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Abstract—In this paper, we consider the development and
implementation of a faster-than-Nyquist (FTN) signaling system
using a binary phase-shift keying modulation (BPSK). We
present a review of the theory and pertinent historical works
related to the FTN signaling scheme, as well as practical work
carried out in a laboratory environment. The popular open-
source, and radio-specific, signal processing application GNU
Radio was used to develop transmitter and receiver architec-
tures. These architectures were then deployed for execution on
various software-defined radio (SDR) hardware. We have evalu-
ated the minimum Euclidean distance (MED) and probabilistic
data association (PDA) estimators and performance in terms
of bit-error-rate (BER) are compared. We observed for higher
noise variance a BER of 10−3 is achieved for τ = 0.8 when
using MED and τ = 0.9 when using PDA algorithm.

Index Terms—Faster-than-Nyquist (FTN) signaling, pulse
shaping, intersymbol interference (ISI), Mazo limit, partial
response, self-interference, sequence estimation.

I. INTRODUCTION

Since the seminal works of [1]–[3] showed that it would
be possible to exceed the Nyquist signaling rate while
maintaining an equivalent bit-error-rate (BER) performance,
researchers have proposed many novel and creative methods
for the implementation of a faster-than-Nyquist (FTN) sys-
tem. A large majority of these works have concentrated on
the development of algorithms for mitigating or undoing the
effects of intentionally introduced inter-symbol interference
(ISI). Furthermore, many of the works have relied purely on
results produced from simulated models of FTN signaling.
The reason for this being that these methods have very high
computational complexity and would introduce far to great of
an overhead cost on hardware, for example the turbo encoded
and trellis based transceivers proposed in [4], [5].

However, there have been some works that have dis-
cussed and even attempted implementations of both FTN
transmitters and receivers. These implementations have pre-
dominately been concentrated in the areas of non-orthogonal
frequency domain multiplexing (NOFDM) and multi-carrier
systems.

With regards to an FTN transmitter architecture, [6] pro-
poses a look up table (LUT) based transmitter architecture
for an OFDM system. The LUT implements a mapping of
offset-QAM symbols to set of pre-computed optimum FTN

symbols for input into a traditional OFDM transmitter. In [7]
the proposed FTN mapping system is actually implemented
targeting a field-programmable gate array (FPGA) device.

In [8] yet another transmitter architecture is implemented
on FPGA but for a so called spectrally efficient frequency
division multiplexed (SEFDM) system, which intentionally
overlaps carriers in OFDM. The SEFDM signal generated
by hardware is compared to simulated models. The proposed
FTN mapper system in [7] is combined with an FTN receiver
for a full transceiver system on FPGA hardware in [9].
The transceiver has the ability to default to standard OFDM
signaling depending on the quality of the channel. Follow up
papers for this transceiver system [10], [11] make improve-
ments in the very-large-scale integration (VLSI) parameters
of memory, area and power consumption.

To the best of our knowledge, the works discussed above
are the only attempts made at hardware based implementation
of an FTN communication system. All these works use
FPGAs and target more advanced communications schemes.
In this work, we seek to utilize existing software defined
radio (SDR) hardware and the digital communications tool-
box GNU Radio to implement a FTN transceiver based
on a low-complexity probabilistic data association algorithm
(PDA) [12]. The transceiver intentionally employs a basic
binary phase-shift keying (BPSK) scheme with root-raised
cosine (RRC) pulse shaping filters. We have evaluated the
minimum Euclidean distance (MED) and PDA estimators and
performance in terms of bit-error-rate (BER) are compared.
We observed for higher noise variance a BER of 10−3 is
achieved for τ = 0.8 when using MED and τ = 0.9 when
using PDA algorithm.

The rest of the paper is organized as follows. In Section II,
we present the signal model. Then in Section III, we present
our GNU radio implementation. In Section IV, we present
our experimental and simulation results before presenting our
conclusion in Section V.

II. SIGNAL MODEL

The generic architecture for a pulse amplitude modulated
(PAM) communication system is shown in Fig. 1. The upper
half of Fig. 1 is the transmitter chain and the lower section
represents the receiver chain.



Fig. 1: Generic transmitter and receiver architecture for PAM
signals.

In FTN signaling a new parameter τ is introduced into the
PAM signal s(t),

s(t) =
∑
n

angT (t− nτT ). (1)

The parameter τ can be varied in the range (0, 1], when τ = 1
we obtain standard, ISI free, Nyquist signaling and when
τ < 1 faster-than-Nyquist signaling occurs. The parameter
τ behaves as compression factor, forcing the pulse shaped
symbols to come earlier than they normally would. Let the
incoming data have a symbol rate Fd or symbol interval Td =
1
Fd

and let the sampling rate of the transmitter filter gT (t) be
Fs with sample period Ts = 1

Fs
, where Fs > Fd. Now also

define the samples-per-symbol (λ) to be,

λ =
Fs

Fd
. (2)

Assuming N input symbols and using the information de-
fined above, we can describe the input symbols to the system
using the following discrete equation as

N∑
n=0

anδ(t− nTd). (3)

Fig. 2: A stream of BPSK symbols. The original data bits
were [1, 0, 1, 1, 0, 1], using the formula 2∗bit−1 the bits are
mapped to BPSK symbols [1,−1, 1, 1,−1, 1].

Fig. 2 shows an example of a symbol stream for N = 6
BPSK symbols that is described in (3). Note that in BPSK
there is a one-to-one ratio of bits to symbols.

In addition, discretizing gT (t) using sampling rate Fs to
produce M total filter samples of some pulse shape (e.g.,
gT (t) = p(t)), describe the transmitter filter as

M∑
m=0

gmδ(t−mTs), (4)

where gm sequence are sampled values of the transmitter
filter gT (t). Fig. 3 shows an example of the gm sampled
values for the the RRC pulse shape.

Fig. 3: Sampled values of a root-raised cosine (RRC) trans-
mission filter with samples-per-symbols λ = 10, a filter delay
of 4 symbols, and excess bandwidth α = 0.3.

Using (3) and (4) the output of the transmitter chain can be
described in discrete form using convolution as follows,

s(t) =

N∑
n=0

anδ(t− nTd) ∗
M∑

m=0

gmδ(t−mTs) (5)

=

N∑
n=0

M∑
m=0

angmδ(t− nTd −mTs). (6)

Where (6) follows from the sifting property of the dirac delta
function δ(t). From (2) we can re-write Td in terms of Ts as

Fs = λFd (7)
1

Ts
= λ

1

Td
(8)

Td = λTs (9)

This allows us to write s(t) as

s(t) =

N∑
n=0

M∑
m=0

angmδ(t− (nλ−m)Ts). (10)

Expression in (10) describes the output of the transmitter
filter in Fig. 1 for normal Nyquist signaling, we can see an
up-sampling of the input symbols occurs due to the nλ term,
where n indexes the symbol stream. As an example, Fig. 4



shows the BPSK stream from Fig. 2 up-sampled by λ = 10
along with RRC shaped symbols placed at these locations.
These RRC waveforms will eventually be summed together
to produce the final waveform for transmission, which is
shown in Fig. 5.

Fig. 4: RRC shaped symbol stream. The original BPSK
symbol stream can be seen here but has been up-sampled
by λ = 10. Up-sampling introduces λ− 1 zeros in between
symbols.

To alter (10) to be reflective of FTN signaling, simply realize
that (3) should be changed to include τ , forcing each symbol
to come at an earlier time as follows,

N∑
n=0

anδ(t− nτTd). (11)

Therefore, the FTN transmission signal sFTN (t) can now be
expressed as

sFTN (t) =

N∑
n=0

M∑
m=0

angmδ(t− (nτλ−m)Ts). (12)

Fig. 5: Cumulative sum of the RRC shaped symbols, pro-
duces the final waveform, which will be transmitted across
the channel.

We can see in (12) how τ impacts the original Nyquist
signal (10) by effectively reducing the up-sampling rate, λ,
of the symbol stream. An example of this can be seen in

Fig. 6 for the extreme case when τ = 0.2, causing the RRC
shaped symbols to be packed closer together. The ultimate
effect of this on the transmission waveform, as shown in
Fig. 7. Comparing Fig. 7 to the one in Fig. 5, we can see
that the final transmission waveform has become compressed,
representing more data in a shorter period of time. Also note
that in Fig. 6, it is obvious how ISI is introduced with lower
values of τ since multiple RRC symbols overlap with each
other at non-null regions.

Fig. 6: RRC shaped symbol stream. The original symbol
stream has been up-sampled by τλ = 2.

Fig. 7: Cumulative sum of the RRC shaped symbols produces
the final waveform which will be transmitted across the
channel. Note how compressed the waveform has become
for τ = 0.2.

Finally, to showcase a better idea of the effect of τ on the
final transmission waveform, Fig. 8 shows the transmission
waveform for a random sequence of N = 50 BPSK symbols
for several values of τ . It can be observed how τ behaves as
a compression factor from these waveforms. For example,
refering to the third plot in Fig. 8, when τ = 0.6 the
waveform’s extent in time has nearly been halved compared
to when τ = 1.0. Additionally, note how severely distorted
the waveforms become as τ decreases compared to when
τ = 1.0, this distortion is the result of ISI.



Fig. 8: Samples of the final transmission waveform for N = 50 random BPSK symbols and several values of τ . RRC pulse
shaping filter with λ = 10, delay of 4 symbols, and α = 0.3 was used as the transmission filter.

III. GNU RADIO IMPLEMENTATION

The implementation of the FTN BPSK transceiver was
carried out partially in GNU Radio (version 3.8.2.0) and
in MATLAB. The SDR used was National Instruments (NI)
USRP 2920. The down-sampling of the received waveform
and the PDA and MED demodulation algorithms are imple-
mented in MATLAB. This corresponds to the very last steps
of the receiver chain in Fig. 1 (i.e., the synchronize/sample
and symbols-to-bits blocks.)

Nearly all variables and parameters for blocks in the GNU
Radio flow graphs of both the transmitter and receiver are
controlled through a single Python script. Hence, all of the
variables, the generated random data sequences, preambles,
and file paths are all defined in the script and the GNU Radio
blocks reference those values from the script. The script is
imported into the GNU Radio environment using the Python
module block.

A. Transmitter

The transmitter flowchart in Fig. 9 begins with a vector
source block set to produce 10 packets of 10, 064 bits each.
The first 64 bits of each packet is a known sequence called the

preamble. The preamble sequence in hexadecimal is defined
as [0xAC,0xDD,0xA4,0xE2,0xF2,0x8C,0x20,0xFC].

The data produced by the vector source is in a byte format,
and so the packed to unpacked block splits every byte it
receives into 8 bits. The chunks to symbols block then maps
every bit received into the appropriate BPSK symbol 0 →
−1 and 1 → 1. The symbols then are convolved with the
root raised cosine transmission filter. The RRC filter is setup
such that it is an interpolating filter with interpolation factor
set to truncate(τλ) (e.g., if τ = 0.8 and λ = 20 then
interpolate/up-sample by 16). Note also that λ = 20, α = 0.3,
and the span of the filter (which is equal to two times the
filter’s symbol delay) is 8 (i.e., a 4 symbol delay).

Since BPSK symbols have zero imaginary component, the
samples coming out of the RRC block are all real floating-
point numbers, but in general radios will require complex
input. Hence, a float to complex block is used. A stream
mux block inserts a radio silence period in between the
transmission of each packet. The stream mux block will take
the appropriate amount of samples from the RRC symbol
stream for one full packet and then it will take 20, 000
samples from a null source block (zero valued samples) to
simulate the radio silence in between packets. The rational



resampler block up-samples the final signal to match an
appropriate sampling rate required by the hardware (UHD:
USRP block). Note that the BPSK data sequence generated
from the chunks to symbols block is saved to a file.

B. Receiver

The receiver processing chain in Fig. 10 begins with the
UHD hardware block in GNU Radio. The complex samples
received from the radio are first down-sampled by the rational
resampler block at the same rate as they were up-sampled in
the transmitter. The sampled data is then passed through a
low-pass filter with a cutoff frequency set to the expected
symbol rate. A separate processing chain the splits off
from the rational resampler block that calculates the squared
average magnitude of the samples from the receiver, this
chain is meant to calculate the energy of the received signal.
This energy data is written to a file for further analysis.

Once the samples have made their way through the low-
pass filter, they are fed into another RRC filter. The RRC
filter here at the receiver contains the same exact filter taps
as in the transmitter, hence it is a matched filter. After
matched filtering, the energy is re-measured (matched filter-
ing should theoretically have a significant effect on SNR.)
The samples output from the matched filter are written to
a file. This matched filtered file along with several other
files recorded throughout the Tx and Rx flowcharts are read
into MATLAB. Within MATLAB the known preamble is
used to discover the starting locations of each transmitted
packet using cross-correlation. The packets are segmented
and then down-sampled at rate determined by τλ. This down-
sampled data should represent the original symbol sequence
transmitted, hence it is handed off to both the PDA and MED
demodulation algorithms to produce data bits.

As a final note on the receiver, if it is desired such that two
different radios are used, one for transmission and another for
reception, then a modification must be made. A frequency
lock loop (FLL) band edge block must be inserted at the
very front end of receiver chain. The FLL band edge block
will perform coarse frequency adjustment to account for the
difference in oscillators due to the use of two separate radios.

IV. EXPERIMENTAL RESULTS

In this section, we discuss the experimental setup and
present the results. The testbed of the experimental setup
is shown in Fig. 11. The SDRs used for testing were the NI
USRP 2920 and the NI USRP X310. Additionally a simula-
tion was conducted within GNU Radio where the transmitter
and receiver were connected directly to each other using a
channel model block. The channel model block was set to
behave as an ideal channel (i.e., zero noise, no mulitpath, etc.)
The parameter τ was varied from 1.0 to 0.5 in 0.1 increments
in all tests. Ten packets, each containing 10000 random bits,
were transmitted for each value of τ . Outcomes produced
from these experiments were not necessarily as expected.
It was anticipated the PDA algorithm would have superior

performance over MED since it accounts for and corrects
issues related to ISI.

Fig. 11: Experimental setup of the NI USRP 2920.

PDA is very sensitive to noise. So two different simulations
were conducted using the ideal channel, one where the
noise variance given to the PDA algorithm was fixed to
σ2 = 0.0158 and another where the noise variance was set to
the extremely low value of σ2 = 1.0×10−10. This extremely
low value was chosen since theoretically in an ideal channel
the noise variance would be zero.

Fig. 12: Demodulation results for both PDA and MED with
fixed noise variance of σ2 = 0.0158. These results were
produced by transmitting through a simulated ideal channel.

The results for both these tests are shown in Figs. 12 and
13. In both these simulations it can be seen that no errors
are made by either algorithm when τ = 1.0. In Fig. 13 both
algorithms seem to be performing similarly with no errors
until τ = 0.8.

In Fig. 12 MED outperforms PDA detection scheme in
terms of packing factor τ . MED achieves a BER of 10−3

with only τ = 0.8 whereas PDA τ = 0.9.
After the simulations, a test was performed using the

USRP 2920 in a wireless loop-back configuration to transmit
the FTN signals for the same values of the τ given above, as
shown in Fig. 14. Here PDA makes no errors until τ = 0.8,
where it begins to significantly under perform compared to
MED. A final test was conducted using the more advanced



Fig. 9: GNU Radio Transmitter flowchart.

Fig. 10: GNU Radio Receiver flowchart.

SDR the USRP X310. The results of which are shown in
Fig. 15. As we can see the performance of PDA and MED
are fairly comparable. PDA achieves a BER of 10−3 with
τ = 0.86 while MED τ = 0.83. For τ = 0.7 and τ = 0.9
they have near identical performance in terms of BER.

Fig. 13: Demodulation results for both PDA and MED with
fixed noise variance of σ2 = 1.0× 10−10.

Fig. 14: Results for PDA vs MED using the USRP 2920.



Fig. 15: Results for PDA vs. MED using the USRP X310.

V. CONCLUSION

In this paper, we have implemented a faster-than-Nyquist
(FTN) communication system utilizing software defined ra-
dios (SDR). Moreover, we have applied two estimation
schemes minimum Euclidean distance (MED) and proba-
bilistic data association (PDA). Specifically, we have imple-
mented the binary phase-shift keying (BPSK) FTN signaling
over the additive white Gaussian noise (AWGN). The FTN
communication system was implemented with GNU Radio
and allows a user to modify the FTN compression factor τ .
It was shown that in order to realize a FTN system the min-
imum modifications needed were to change the upsampling
factor into the RRC filter on the transmitter side and to switch
out the standard minimum distance demodulator at the end
of the receiver chain for a FTN specific demodulator (e.g.,
PDA). The estimation performance of the Euclidean distance
and PDA based schemes are evaluated in terms of bit-error-
rate (BER). We observed for higher noise variance to achieve
a BER of 10−3 with τ = 0.8 when using MED and τ = 0.9
when using PDA.

For future work, we are investigating implementations of
FTN signaling for other higher constellations such as quadra-
ture phase-shift keying (QPSK) and quadrature amplitude
modulation (QAM). Additional investigations may include
development of GNU Radio flow graphs for NOFDM sig-
naling, extending the core idea of non-orthogonal signaling
in FTN to the frequency domain by allowing inter-carrier
interference (ICI) in OFDM. Yet another potential flow graph
implementation may even combine time domain FTN and
frequency domain FTN.
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