
GRCon 2022

Novel Implementation of a Keyless Concurrent
Codes Spread-Spectrum (CCSS) Jam-Resistant

Method in GNU Radio
James Morrison

Department of Electrical and
Computer Engineering

United States Air Force Academy
c23james.morrison@afacademy.af.edu

Neil Rogers
Department of Electrical and

Computer Engineering
United States Air Force Academy

neil.rogers@afacademy.af.edu

William Bahn
Department of Computer and

Cyber Sciences
United States Air Force Academy
william.bahn@afacademy.af.edu

Abstract—Current omnidirectional jam-resistant tech-
nology relies on shared secrets. This forces private networks
to exchange keys before jamming is present and leaves
public networks (like GPS or ADSB/Mode-S) unprotected.
Given the proliferation of inexpensive Software Defined
Radios (SDRs), robust jam-resistant options are more
important than ever. This project implements the “BBC”
codec–a keyless, concurrent codes spread-spectrum (CCSS)
strategy–in GNU Radio. Initial testing of the BBC codec
confirms theoretical performance estimates and suggests
that BBC is a viable option to preserve information
availability. Development is underway to provide an out-of-
tree (OOT) module for broader use within the GNU Radio
community.

Keywords—concurrent codes, jam-resistant, wireless, RF,
communications, BBC, GNU Radio, SDR

I. BACKGROUND

Modems that support protected (i.e., private) omni-
directional wireless connections leverage keys for two
primary functions: Traffic Encryption Keys (TEKs) pro-
tect the content of traffic, while Transmission Security
Keys (TSKs) protect the physical-layer signal. Histor-
ically, these keys were all symmetric, having to be
exchanged in advance under ideal conditions. Thus,
protected networks—especially those relying on omni-
directional broadcasts—had frustrating scalability and
use-case limitations. However, the advent of asymmetric
keys and Public Key Infrastructure (PKI) allowed public
keys to be sent without concern, effectively solving the
key-sharing problem for TEKs. Even the low bit-rates
of asymmetric algorithms such as Diffie-Hellman key
exchange and RSA have been outperformed by hybrid
approaches where symmetric keys are shared during an
asymmetrically-keyed connection, allowing higher-rate
symmetric algorithms like 3DES and AES to encrypt
sustained connections. [1]

Despite these advancements, protected connections
are still contingent on symmetric TSKs for jam-

resistance. That is, asymmetric keys fail to facilitate
modern omnidirectional transmission security strate-
gies like frequency-hopping spread spectrum (FHSS),
direct-sequence spread spectrum (DSSS), and time-
permutation. Thus, protected networks still have scal-
ability and use concerns. After careful, yet prolonged
distribution of symmetric TEKs, it is likely that one or
more keys may become compromised. With a compro-
mised TEK, a TSK transmitted at the beginning of a
broadcast may be intercepted. As a result, the signal
may be jammed in the physical layer, even if the TEK
encryption holds. This danger is exacerbated because the
difficulty of key-redistribution grows with the size of the
network. Furthermore, without a TSK’s physical-layer
advantages, encrypted connections cannot exchange a
TSK when jamming is present. Such a broadcast is
susceptible to degradation or even denial.

Furthermore, public networks (i.e., those without an
enumerated list of authorized users) cannot leverage
symmetrically-keyed jam-resistance. Since, in effect,
everyone has the TSK, adversaries could predict the
spectrum usage of the signal and easily jam it. As
the technology industry’s reliance on large-scale net-
works like Global Navigation Satellite Systems grows,
jam-resistance becomes increasingly crucial to preserve
proper functionality.

The communications community has been making
efforts toward these ends. In [2], Pöpper, Strasser, and
Čapkun were able to achieve linear time complexity
with Uncoordinated Direct-Sequence Spread Spectrum
(UDSSS), which did not rely on shared secrets. However,
this strategy required a delay between the message
transmission and the jamming transmission to establish
physical-layer jam-resistance. Though this is a robust
methodology for many use-cases, the ability to establish
a connection under adverse conditions has yet to be
demonstrated.

https://orcid.org/0000-0003-0937-7130
https://orcid.org/0000-0002-9646-1367

GRCon 2022

II. BBC ALGORITHM

As proposed by Baird, Bahn, and Collins, the BBC
codec is a physical-layer solution for keyless jam-
resistant communication, with no inherent requirement
for an uncontested synchronization step [3]. By modeling
the wireless channel as a bitwise-OR, BBC leverages the
fact that, though jamming adds unwanted information to
transmitted codewords, it is unable to remove informa-
tion that is already there (i.e., bits with value 1). Given
that the bitwise-OR is a good approximation for some
variable-envelope asymmetric modulation schemes, it is
useful to represent a signal as a bit vector. This simpli-
fication does not describe a signal’s power distribution
across frequency and time (or its phase) but is a useful
heuristic and may be implemented by diverse modulation
strategies.

A BBC "mark" is a binary 1 that serves as a marker
for a specific substring, and a packet is a bitwise-OR of
a transmitted codeword and any additional marks from
intentional or unintentional interference. After receiving
a packet, a decoder may do two things: it may decode
the packet as a single message or it may decode every
message covered by the packet. In the former case, a
transmitter and receiver pair that use a codec which
encodes characters as ASCII may send a ‘2’ across
an intentionally or unintentionally jammed channel and
receive a ’3’. Thus, the packet has been corrupted by the
addition of a single 1 in the codeword:

TABLE I
ASCII SINGLE DECODE AFTER CHANNEL OR

Origin ASCII
Character

ASCII Byte
(Codeword)

Original message (TX) 2 00110010
Jamming signal ! 00100001
Channel packet (OR) 3 00110011
Decoder (RX) 3 00110011

In the latter case, the decoder reverses the channel
bitwise-OR by decoding every possibility. Using the
above example, the output of the decoder includes the
original message and many “hallucinations.”

Even after filtering for characters (i.e., ASCII bytes
which are between the decimal values 32 and 126 inclu-
sive), there are 7 incorrect messages, or “hallucinations”;
87.5% of the decoded packet is erroneous. Evidently,
the computational efficiency of the decoder drops as
more codewords are covered by the packet—that is, as
there are more 1s than 0s in the packet. Furthermore,
consistently selecting the original message from the
hallucinations is impractical.

This toy example informs the primary goal of the BBC
codec: to reduce the number of hallucinations introduced
by a bitwise-OR of its codewords. Toward this end, BBC

TABLE II
ASCII ITERATIVE DECODE AFTER CHANNEL OR

Origin ASCII
Character

ASCII Byte
(Codeword)

Original message (TX) 2 00110010
Jamming signal ! 00100001
Channel packet (OR) 3 00110011

SOH 00000001
STX 00000010
ETX 00000011
DLE 00010000
DC1 00010001
DC2 00010010

Decoder (RX) DC3 00010011
Space 00010000
! 00100001
" 00100010
00100011
0 00110000
1 00110001
2 00110010
3 00110011

leverages the theory of concurrent codes (and thus, is
an implementation of concurrent codes spread-spectrum,
CCSS).

A concurrent code is a set of bit vectors such that it
is improbable that an individual element “is a subset of
a bitwise-OR of a small number of the others.” A con-
current code also requires that such a vector be decoded
efficiently, preferably in linear time. The BBC algorithm
defines its concurrent code by leveraging a type of multi-
hot encoding. For a given n-bit message, the encoder
will place n marks inside a vector of zeros with length
greater than 2n. The location of each mark is given as
a vector index by successively hashing substrings of the
original message using the Glowworm hash (Fig. 2-4).
The resulting vector is the BBC codeword. Below is a
toy example of the BBC encoding process for an ASCII
‘2’ (00110010 in binary), assuming a codeword length
of 2n.

TABLE III
BBC ENCODE OF ASCII ’2’

Message
substring

Mark index
from hash

Codeword after
placing mark

‘’ 00000000 00000000
‘0’ 5 00000100 00000000
‘00’ 0 10000100 00000000
‘001’ 14 10000100 00000010
‘0011’ 2 10100100 00000010
‘00110’ 0 10100100 00000010
‘001100’ 0 10100100 00000010
‘0011001’ 3 10110100 00000010
‘00110010’ 12 10110100 00001010

Though indices for 8 marks have been generated by
the hash function, 3 of the substrings’ mark indices were

GRCon 2022

the same: 0. This overlap suggests that the arbitrary
length of 2n = 2(8) = 16 bits may be too small; the
codeword density, µ , is approaching the limit of the
decoder. Since there are 6 marks and 16 bits in the
codeword, µ = 6

16 = 0.375. The receiver codec will still
decode the packet in linear time since the codeword
density is under 0.5 [1]. However, there likely will be
hallucinations.

To reverse the encoder’s mark placement, the decoder
must rebuild every message that may have been included
by checking for marks corresponding to various sub-
strings. In the case of a small 16-bit codeword, there are
216 = 65536 message possibilities. A depth-first search
tree is employed to check for substring marks in the
codeword efficiently. That is, the decoder begins by
proposing that the message began with ‘0’. If there is
a mark in the codeword corresponding to the substring
‘0’, this branch is taken and ‘00’ is tested. If not, the
decoder tests for the substring ‘1’, and so on. Below
is the decoding tree for the 16-bit BBC codeword for
ASCII ‘2’, 10011100000010102.

Fig. 1. Partial Decoder Tree

In this example, at a depth of 3, the search has
eliminated 5/8 of the future substrings. In other words,
the decoder has already eliminated about 40,962 of the
65,536 message possibilities. While helpful to under-
stand the efficiency of the BBC decoder, this top-down
perspective suggests a breadth-first search. Note that
because the algorithm is depth-first, the decoder would
not discover the ‘1’ branch of the tree until the message
‘00110010’ had been fully decoded. The terminal nodes
at the bottom of the tree show that the recieve-end codec
decoded ‘2’, ‘J’, and 0xB2. In this case, with µ = 0.375,
there were 2 hallucinations.

However, in the presence of jamming, the packet
density is more consequential than the original codeword
density; the channel bitwise-OR will introduce more

marks than were in the original packet. For example,
when the encoded ‘2’ is jammed by interference that
represents a BBC-encoded ‘!’, 4 new marks are added
and packet density is 6+5

16 = 0.6875.

TABLE IV
CHANNEL OR

Origin ASCII
Character BBC Codeword

Original message (TX) 2 10011100 00001010
Jamming signal ! 01000001 10001101
Channel packet (OR) N/A 11011101 10001111

Now over the 0.5 packet density threshold, the decoder
returns 14 possibilities (8 of which are ASCII charac-
ters)—a comparable result to the ASCII-only encoder.
This example demonstrates the importance of judiciously
sizing the BBC codeword. In the same jamming scenario,
the decoder finds 5 message possibilities if a 32-bit code-
word is used. With a 56-bit codeword, no hallucinations
are present: only ‘2’ and ‘!’ remain.

III. THE GLOWWORM HASH

In [4], Baird, Bahn, Carlisle, and Smith designed a
hash to optimally place marks and reduce overlap. This
"Glowworm" hash was originally written as C macro
functions but has been translated to Python to support
object-oriented integration in GNU Radio. This hash is
comprised of 3 functions: one for initializing a shift
register, one to process a bit and return a mark index, and
one to restore the shift register’s state after processing
a bit (i.e., a bit deletion). The init() function fills up a
shift register with 32 64-bit words. The initial hash state
is determined by 4096 iterations of adding the previous
entry’s least significant bit.

Initialize Glowworm
def init(s):

n = 0
h = 1
for i in range(32):

s[i]=0
for i in range(4096):

h=add_bit(h&1, s)
n = 0

Fig. 2. Glowworm Initialization Function

The add_bit() function actually hashes a given bit. In
BBC, the modulo of its 64-bit return and the codeword
length becomes the index of the new mark. In order to
"hash a substring," each individual bit needs to be hashed
in order. The shift register’s modified state is responsible
for ‘01’ giving a different output than ‘1’ or ‘001’; it can
essentially store a substring even though it is passed via

GRCon 2022

n separate function calls, where n is the length of the
current substring and a global variable.

Enforce 64-bit word
MAX_VAL = 0xffffffffffffffff

Hash a bit
def add_bit(b, s):

t = (s[n % 32]^(0xffffffff if b else 0))
t = ((t|(t>>1))^((t<<1)&MAX_VAL))
t = (t ^ (t>>4)^(t>>8)^(t>>16)^(t>>32))
n += 1
s[n % 32] ^= (t&MAX_VAL)
return s[n % 32]

Fig. 3. Glowworm Hash Function

Finally, the del_bit() function reverses a hash state
change caused by add_bit(). This enables the BBC
decoder to navigate the search tree; in cases where a
substring’s mark is not found in the codeword, del_bit()
unhashes the last bit and traverses one level up in the
tree.

def del_bit(b, s):
n -= 1
add_bit(b,s),
n -= 1
return s[n % 32]

Fig. 4. Glowworm Reverse Hash Function

IV. IMPLEMENTATION OF BBC IN PYTHON

Python’s support of object oriented programming en-
ables the creation of a BBC codec object that can simul-
taneously encode messages and decode codewords. This
is advantageous toward supporting full duplex wireless
communication, rather than relying on procedural scripts.
Furthermore, Python’s built-in bytearry object supports
a variable-length array that can store more information
than a machine-precise 64-bit word. This is particularly
helpful for creating large codewords (e.g., 220 bits long).
Since the bytearray object supports indexing via the
memoryview() method, it is easy to place and search for
BBC marks. The Python Codec object initializes both
an Encoder and a Decoder for predetermined message,
codeword, and checksum lengths (Appendix A.1). Note
that BBC performs a pseudo-checksum by appending
additional zeros to the message before encoding it,
reducing the number of hallucinations contained in the
codeword.

To create a BBC codeword, data is parsed from the
source, interpolated to message_length-long bit vectors,
and passed to the Encoder (Appendix A.2). Once its

Glowworm shift register has been initialized (lines 11-
14), it is free to iteratively place marks for each substring
in the message (lines 27-34). Only one bit is hashed at a
time, but the shift register stores the rest of the substring
until bits are deleted from it.

To decode a BBC codeword, an iterative model is
used, rather than the recursive model proposed in [1].
This novel approach increases efficiency and reduces the
stack size, making it computationally easier to decode
larger packets/codewords. Messages that have a mark in
the codeword for each substring are stored in the static
variable, message_list (Appendix A.3).

To iterate the depth-first search, the decoder uses
Glowworm to check if it can append a ‘0’ to the
current message substring, which is initially empty. If
Glowworm returns an index where a mark is present in
the codeword, the current substring is valid, and the "ex-
plore" path is taken (lines 33-48). If the current substring
is not covered by the packet, then the "backtrace" path is
taken (lines 51-72). Here, the algorithm can reliably take
the next "deepest" path by deleting ‘1’s from the end of
the current message substring until a ‘0’ is encountered
(reducing its depth), at which point it changes that ‘0’
to a ‘1’ and continues to the next iteration. After every
message covered message is found, they are all returned
via message_list (Appendix A.3, line 75).

V. IMPLEMENTATION OF BBC IN GNU RADIO

To facilitate SDR testing with GNU Radio, the En-
coder and Decoder are implemented as synchronous and
interpolating Python Blocks, respectively (Appendices
B.2-B.3). Each has a blk constructor that instantiates the
respective python class, enabling the work method to call
BBC functions. Since the message and codeword lengths
must be pre-determined and consistent between encoder
and decoder, they are defined as top-level variables in the
flowgraph (Appendix B.1). Stream-to-vector and vector-
to-stream blocks manage the data flow appropriately.

Adjusting these top-level variables, however, currently
causes a compilation error. GNU Radio does not yet
support dynamic argument assignment inside the python
block constructor. That is, the actual values of the top-
level variable are ignored in favor of the corresponding
default arguments. As a result, the message and code-
word lengths had to be hard-coded in both blocks each
time a different configuration was desired. This is still
an open issue in the core GNU Radio source code, with
a partial work-around in [5].

Initial verification consisted of a simulation (Appendix
C.1). This test demonstrated the BBC codec’s ability to
encode multiple messages into a single codeword (i.e., a
“packet”) and recover both. In GNU Radio, two encoder
blocks each encoded a message. The resulting codewords
were passed to a native “OR,” which simulated the

GRCon 2022

channel. Both messages were decoded from the packet
with no hallucinations.

Furthermore, the recommended 50% packet density
limit was validated with two separate tests in GNU
Radio. First, using a (210) bit message (128 bytes),
codeword lengths were varied from 220 down to 211 bits
[3]. At 211 bits, the codeword was twice the size of the
message, and thus had an expected codeword density of
50%. As predicted, the decoder broke exceeded linear
time and produced many hallucinations.

Second, the simulation was used to investigate the
effect of extra marks on the decoded messages (Ap-
pendix C.2). In this test, a single byte mask was OR’d
with each byte of the codeword, producing a variable
number of extra marks. As expected, byte masks which
contained three 1’s (such as the 000110102 = 2610)
did not significantly affect the decoding process, since
the packet density was still below the 50% threshold.
However, 4-bit-high masks such as 000110112 = 2710
produced a failure in the decoder.

Testing showed that a significant codeword-to-
message ratio (such as 210) made the BBC codec re-
sistant to a significant amount of bit-errors induced by
jamming or noise. Choosing a large codeword forces the
original codeword density to be low, enabling robustness
against a significant number of erroneous marks.

VI. USE CASE VERIFICATION

The next logical step is to incorporate the BBC
encoder/decoder framework into a representative mod-
ulation scheme. In [1], Bahn advises against using BBC
in conjunction with any constant-envelope methods, be-
cause they allow added power to erase marks, inval-
idating the bitwise-OR assumption. That is, noise or
jamming could theoretically remove a mark. Therefore,
we selected on-off-keying (OOK) selected for an initial
test-case (Appendices C.3-C.4).

The OOK codec and modulation/demodulation pro-
cess was relatively straightforward and uses bitwise
modulation of a cosine carrier. For simplicity’s sake,
we saved the modulator and demodulator as hierarchical
blocks. Note that the BBC codeword is modulated, not
the individual messages.

In order to assess the performance of the BBC OOK
implementation, the transmission time was compared
with an OOK simulation containing no BBC blocks and
using the OOK decoder hier block to transmit a 220 bit
codeword. The difference in performance between the
two execution times was negligible, providing reason-
able confirmation of the codec’s efficiency. In fact, the
decoder run time was approximately 20ms, a negligible
portion of the flowgraph run time.

One possible use case of the BBC codec is to facilitate
key (or key parameter) sharing for another communica-

tions protocol that may be more secure and higher band-
width, in the presence of jamming or noise. Therefore,
in the flowgraph contained in C.5, frequency hopping
parameters are passed through the BBC OOK transmitter
and the output commands the FHSS hop sequence. In
this simple case, two frequencies are sent in a single
codeword, but, with a sufficiently large codeword, a large
number of frequencies could be passed – essentially
constituting a hop table. This flowgraph provides a proof-
of-concept for a very real use case incorporating BBC
communications.

VII. CONCLUSIONS AND FUTURE WORK

More work is needed to develop the robustness of
and specify the use-cases for BBC. First, there are
theoretical performance upgrades to the base algorithm.
These include multimark BBC, codeword detection, and
automatic gain control [3]. Multimark BBC reduces
the number of hallucinations in a decoded packet by
requiring each substring to have more than 1 associated
mark. This comes at a cost, though: the addition of
more marks may force the receiving decoder beyond
the 50% packet density threshold. Codeword detection
would enable BBC packet lengths to be greater than
the selected codeword length; this is a necessary step to
implement the encoder and decoder on separate clocks.
Finally, automatic gain control would allow a receiver
with a BBC decoder to operate in noisier environments.
By adjusting the power threshold that separates the 0
and 1 symbols, the decoder could ensure that it remains
below the 50% packet density threshold.

Second, statistical modeling would help specify the
BBC use case. Predicted performance metrics would in-
form message, codeword, and checksum length selection
for variable data-rates and expected jamming/noise pow-
ers. Specific to the encoder, these metrics include code-
word density and overlap count, as functions of code-
word and message lengths. For the decoder, they include
expected packet density and decode time-complexity, as
functions of codeword and message lengths and expected
channel noise (Note that the ratio of message length to
codeword length is a useful approximation for packet
density but technically is incorrect due to mark overlaps).

Finally, rigorous and thorough testing of BBC under
diverse noise and jamming strategies must be conducted
to prove the algorithm’s worth in any real-world use case.
Reducing the probability of mark-deletion necessarily
increases the probability that an erroneous mark is added,
and the bit-error probabilities for BBC with OOK or
other modulation strategies have not been been tested.

Shortly, an OOT module will be released via github/C-
GRAN, BBC will available for widespread use and
development.

GRCon 2022

REFERENCES

[1] W. Bahn, “Concurrent code spread spectrum: Theory and perfor-
mance analysis of jam resistant communication without shared
secrets,” 2012.

[2] C. Pöpper, M. Strasser, and S. Čapkun, “Jamming-resistant broad-
cast communication without shared keys,” 08 2009.

[3] W. L. Bahn, L. C. Baird, and M. D. Collins, “Jam resistant
communications without shared secrets,” 4 2008.

[4] L. Baird, M. Carlisle, W. Bahn, and E. Smith, “The glowworm
hash: Increased speed and security for bbc unkeyed jam resis-
tance,” 12 2012.

[5] Gnuradio, “Embedded python block - cannot make variable
input/output length – issue #4196 – gnuradio/gnuradio.” [Online].
Available: https://github.com/gnuradio/gnuradio/issues/4196

[6] L. Baird and W. Bahn, “Security analysis of bbc coding,” 12 2008.

https://github.com/gnuradio/gnuradio/issues/4196

GRCon 2022

APPENDIX A
BBC PYTHON CODE

A.1 Codec Class

1 class Codec:
2 # The codec is comprised of an encoder and decoder, with an associated message/codeword pair
3 def __init__(self, MSG_LEN, COD_LEN, CHK_LEN):
4 self.MSG_LEN = MSG_LEN
5 self.COD_LEN = COD_LEN
6 self.CHK_LEN = CHK_LEN
7 self.encoder = Encoder(self.MSG_LEN, self.COD_LEN, self.CHK_LEN)
8 self.decoder = Decoder(self.MSG_LEN, self.COD_LEN, self.CHK_LEN)
9

10 # Resulting functionality should be "mycodec.encode(<message as a string>)"
11 def bbc_encode(self, message):
12 self.encoder = Encoder(self.MSG_LEN, self.COD_LEN, self.CHK_LEN)
13 return self.encoder.encode(message)
14
15 # Resulting functionality should be "mycodec.decode(bytearray1)"
16 def bbc_decode(self, codeword):
17 self.decoder = Decoder(self.MSG_LEN, self.COD_LEN, self.CHK_LEN)
18 return self.decoder.decode(codeword)

A.2 Encoder Class

1 import glowworm.py as gw
2
3 class Encoder:
4 def __init__(self, MSG_LEN, COD_LEN, CHK_LEN):
5 self.shift_register = self.init_shift_register()
6 self.MSG_LEN = MSG_LEN
7 self.COD_LEN = COD_LEN
8 self.CHK_LEN = CHK_LEN
9

10 # Create a shift register using Glowworm
11 def init_shift_register(self):
12 shift_register = [0 for i in range(32)]
13 gw.init(shift_register)
14 return (shift_register)
15
16 # Force message to be correct length of bytes in ASCII
17 def parse_input(self, input):
18 input = input.encode(encoding="ASCII")
19 message = bytearray(int(self.MSG_LEN/8))
20 memoryview(message)[0:(len(input))] = input
21 return message
22
23 # Encode a message using the BBC algorithm
24 def encode(self, input):
25 message = self.parse_input(input)
26 codeword = bytearray(int(self.COD_LEN/8))
27 for i in range(self.MSG_LEN):
28 # ASCII byte to be encoded
29 element = memoryview(message)[int((i-i%8)/8)]
30 bit = ((element) >> (i%8)) & 0b1
31 # Extract bit from Byte
32 mark_loc = gw.add_bit(bit, self.shift_register) % self.COD_LEN
33 # Mark location from glowworm
34 memoryview(codeword)[int((mark_loc-mark_loc%8)/8)] |= 1<<(mark_loc%8)
35 return(codeword)

GRCon 2022

A.3 Decoder Class

1 from math import ceil
2 import glowworm.py as gw
3
4 class Decoder:
5 # Store configuration parameters as static variables
6 def __init__(self, MSG_LEN, COD_LEN, CHK_LEN):
7 # <Constructor here>
8
9

10 # Allocate memory for and initialize the shift register
11 def init_shift_register(self):
12 shift_register = [0 for i in range(32)]
13 gw.init(shift_register)
14 return (shift_register)
15
16 # Use novel iterative approach to decoding a packet
17 def decode(self, packet):
18
19 # Initialize variables
20 self.message_list = []
21 message = bytearray(ceil((self.MSG_LEN + self.CHK_LEN)/8))
22
23 while True:
24 # Find the proposed bit from previous execution, or a 0 if initial iteration
25 prop_bit = (memoryview(message)[int((self.n - self.n%8)/8)]>>(self.n%8)) & 0b1
26
27 # Find the corresponding mark location from glowworm
28 val = gw.add_bit(prop_bit, self.shift_register) % (self.COD_LEN)
29
30 # Logical AND to determine if present in packet/codeword
31 bit = (memoryview(packet)[int((val-val%8)/8)]>>(val%8)) & 0b1
32
33 # If the mark is present, explore
34 if bit==1:
35 # Message is complete, write to buffer
36 if self.n == (self.MSG_LEN + self.CHK_LEN - 1):
37 self.message_list.append(bytes(memoryview(message)\
38 [0:self.MSG_LEN - 1 - self.CHK_LEN]))
39 bit = 0
40
41 # Message is incomplete, continue assuming next bit is 0
42 elif self.n < (self.MSG_LEN + self.CHK_LEN - 1):
43 self.n += 1
44 memoryview(message)[int((self.n - self.n%8)/8)] &= (0xff ^ (1<<self.n%8))
45 continue
46
47 # If the mark is not present, backtrace
48 if bit!=1:
49 # Delete checksum bits
50 while self.n >= self.MSG_LEN:
51 gw.del_bit(0, self.shift_register)
52 self.n -= 1
53
54 # Delete 1’s until a 0 is encountered
55 while self.n >=0 and (((memoryview(message)[int((self.n - self.n%8)/8)]>>\
56 (self.n%8)) & 0b1)==1):
57 gw.del_bit(1, self.shift_register)
58 memoryview(message)[int((self.n - self.n%8)/8)] &= (0xff ^ (1<<self.n%8))
59 self.n -= 1
60
61 # Packet is fully decoded, proceed with next packet
62 if self.n < 0:
63 break
64
65 # Move over to the 1 branch of current search
66 else:
67 gw.del_bit(0, self.shift_register)
68 memoryview(message)[int((self.n - self.n%8)/8)] |= (1<<self.n%8)
69
70 return self.message_list

GRCon 2022

APPENDIX B
GNU RADIO IMPLEMENTATION

B.1 Top-Level Chart

B.2 GNU Radio Encoder Block Class

1 from gnuradio import gr
2 import numpy as np
3
4 class blk(gr.sync_block):
5
6 # Configure port sizes
7 def __init__(self, MESSAGE_LENGTH=2**7, CODEWORD_LENGTH=2**17):
8 self.msg_len = MESSAGE_LENGTH
9 self.cod_len = CODEWORD_LENGTH

10
11 # Use a synchronous block
12 gr.sync_block.__init__(self,
13 name=’BBC Encoder’,
14 in_sig =[(np.byte, self.msg_len)],
15 out_sig=[(np.byte, self.cod_len)])
16
17 # Convert from Bytes to bits
18 self.myEncoder = Encoder(self.msg_len*8, self.cod_len*8)
19
20 # Use BBC to encode the incoming message vectors
21 def work(self, input_items, output_items):
22 result = self.myEncoder.encode(input_items[0][:])
23 try:
24 output_items[0][:] = result
25 return len(output_items[0])
26 except:
27 raise RuntimeError("BBC Encoder output assignment failed")

GRCon 2022

B.3 GNU Radio Decoder Block Class

1 from gnuradio import gr
2 import numpy as np
3
4
5 class blk(gr.interp_block):
6
7 # Configure port sizes
8 def __init__(self, MESSAGE_LENGTH=2**7, CODEWORD_LENGTH=2**17):
9 self.msg_len = MESSAGE_LENGTH

10 self.cod_len = CODEWORD_LENGTH
11
12 # Use an interpolation block
13 gr.sync_block.__init__(self,
14 name=’BBC Decoder’,
15 in_sig =[(np.byte, self.cod_len)],
16 out_sig=[(np.byte, self.msg_len)])
17
18 # Initialize the interpolation rate to synchronous case
19 self.set_relative_rate(1)
20
21 # Convert from Bytes to bits
22 self.myDecoder = Decoder(self.msg_len*8, self.cod_len*8, DEFAULT_CHECKSUM)
23
24
25 # Use BBC to decode the incoming codeword vectors
26 def work(self, input_items, output_items):
27
28 # Pull packet from the queue
29 packet = input_items[0][:][0]
30
31 # Check for a nonzero codeword
32 if sum(packet >0):
33
34 result = self.myDecoder.decode(packet)
35 interp = len(result)
36
37 #Check for a decoded message
38 if interp > 0:
39
40 # Definre the number of outputs
41 self.set_relative_rate(interp)
42
43 # Assign outputs iteratively
44 for j in range(interp):
45 try:
46 output_items[0][j][:] = result[j]
47 except:
48 raise RuntimeError("BBC Encoder output assignment failed")
49 return len(output_items)

GRCon 2022

APPENDIX C
GNU RADIO BBC CHANNEL SIMULATION

C.1 Multi-Codeword BBC

C.2 Noise Injection

GRCon 2022

C.3 BBC with On-Off Keying

C.4 On-Off Keying Modulator and Demodulator

GRCon 2022

C.5 BBC-FHSS Seeding

	Background
	BBC Algorithm
	The Glowworm Hash
	Implementation of BBC in Python
	Implementation of BBC in GNU Radio
	Use Case Verification
	Conclusions and Future Work
	References
	Appendix A: BBC Python Code
	Codec Class
	Encoder Class
	Decoder Class

	Appendix B: GNU Radio Implementation
	Top-Level Chart
	GNU Radio Encoder Block Class
	GNU Radio Decoder Block Class

	Appendix C: GNU Radio BBC Channel Simulation
	Multi-Codeword BBC
	Noise Injection
	BBC with On-Off Keying
	On-Off Keying Modulator and Demodulator
	BBC-FHSS Seeding

