNU Radio. Through our work, we have demon-
strated the potential of leveraging PYNQ in tandem with
GNU Radio for developing RFSoC applications, and by
providing a reference design, we hope to encourage broader
adoption of this powerful SDR platform in the GNU Radio
community.

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

8. Acknowledgements

The authors warmly thank Patrick Lysaght, Graham
Schelle and Sariinas Kaladé (all of AMD) for their sup-
port of this work. They would also like to acknowledge
CENSIS co-funding for Marius Siauiulis.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

C. Liu, M. E. Jones, and A. C. Taylor, “Characteriz-
ing the performance of high-speed data converters for
RFSoC-based radio astronomy receivers”, Monthly
Notices of the Royal Astronomical Society, vol. 501,
no. 4, pp. 5096-5104, Jan. 2021, doi: 10.1093/mn-
ras/staa3895.

X. Pei, J. Li, X. Duan, and H. Zhang, “QTT Ultra-
wideband Signal Acquisition and Baseband Data
Recording System Design Based on the RFSoC Plat-
form”, PASP, vol. 135, no. 1049, p. 075003, Jul. 2023,
doi: 10.1088/1538-3873/ace12d.

StrathSDR, “Spectrum Analyser on PYNQ”,
https://github.com/strath-sdr/
rfsoc_sam

J. Goldsmith, C. Ramsay, D. Northcote, K. W. Bar-
lee, L. H. Crockett, and R. W. Stewart, “Control and
Visualisation of a Software Defined Radio System on
the Xilinx RFSoC Platform Using the PYNQ Frame-
work”, IEEE Access, vol. 8, pp. 129012-129031,
2020, doi: 10.1109/ACCESS.2020.3008954.

L. Stefanazzi et al., “The QICK (Quantum Instru-
mentation Control Kit): Readout and control for
qubits and detectors”, Review of Scientific Instru-
ments, vol. 93, no. 4, p. 044709, Apr. 2022, doi:
10.1063/5.0076249.

R. Gebauer, N. Karcher, M. Giiler, and O. Sander,
“QiCells: A Modular RFSoC-based Approach to In-
terface Superconducting Quantum Bits”’, ACM Trans.
Reconfigurable Technol. Syst., vol. 16, no. 2, p. 32:1-
32:23, May 2023, doi: 10.1145/3571820.

“RFSoC 4x2 Overview”, RFSoC-PYNQ.
http://www.rfsoc—-pyng.io/rfsoc_

4x2_overview.html (accessed Sep. 02, 2023).

“RFSoC 4x2 — Real Digital”. https://www.
realdigital.org/hardware/rfsoc-4x2
(accessed Sep. 02, 2023).

“RFSoC-PYNQ overlays”, RFSoC-PYNQ. http:
//www.rfsoc-pyng.io/overlays.html

(accessed Sep. 02, 2023)

Louise H Crockett, David Northcote, and Robert W
Stewart, Software Defined Radio with Zynq® Ul-
traScale+™ RFSoC. Strathclyde Academic Media,
2023. Available: https://www.rfsocbook.
com/

“RFSoC Tutorials”, RFSoC-PYNQ. http:
//www.rfsoc-pyng.io/tutorial.html
(accessed Sep. 02, 2023).

https://github.com/strath-sdr/rfsoc_sam
https://github.com/strath-sdr/rfsoc_sam
http://www.rfsoc-pynq.io/rfsoc_4x2_overview.html
http://www.rfsoc-pynq.io/rfsoc_4x2_overview.html
https://www.realdigital.org/hardware/rfsoc-4x2
https://www.realdigital.org/hardware/rfsoc-4x2
http://www.rfsoc-pynq.io/overlays.html
http://www.rfsoc-pynq.io/overlays.html
https://www.rfsocbook.com/
https://www.rfsocbook.com/
http://www.rfsoc-pynq.io/tutorial.html
http://www.rfsoc-pynq.io/tutorial.html

Ultra-wideband SDR architecture for AMD RFSoCs and PYNQ based GNU Radio blocks

[12] “Zynq SDR Support from Communications
Toolbox™. https://uk.mathworks.com/
hardware-support/zyng—-sdr.html (ac-
cessed Sep. 02, 2023).

[13] “CASPER - Collaboration for Astronomy Signal
Processing and Electronics Research”, https:
//casper.berkeley.edu/ (accessed Sep. 02,
2023).

[14] “PYNQ - Python productivity for Zynq”, http://
www.pyng.io/ (accessed Sep. 02, 2023).

[15] “AMD - Advanced Micro Devices, Inc”, https://
www . amd . com/en (accessed Sep. 02, 2023).

[16] “Welcome to Real Digital’. https://www.
realdigital.org/ (accessed Sep. 02, 2023).

[17] AMD Inc, “Understanding Key Param-
eters for RF-Sampling Data Converters
WP509”. Feb. 20, 2019. Accessed: Feb. 16,
2023. [Online]. Awvailable: https://www.
xilinx.com/content/dam/xilinx/
support/documents/white_papers/
wp509-rfsampling-data-converters.
pdf

[18] “JupyterLab: A Next-Generation Notebook Inter-
face”. https://jupyter.org/

[19] “PYNQ Development Boards”.
pyng.io/board.html

http://www.

[20] “PYNQ SD Card image”. https://pyng.
readthedocs.io/en/latest/pyng_sd_
card.html

[21] “gr-fosphor - GNU Radio block for RTSA-like spec-
trum visualization using OpenCL and OpenGL ac-
celeration.”, gr-fosphor - GNU Radio block for
RTSA-like spectrum visualization using OpenCL and
OpenGL acceleration. https://osmocom.org/

projects/sdr/wiki/Fosphor. (accessed Feb.
16, 2023).

[22] M. giauéiulis, D. Northcote, J. Goldsmith, L. H.
Crockett, and S. Kalade, “100GBit/s RF sample of-
fload for RFSoC using GNU Radio and PYNQ”,
in 2023 21st IEEE Interregional NEWCAS Con-
ference (NEWCAS), Edinburgh, United Kingdom:
IEEE, Jun. 2023, pp. 1-5. doi: 10.1109/NEW-
CAS57931.2023.10198070.

[23] AMD Inc, “XUP Vitis Network Example (VNx)”.
https://github.com/Xilinx/xup_
vitis_network_example (accessedFeb.
16,2023).

[24] R. Roland, “nload - Real time network traffic moni-
tor for the text console”. https://github.com/
rolandriegel/nload (accessed Feb. 16, 2023).

[25] “Zynq - GNU Radio”, Wiki.gnuradio.org, 2019. [On-
line]. Available: https://wiki.gnuradio.
org/index.php/Zyng

[26] “RFNoC (UHD 3.0) - Ettus Knowledge Base”.
https://kb.ettus.com/RFNoC_ (UHD_3.
0) (accessed Sep. 14, 2023).

[27] “Cross-platform installers for a collection of
open source software radio packages”. https:
//github.com/ryanvolz/radioconda

[28] “Miniforge installer with Mamba in the base
environment”. https://github.com/
conda-forge/miniforge

[29] “The Fast Cross-Platform Package Manager”.
https://github.com/mamba-org/mamba

[30] “Package installer for Python”. https://pypi.
org/

[31] AMD Inc., “UltraScale+ Devices Integrated 100G
Ethernet Subsystem v3.1 LogiCORE IP Prod-
uct Guide 7. Accessed: Feb. 16, 2023. [On-
line]. Available: https://docs.xilinx.com/
r/en-US/pg203-cmac—-usplus.

https://uk.mathworks.com/hardware-support/zynq-sdr.html
https://uk.mathworks.com/hardware-support/zynq-sdr.html
https://casper.berkeley.edu/
https://casper.berkeley.edu/
http://www.pynq.io/
http://www.pynq.io/
https://www.amd.com/en
https://www.amd.com/en
https://www.realdigital.org/
https://www.realdigital.org/
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp509-rfsampling-data-converters.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp509-rfsampling-data-converters.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp509-rfsampling-data-converters.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp509-rfsampling-data-converters.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/white_papers/wp509-rfsampling-data-converters.pdf
https://jupyter.org/
http://www.pynq.io/board.html
http://www.pynq.io/board.html
https://pynq.readthedocs.io/en/latest/pynq_sd_card.html
https://pynq.readthedocs.io/en/latest/pynq_sd_card.html
https://pynq.readthedocs.io/en/latest/pynq_sd_card.html
https://osmocom.org/projects/sdr/wiki/Fosphor
https://osmocom.org/projects/sdr/wiki/Fosphor
https://github.com/Xilinx/xup_vitis_network_example (accessed Feb. 16, 2023)
https://github.com/Xilinx/xup_vitis_network_example (accessed Feb. 16, 2023)
https://github.com/Xilinx/xup_vitis_network_example (accessed Feb. 16, 2023)
https://github.com/rolandriegel/nload
https://github.com/rolandriegel/nload
https://wiki.gnuradio.org/index.php/Zynq
https://wiki.gnuradio.org/index.php/Zynq
https://kb.ettus.com/RFNoC_(UHD_3.0)
https://kb.ettus.com/RFNoC_(UHD_3.0)
https://github.com/ryanvolz/radioconda
https://github.com/ryanvolz/radioconda
https://github.com/conda-forge/miniforge
https://github.com/conda-forge/miniforge
https://github.com/mamba-org/mamba
https://pypi.org/
https://pypi.org/
https://docs.xilinx.com/r/en-US/pg203-cmac-usplus
https://docs.xilinx.com/r/en-US/pg203-cmac-usplus

