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ABSTRACT 

In this paper we demonstrate an EM environment aware 
(EMEA) radio called the Intelligent Transceiver Radio Node 
(ITRN) that is suitable for use in cognitive radio applications. 

The ITRN is an end-to-end solution that can quickly find 
interferers and act upon them in a defensive manner such as 
filter, move the channel, move to different band, etc. While the 
ITRN is capable of finding interferers in both the spectral 
dimension, we present a framework that allows for future 
expandability into more measurement domains.   

To break to sensing time tradeoff with spectral and angular 
resolution, we employ the use of compressed sensing (CS). By 
making a few assumptions on the local EM environment’s 
current state, we are able to perform spatial and spectral scans 
that are a factor of 10 times faster than the current state of the 
art. Information on the spectral locations of the interferers, along 
with a current QoS estimate is then sent to a machine learning 
based decision engine (MLBDE) where reinforcement learning 
is used to determine the optimal channel selection. 

For the ITRN’s sensor, we use a custom 8 antenna RF-ASIC 
fabricated in TSMC 65nm CMOS called the Direct Space to 
Information Converter (DSIC). The output of the DSIC is sent to 
an Ettus X310 radio. A custom UHD interface was constructed 
in the field programmable gate array (FPGA) to speed the 
streaming data rate by using a variable data packet size. Custom 
UHD circuitry was also created to synchronize the DSIC with 
the clock on the X310.  

In GNU Radio, we perform the baseband DSP and Orthogonal 
Matching Pursuit (OMP) which is used to recover the spectral 
locations of the interferers. Lastly, the output of OMP along with 
a QoS estimation is sent to the MLBDE which calculates the new 
optimal channel selection and retunes the ITRN.  

 

 

Keywords - Cognitive Radio, Compressed Sensing, Software Defined 
Radio, Machine Learning, Reinforcement Learning, GNU Radio.  

I. BACKGROUND AND MOTIVATION 
Communications often take place in congested and contested 
spectral environments where conditions readily exist that impair 
network connectivity. Whether the impairment is due to ordinary 
congestion, geographical obstructions or malicious jamming, 
understanding the cause of the impairment and developing 
systems that can react to the environment, and thereby mitigate 
the interference, is increasingly becoming an important topic for 
tactical communication systems. The next generation of 
communications networks will need to be EM environment 
aware to effectively operate in both friendly and hostile 
congested RF environments [1].  

These adverse effects on communications can be further 
characterized by their external characteristics, for example, 
placement in the RF frequency spectrum, angular spectrum 
(direction of arrival or DoA) and time can be measured to help 
better characterize and take action to mitigate these harmful 
effects or signals. This can be seen in Figure 1 where a multi-
dimensional resource cube is used to better understand a signal 
of interest’s (SOI) effect on a communications node. 

While Figure 1 shows an EM state space of 3 dimensions, in 
reality there are many more possible dimensions that can be 
used to characterize the EM environment. Signal bandwidth 
(BW), terrain, fading and environmental noise can all be 
considered dimensions of an X dimensional resource cube, 
where X is the total number of measurement dimensions.  

Additionally, the optimal actions associated with countering a 
particular EM disturbance can also be considered a Y 
dimensional state space where Y is the total possible 
transceiver actions (e.g., move transceiver to a different 
channel, change modulation type, or change BW). Sensing all 
X  dimensions and finding the optimal transceiver action  out 
of Y  possible actions cannot be completed in an acceptable 
amount of time using pre-calculated decisions or with 
traditional sensing systems [1]. To minimize computation 
complexity and conserve energy in man-portable hardware, 
the system needs to learn and adapt to the numerous types of 
potential perturbation in the EM environment that the system 
may encounter. Such a system can be realized by leveraging 
machine learning (ML), compressed sensing (CS) and the 
advancements made in cognitive radio systems [2]. 
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In summary, this paper introduces the concept of an Intelligent 
Transceiver Radio Node (ITRN) that contains two 
submodules in addition to the transceiver system; the EM 
Environment Aware (EMEA) sensor and the Machine 
Learning Based Decision Engine (MLBDE). These 
components work in conjunction with each other to enable a 
fully-cognitive radio transceiver system capable of operating 
in hostile radio frequency (RF) environments. 

II. RELATED WORK AND OUR CONTRIBUTIONS 

A. Current State of the Art  
The purpose of the EMEA sensor is to provide an assessment 
of the state of the EM environment (e.g., locate interferers and 
find available whitespace in some domain). 

Traditional multi-domain EMEA sensors either consume 
too much energy or are not able to react quickly enough to 
capture fast reacting jammers. Typical commercially 
available frequency hopping spread spectrum (FHSS) 
radios have a pulse repetition rate of 2-10ms and a pulse 

time of 1-2ms. Measurement accuracy and node awareness 
requires a sensor to scan over a wide bandwidth and use as 
many measurement domains as possible in order to fully 
quantify the jammer’s effect on the system’s quality of 
service (QoS). For example, if N spectral bins, N spatial bins 
and N temporal bins require scanning, the total number of 
possible signal locations in the EM environment state space 
is proportional to N3, assuming DFT-like sensing 
matrices are used in each domain. In general, the number of 
measurements required will grow as a product of the 
measurement dimensions if traditional sensing techniques 
are used. 

Spectral occupancy of adversarial interference, obtained from an 
EM aware receiver, will allow the sensor transceiver to find new 
spectrum allocation for maintaining the communications link. 

A sample of current wideband spectrum sensing topologies is 
shown in Figure 2.  
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Figure 1. Illustration of an N-dimensional "resource cube" showing occupied resources in the EM environment. 
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To satisfy the scalability, speed and energy consumption 
requirements during sensing, energy-efficient wideband 
interferer detection is a key component of an EM aware receiver. 
Current state-of-the-art spectrum scanners rely on traditional 
spectral analysis that includes an intrinsic trade-off between span, 
resolution bandwidth and scan time. In a single branch sweeping 
scanner, as illustrated in Figure 3(a), each bin is scanned 
sequentially by sweeping the LO driving the I/Q downconverter. 
Covering a span greater than 10 GHz with a 20 MHz RBW 
requires scan times on the order of 2200 us, which results in large 
energy consumption and an inability to track agile targets.  

Parallelism, illustrated in Figure 3(b), can overcome the scan-
time limitations, but the energy requirements remain constant for 
a single-branch or a multi-branch realization. Additionally, 
circuit and system complexity does not scale well from a size, 
weight and power (SWAP) and system designer’s standpoint, 
(i.e., for a 1GHz span and 20MHz RBW), a 50-branch realization 
would have a 4.4 us sensing time but an impractical hardware 
complexity. On the other hand, a Nyquist-rate FFT solution, 
shown in Figure 3(c), would simplify the design architecture but 
require a prohibitively high sampling rate after down-conversion. 

III. ITRN SYSTEM OVERVIEW 
Figure 1 illustrated a 3D resource "cube" depicting the directions 
of  incident signals including the interferers in both the angle and 
frequency domains for multiple time snapshots. While there are 
many possible locations that signals can be in, even in a crowded 

RF environment, only a few possible angular locations are 
occupied at any one given time. This RF environmental 
characteristic is called "sparsity" and can be seen in Figure 3 (a), 
(b) and (c). 

We can exploit the sparsity of the frequency spectrum to yield 
circuit architectures that are faster and an order of magnitude 
more efficient than the current state of the art . This increase in 
speed and efficiency comes from the ability to use CS to sense 
signals with fewer random measurements than are required by a 
Nyquist-rate based systems [3].  For the signal vector  

𝒙 ∈ 𝐶𝑁 
where  

𝒙 = 𝚿 𝑿 
and 𝚿 is the 𝑁 × 𝑁 dictionary matrix and 𝑿 is an 𝑵 × 𝟏 vector 
with 𝐾 ≪ 𝑁 non-zero entries, with K the number of signals, CS 
states that 𝑿  can be recovered using 𝑚 = 𝐾  𝐶0 log (𝑁

𝐾
)  linear 

projections on to a 𝑚 × 𝑁 sensing matrix 𝚽 that is incoherent 
with 𝚿 [4].The system equation can be written as: 

𝒚  =  𝚽𝚿𝑿 
 
In the case of spectrum sensing, the x vector consists of time 
samples with a  DFT like dictionary matrix 𝚿. Recovery of X 
can be performed by a variety of convex optimization 
algorithms. Orthogonal Matching Pursuit (OMP) is used due to 
its simplicity and best tradeoff in accuracy and efficiency for 
highly sparse problems [4]. The concept of CS based spectrum 
sensing can be further seen graphically in Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. EMEA SENSOR  

A. The EMEA Sensor 
The EMEA sensor used in the ITRN is capable of performing CS 
based spectrum sensing and enables it to sense the wideband 
spectrum in fewer scans than the traditional swept LO or FFT 
methods in addition to consuming less power and energy. 
Several CS based architectures such as the MWC [5], QAIC [6], 
DRF2IC [7], DSIC [8] and DSS [9]  have demonstrated the 
advantages of using CS for sensing the EM environment at the 
hardware level.  

The entire ITRN can be seen in detail in Figures 5Figure (a) and 
(b) where interferers are incident upon the ITRNs antenna. The 
EMEA sensor quickly detects their spectral locations using a CS 

Figure 2. Illustration of sparsity in the frequency domain where 
K is the number of signals in the environment and N is the 

number of possible spectral locations. K<<N 

Figure 3. A survey of current spectrum sensing methodologies. 

Figure 4. Illustration of a CS based spectrum sensing system. 
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driven sensor architecture. The spectral locations are then sent to 
the MLBDE along with a measurement of the QoS (e.g., BER) 
of all channel locations. The MLBDE informs the ITRN of 
which new channel location is optimal.  

 

 
For this effort, the EMEA sensor used is the direct space to 
information converter (DSIC). The DSIC is capable of operating 
in many modes of operation (e.g., angular sensing, spectrum 
sensing, etc.). For this application, it is placed into spectrum 
sensing mode with a tunable frequency range of 500MHz to 
3GHz. The DSIC is a direct downconversion architecture and 
contains 8 antenna paths split into two banks of 4. All antenna 
paths are complete with independent LNAs, mixers and vector 
modulators (VMs).  The return loss (S11) at the antenna inputs 
is nominally better than -10dB from 1GHz to 3GHz. Conversion 
gain of each single receiver path with the VM adjusted to 
maximum amplitude is 32dB across an IF BW of 25MHz, NF,  
P1dB, and in-band IIP3 of each path at 1.5GHz are 6.4dB, 
11.3dBm, and 3.3dBm respectively. A detailed circuit diagram 
of the DSIC is shown in Figur. 

The output of the DSIC (y)  is first sent to a digital branch 
expansion module. The branch expansion module digitally 
downconverts m channels where each channel corresponds to a 
CS measurement. A detailed description of the branch expansion 
process can be seen in [7]. After branch expansion, the CS 
measurements are sent to the OMP module where lastly, the 
spectral “supports” or SOIs are recovered. More details on the 
concept behind OMP can be seen in [4]. 
 
Figure 7 and Figure 8 show the performance in terms of 
probability of detection and false alarm (Pd and Pfa) can be seen 
for the DSIC which a varying number of signals K  in the 
environment as well as signal position vs. incident signal power 
in dBm. The EMEA sensor is capable of detecting K=3 signals 
with as little as m=19 CS measurements with a Pd >90%. 
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V. MACHINE LEARNING BASED DECISION ENGINE 
(MLBDE) 

The goal of the ITRN system’s MLBDE module is to compute in 
real-time an optimal recommended frequency bin that is both 
robust and high-performing. The MLBDE-recommended 
frequency bin is sent to the GNU Radio for dynamic tuning of the 
SDR configuration so that the SDR waveform will operate on a 
frequency bin that is best in terms of minimizing outages due to 
signal interference (i.e. robust) and minimizing the average 
channel bit error rate (i.e. high-performing). To compute an 
optimal recommended frequency bin, the MLBDE module 
processes spectrum sensing data streamed to it real-time from the 
EMEA Sensor over a UDP socket interface. 

A. ML Channel Sensing Inputs 
The input sensing data received from the EMEA Sensor consists 
of: (1) a list of IDs of frequency bins that are interfered (e.g., due 
to spectrum congestion; up to 10 such interfered bins) and (2) an 
array of bit error rate (BER) floating point values (up to 128 such 
values depending on the number of frequency bins). While the 
MLBDE module considers for each scan interval / policy action 
update the entire list of interfered bins as context in its decision 
logic, the MLBDE module’s ML decision logic is aware only of 
the BER value for the frequency bin it has recommended (and 
only after the bin has been selected to assure performance 
evaluation fairness). This BER value is needed to quantify the 
reward of its recommended frequency bin (and to update the 
cumulative reward and average reward scores). 

B. Multi-Armed Bandit (MAB) ML Problem Formulation 
The contextual multi-armed bandit (MAB) problem has been 
applied as a generalized abstraction for many practical 
applications [13]. The ITRN dynamic radio adaptation challenge 
represents another opportunity for which the contextual MAB 
problem formulation is applicable and to which machine learning 
(ML) techniques can be applied. In the MLBDE solution, the 
reward obtained by selecting a specific arm/action k (i.e., the 
action of selecting frequency bin At = k � {1,2,…,K}) at each step 
t is the complement of BER (i.e., 𝑅𝑡(𝐴𝑡 = 𝑘) = 1 − 𝑞𝑡(𝑘) 
where 𝑞𝑡(𝑘)  is the BER for frequency bin k over the interval 
associated with time step t). The MLBDE performance metric 
evaluated over N steps is the average step-by-step reward (�̅�𝑁): 

�̅�𝑁 =
1
𝑁

∑ 𝑅𝑡

𝑁

𝑡=1
=

1
𝑁

∑ (1 − 𝑞𝑡(𝐴𝑡))
𝑁

𝑡=1
 (1) 

As one of the data structures applied in its MAB decision logic to 
select a frequency bin (per Section V.C, next), the MLBDE 
maintains the average reward obtained for the occurrences of 
selecting frequency bin k over the course of N steps {1,2,…,N} 
( �̅�𝑁(𝑘) ) for each frequency bin k � {1,2,…,K}. Using the 
indicator function notation of 1𝐴𝑡=𝑘 = 1  if 𝐴𝑡 = 𝑘  and 0 
otherwise, the average reward obtained when selecting frequency 
bin k through N steps is the sum of rewards yielded by selecting 
frequency bin k divided number by the number of times 
frequency bin k was selected over the N steps {1,2,…,N}: 

�̅�𝑁(𝑘) =
∑ 𝑅𝑡

𝑁
𝑡=1 ∙ 1𝐴𝑡=𝑘

∑ 1𝐴𝑡=𝑘
𝑁
𝑡=1

 (2) 

Table 1 summarizes the MAB policies/heuristics implemented as 
part of the MLBDE policy suite to process the channel 
information received from the EMEA Sensor and output a 
recommended frequency bin. While all four versions of “hybrid-
greedy” heuristics listed in Table 1 provide effective means to 
facilitate the tradeoff between exploration and exploitation, the 
Epoch-Greedy procedure [10] intuitively is most practical for the 
challenge at hand by providing configurable control over the 
schedule by which the performance of alternative frequency bins 
are explored followed by a window in which the best performing 
frequency bin is exploited. Random policy procedures are 
implemented as part of the MLBDE policy suite primarily for 
comparison purposes where the pure random policy serves as a 
baseline for performance evaluation against which other MAB 
policies/heuristics are compared. 

Table 1. MAB Policies/Heuristics Implemented 

Policy / 
Heuristic Description of Policy/Heuristic 

Random 
Periodically select a random frequency irrespective of 
the interfered frequency set or its past selections 

Sticky Non-
Interfered 

A new frequency is not explored unless the current 
frequency is under interference 

Random Non-
Interfered 

Periodically select a random frequency as long as the 
frequency is not under interference 

H-Greedy Perform random exploration with probability H 
(exploration) but use best frequency o/w (exploitation) 

H-First Perform pure exploration for first ɛN trials and then 
pure greedy exploitation for remaining (1 – ε)N trials 

H-Decreasing Similar to ɛ-Greedy, but uses a decreasing ɛ value as 
the experiment progresses 

Epoch-Greedy  

Experiment proceeds as a sequence of epochs where, in 
each epoch, exploration of new frequency bin(s) is 
pursued first followed by exploitation of the best 
frequency bin for the remainder of the epoch 

C. ML Decision Logic for Greedy Heuristics 
While the reward metric of Eq. (1) is used to quantify 
performance of the MLBDE module, the ML decision logic for 
its greedy heuristics must decide in each exploitation phase which 
frequency bin k � {1,2,…,K} should be selected for action AN+1 
(and subsequent exploitation steps). For this purpose, the ML 
decision logic considers the average reward afforded by each 
frequency bin per Eq. (2). 

Furthermore, the ML decision logic also considers the set of 
interfered frequencies (St) inputted at each time step as side 
information which MLBDE leverages as a form of context (i.e., 
if frequency bin x � St then the expected reward in choosing x is 
low and bin x should not be selected). Therefore, aside from the 
pure random policy, the MLBDE-recommended frequency bin 
for the action at step t (either for exploration or exploitation), 
excludes candidate frequency bins that are interfered (i.e., in the 
set St). 

Two variations of the decision logic for greedy exploitation have 
been implemented. First, (3a) applies a basic decision logic 
metric that combines the frequency bin performance per (2) with 
awareness of currently interfered bins (SN+1) as context by which 
to prune the set of candidate bins. 

𝐴𝑁+1 = max
𝑘∈{1,2,…,𝐾},

 {𝑘}∩𝑆𝑁+1=∅

�̅�𝑁(𝑘) (3a) 
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Next, Eq. (3b) represents a compound decision logic metric that 
additionally considers the history of signal interference where 
𝑠𝑁(𝑘) is a cost term that discourages selection of (otherwise high-
performing) bins that are unfortunately frequently interfered. 
Here, the term 𝑠𝑁(𝑘) is the fraction of steps (out of the N steps 
{1,2,…,N}) for which frequency bin k was interfered. The 
intuition for applying the compound decision logic metric of (3b) 
is that it will promote selection of more robust (i.e., less likely to 
be interfered) frequency bins for exploitation. 

𝐴𝑁+1 = max
𝑘∈{1,2,…,𝐾},

 {𝑘}∩𝑆𝑁+1=∅

�̅�𝑁(𝑘) − 𝑠𝑁(𝑘) (3b) 

D. Proof-of-Concept Validation Results 
The MLBDE software was validated in standalone mode using 
channel sensor input data collected offline and saved to file. At 
experiment time, the sensor data was read from file and sent at 
“high speed” (e.g., a662 Hz) by a unit-test driver module to the 
MLBDE component via a UDP socket API. Table 2 summarizes 
the preliminary proof-of-concept MLBDE validation results. 
Epoch-Greedy was the ML heuristic enabled in the experiments 
behind these results. 

Table 2. MLBDE Proof-of-Concept Validation Tests 

Test Purpose Result / Key Finding 
Compare Random 
versus Greedy 

ML with greedy heuristics reduces avg. BER of 
selected frequency bin by factors of 7.76 to 26.9 

Process short scan 
interval updates 

For 101 freq. bins and 10 interfering signals, ML 
processed updates every a1509 Ps in real-time 

Validate use of 
interference info 

ML leveraged interfering signal side info to 
reduce avg. BER by factor of 2 (versus w/ none) 

Verify shift to 
robust bins by (3b) 

Compound metric per (3b) shifts the selected bin 
preference to less interfered bins by up to 74% 

 

VI. IMPLEMENTATION OF THE ITRN 
Construction of the ITRN was assisted by the use of the GNU 
Radio framework and UHD and this is shown in Figure 11 and 
Figure 10. Figure 11 shows the BER calculation circuit that 
establishes a link’s QoS with an outstation, and Figure 10 shows 
all major signal processing blocks required for the ITRN to 
operate. An m= 19-channel baseband channelizer is used to 
collect the CS measurements before being sent to the OMP 
engine to extract the K signals in the EM environment. The 
number of signals to detect K, as well as OMP residue and 
threshold, are all configuration inside the OMP engine running in 
GNU Radio. Once the OMP engine finds the K signals, it sends 
them as a vector to the MLBDE along with the BER of all 
channels the ITRN can possibly use.  

It is necessary to synchronize the start and end of the CS 
measurement PN sequence with the digital channelization circuit 
built in GNU Radio. To do this, we use a “sync-pulse” that is sent 
from the EMEA sensor. The sync-pulse propagates through a 
pulse extender board and then to the Ettus X300 front panel GPIO 
connector. UHD typically uses 32 bit complex sample (16 bit I 
and Q) where bits 14 and 15 are zeros. By default, each channel 
sends 32 bits of data to GNU Radio for each sample. Because of 
the low dynamic range and high throughput requirements, the 
data vector was manipulated to include 14 bits of IQ data per 

channel and the trigger signal in a single 32 bit vector, effectively 
doubling the throughput. 

The simplest way to modify the existing FPGA code to 
accomplish this was to modify the DDCs to share IQ data 
between each other and have the GNU Radio application receive 
data from a single DDC.  This can be seen in Figure 9.  

In this configuration, no changes had to be made to the existing 
AXI interfaces, which would have been more time-consuming. 
Where the DDCs are instantiated in the FPGA code, signals were 
created to send the down-converted IQ output of each DDC and 
its valid signal to a new input of the other DDC. It was discovered 
that the two DDCs do not necessarily output valid data on the 
same clock cycles. To correct for this, inside of one DDC, the 
valid data from the other DDC is written to a FIFO and then read 
out when the first DDCs data is valid. This ensures all data sent 
to GNU Radio will be valid, and without this buffer, one 
channel’s data will appear discontinuous. Before the DDC sends 
data to GNU Radio, it packages its own down-converted IQ, the 
down-converted IQ from the other channel, and the trigger signal 
into a 32 bit word. 

The trigger signal requires decimation to match the decimation 
rate of the DDC. The decimation rate of the trigger signal is 
calculated based on the half-band filter rate and the the CIC 
decimation filter rate of the DDC. To preserve timing of the 
trigger relative to the IQ data, it is buffered using a FIFO, which 
is read from when the DDC outputs valid data. 
  

 

Figure 9. Implementation of the new FPGA data format and trigger 
signal incorporation. 
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Figure10. The entire ITRN system using the GNU Radio framework. 

Figure 11. The BER calculation circuit constructed using GNU Radio 
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Further, the delay of the trigger signal through the FPGA is kept 
equal to the IQ data delay by embedding the trigger in the MSB 
of the IQ data. This approach is valid assuming that the ADCs 
will not be saturated by the received signal. Special care must be 
taken to extract and reinsert the trigger any time a mathematical 
operation is being done on the IQ data (e.g., front end correction, 
down-conversion). 

VII. PERFORMANCE AND COMPARISON  
Performance of the ITRN is characterized based on the 
independent performance tests of the EMEA sensor and MLBDE 
as seen above, as well as the construction and test of a prototype 
testbed suitable for data collection and demonstration. The ITRN 
testbed system diagram can be seen in Figure 12. Multiple signal 
generators are connected to the ITRN testbed simulating a 
variety of wideband, narrowband and frequency hopping 
interferers over a 500MHz RF bandwidth. To successfully sense 
this environment, the EMEA sensor is programmed with a 
508MHz PN clock, 1.5GHz LO and 127-bit PN sequence 
resulting in 4MHz channels and up to 19 CS measurements.  
 

Figure 13 shows a screenshot of the system GUI. In the top left, 
MLBDE output (green) as well as instantaneous interferer 
detections from the EMEA sensor can be seen. In the top right, 
the QoS for all channels (measured as BER) is also seen. Note 
the high BER in the middle of the 508MHz band coincident with 
the frequency hopping interferer locations. The bottom right 
shows the aggregate interferer detections from the EMEA sensor 
over 100 scans. Lastly, the bottom left shows a running waterfall 
of the EMEA sensor’s interferer detections. Also refer to the 
attached videos for more information on how the ITRN 
prototype testbed functions.  

VIII. CONCLUSIONS 
In this paper we showed the design and test of an intelligent 
transceiver radio node (ITRN) that is suitable for use as a 
cognitive radio (CR) component. It uses a Compressed Sensing 
(CS) driven receiver architecture that is used to sense the RF 
spectrum in a fraction of the time as current state-of-the-art 
techniques. To demonstrate the capability of the ITRN, an EM 
environment aware sensor (EMEA) was successfully integrated 
into the GNU Radio framework, the output of which indicates the 
spectral position of jammers or interferers. 

Jammer location is sent to a machine learning based decision 
engine (MLBDE) which in turn takes appropriate action (retunes, 
switches band, etc.) by making the optimal corrective decision 
based on reinforcement learning. The ITRN requires far less time 
to find interferers in frequency domain. Where Nyquist rate 
spectrum sensors require N measurements, the ITRN requires 
only m where 𝑚 = 𝐾  𝐶0  where K<<N, N is the number of 
possible interferer locations and K is the number of interferers the 
ITRN is programmed to find.  Output of the ITRN’s EMEA 
sensor is sent to the MLBDE where reinforcement learning 
allows the ITRN to find the most optimal decision on where to 
retune.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13. Testing graphical user interface (GUI) screenshot. 

Figure 12. Circuit diagram showing the ITRN testbed with 
locations of critical components. 
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