
Abstract

FISSURE (Frequency Independent SDR-based
Signal Understanding and Reverse Engineering) is
a newly released open-source RF and reverse
engineering framework designed for all skill levels
with hooks for signal detection and classification,
protocol discovery, attack execution, IQ
manipulation, vulnerability analysis, automation,
and AI/ML. This paper introduces the principles
behind FISSURE and provides a synopsis of its
components. Additionally, the extent of GNU
Radio integration within the framework is detailed
along with a projection of future directions for the
project.

1. Introduction

RF devices are everywhere and provide access to cyber
physical systems, connecting the digital world to the
physical environment in the form of: vehicles, unmanned
aerial systems, communications networks, industrial control
systems, medical devices, weapon systems, etc. In today’s
world the “smart” label means connected and these
connections reveal additional attack vectors. This
proliferation of new potential pathways and exposure to
vulnerabilities from upgrades to various technologies is
producing an ever-growing demand for combined RF and
Cyber solutions across wide-ranging applications.

There is a common vulnerability analysis process for RF-
enabled systems that cybersecurity experts repeat frequently
when working with new devices and RF protocols. This
includes detecting the presence of RF energy, understanding
the characteristics of the signal, collecting and analyzing
samples, developing transmit and/or injection techniques,
crafting custom payloads or messages, and investigating the
effects complex payloads can impose on targets. There are a
series of challenges in this process which can provide a
steep learning curve for most people – whether it is battling
issues with software dependencies, software updates,
hardware compatibility, configuration, or re-creating past
work.

FISSURE is an open-source RF and reverse engineering
framework designed to speed up the characterization of

signals and the identification of vulnerabilities in RF
protocols, waveforms, and devices. It is a solution to
address many of the challenges that come from working
with known and unknown signals/protocols, and also serves
as a means to publicly consolidate existing RF solutions that
get repeated many times over by researchers, developers,
and hobbyists.

FISSURE has grown considerably from its beginnings as a
prototype which demonstrated aspects of a meticulously
planned out modular framework that enables rapid RF
device assessment while simplifying development and
integration of third-party tools and hardware. Then
following years of investment by AIS through internal
research and development, the prototype grew into an in-
house laboratory tool that acted as a workflow enabler with
a scripted installation, tool storage, library development, and
additional hardware support. Now, as an open-source
project, FISSURE consolidates all-things RF in the form of
software modules, radios, protocol information, signal data,
scripts, flow graphs, reference material, and third-party
tools. It offers a means to prototype techniques and acts as a
standardized interface to interact with other open-source
tools and one-off solutions.

FISSURE is intended for both experts and beginners. It
offers an out-of-the-box, pain-free software installer built
with transparency. It is written mostly in Python and PyQt
with support for legacy systems. Users can edit the pieces
on their own to expand functionality and use it in everyday
testing. Helpful guides exist to make it easier to interact
with the framework and understand the different RF
technologies contained therein. FISSURE seeks to draw its
strength from the community through feedback and
contributions and have a future role in education, research,
and improving everyday work.

1.1. Principles

For an RF framework to be truly valuable it needs to
encompass several technologies and capabilities and always
be in a state of expansion. It must be flexible enough to
support new features and the rapid integration of the latest
tools and algorithms to keep up with the pace of innovation.
FISSURE will be constantly evolving to assist as many
people as possible, but it will also try to adhere to the

FISSURE: The RF Framework for Everyone

Christopher Poore poorec@ainfosec.com
Assured Information Security, Inc., 153 Brooks Road, Rome, NY 13441 USA

founding principles that make it technically sound and
valuable to users.

The core technical principles of FISSURE are to help speed
up signal characterization and help with the identification of
vulnerabilities in protocols and devices. That concept is
very wide-ranging and it allows for simultaneous maturation
of other surrounding topics. For example, FISSURE can be
a testbed for AI/ML and automation in several technical
areas including signal detection, feature extraction,
protocol/emitter classification, demodulation, pattern
recognition, data analysis, batch processing, vulnerability
analysis, and more. However, this comes with the
understanding that the technical foundation needs to exist
before automation can have a larger role.

The hardware considerations for FISSURE must allow
accessibility for the average user while having the potential
for expansion to improve performance. This means utilizing
commercial software-defined radios (SDRs) and other
commonplace hardware, but also maintaining the ability to
support custom radios and standards such as VITA 49. The
ability to pass data and commands over a network and
between software components is essential to offload
processing, operate out of more than one geographic
location, and to support additional platforms and hardware.

FISSURE is meant to be a framework for everyone and that
requires it to have footholds in both simplicity and
complexity. The simple aspects are the reliable installation,
instant access to commonly performed operations, easily
modified code, helpful visualizations, support for the latest
and legacy, examples and guides on how to do things, and
the consolidation of tools and techniques. The complex
aspects are the development of cutting-edge techniques and
the integration of advanced solutions. The framework will
never fully be complete as there will always be pieces that
can be improved or added over time.

1.2. Comparisons to Similar Products

Signal characterization and vulnerability identification
challenges have been around for a long time. Presently,
there are a large number of concurrent solutions being
developed by an unimaginable number of entities spread
across the globe to address modern challenges. FISSURE
may share several technical components found in such
solutions but it also contains a unique combination of
elements that set it apart.

The biggest selling point that distinguishes FISSURE from
other very capable products is that FISSURE is free and
open. It supports modifications to the source code and lets
users work with affordable commercial off-the-shelf
(COTS) hardware. It can also render an instant sense of
familiarity by providing quick access to third-party tools

and allow users to explore software for similar technologies
of interest to which they may have previously been
unawares. FISSURE gets a lot of its power by not
reinventing the wheel and supports the use of existing
applications where possible.

FISSURE is not a virtual machine (VM) or a dedicated
operating system. It contains all the commands for installing
a large amount of third-party tools tested against multiple
Linux operating systems. While FISSURE avoids some of
the hardware/processing limitations and other headaches
associated with VMs, it does not create a sandbox during
installation either. As a result, there can be compatibility
risks with existing software already installed on a machine
which may cause unexpected errors. However, the installer
is a nearly pain-free method for staging computers and can
be easily modified to add or subtract software items.

The extreme amount of flexibility and modularity that
FISSURE contains allows it to encompass such a wide
variety of applications. This variety along with the Python
and GNU Radio code base make it a great option for
introducing users to several programming and RF concepts.
The user dashboard with its visualizations and lessons
reduce the otherwise steep learning curve. The project also
has the added bonus of being managed by a company that
has developers working on the forefront of cybersecurity
and in touch with a number of technical and professional
communities.

2. Framework Components and Features

FISSURE is comprised of dedicated Python components
communicating to each other over a central hub as shown in
Figure 1 (the central hub is nicknamed “HIPRFISR”
because it is not a real hypervisor in the traditional sense).
The primary means for passing messages between
components is performed via the open-source universal
messaging library ZeroMQ (ZMQ). Messages can be
assigned source identifiers and categories such as heartbeats,
status, or commands. Each message has a YAML schema
that assigns the number of expected parameters and the
names of callback functions that get executed upon
reception. Each component establishes a ZMQ DEALER-
DEALER pair to the central hub for issuing/receiving
commands. Additionally, each component has a ZMQ PUB
socket and any number of SUB sockets for issuing/receiving
one-to-many status messages.

The central hub receives commands from the user
dashboard, coordinates actions to the other components,
manages automation, and contains functions for editing the
main library. Additional dedicated software components that
perform new features can easily be added to the framework
if 1) there are clear inputs and outputs that can be defined
and 2) the possibility exists to create a simple wrapper that

manages the ZMQ connections.

The user dashboard consists of several tabs, menu items,
and buttons to quickly assign hardware (SDRs, Wi-Fi
adapters, IoT analyzers, etc.) to a particular functionality.
Interaction with the user dashboard is the singular means to
control the functionality within the tabs and to initiate
commands to each component. Within the dashboard, there
are menu items for the following: launching standalone
GNU Radio flow graphs that are not tied to the rest of the
software in the framework; quickly accessing third-party
and online tools organized by protocol or application;
lessons for learning more about relevant technologies; and
help pages for operation, development, protocol reference
material, calculators, and hardware instructions.

The dashboard has utilities for modifying the FISSURE
library (YAML) – which contains protocol definitions, flow
graph information, and signal archive metadata. There are
utilities for browsing; searching; uploading images; and
adding/removing modulation types, packet types, signals of
interest, statistics, demodulation flow graphs, and attacks.
The library is constructed to easily support the addition of
individual plugins or proprietary add-ons to segregate data
sensitive features from the public repository.

2.1. Target Signal Identification

The Target Signal Identification (TSI) component is
intended to run four subcomponents: a detector, a signal
conditioner, a feature extractor, and a classifier. The purpose
of the TSI component is to detect signals of interest (SOIs),

isolate and condition signals for detailed analysis, extract
signal characteristics for protocol and/or emitter
classification, and apply user-specified AI/ML classification
techniques. The TSI component will result in additional
knowledge of the surrounding RF environment and pass
potential SOIs to the Protocol Discovery component.

As of Fall 2022, the TSI component only contains a slow-
scanning detector which reports back power, frequency, and
time values for signals above a power threshold (Figure 2).

2.2. Protocol Discovery

The Protocol Discovery component is responsible for
identifying and reversing RF protocols to help extract
meaningful data from unknown signals. It is designed to:
accept SOI information, iterate flow graphs to perform
recursive demodulation techniques, deduce protocol
methods, assign confidence levels, analyze a bitstream,
calculate cyclic redundancy check (CRC) polynomials,
create custom Wireshark dissectors, and automatically add
protocol information to the FISSURE library.

As of Fall 2022, Protocol Discovery is an entirely manual
process with no recursive demodulation techniques in place
that work towards producing a bitstream. The bit slicing
capabilities are best suited for fixed-length messages. The
data viewer can perform bit-wise operations, convert
between binary and hex, view ASCII text, and compare data
against known packet types already present in the library.
The custom Lua Wireshark dissectors are designed to
monitor for individual packet types assigned to a protocol

Figure 1: Dedicated FISSURE Components

Figure 2: TSI Wideband Detector

that are inbound on designated UDP ports (the data is
produced from demodulation flow graphs). The CRC
calculator applies common CRC algorithms to data and can
deduce certain polynomials from two messages with known
CRC values.

2.3. Attacks

The Flow Graph/Script Executor component runs flow
graphs or Python scripts to perform single-stage attacks,
multi-stage attacks, fuzzing attacks, IQ recording and
playback, live signal inspection/analysis, and transmit
playlists of signal data constructed with files downloaded
from an online archive. Attacks are organized by RF
protocol, modulation type, hardware, and type (denial of
service, jamming, sniffing/spoofing, probe attacks,
installation of malware, misuse of resources, file). While
FISSURE is intended for wireless applications, attacks can
be performed against wired application or any network
protocol in general.

Single-stage attacks can be in the form of Python2/Python3
scripts and GNU radio flow graphs with/without GUIs. The
Python script attacks require a simple header to be added to
the file that specifies the default values (Figure 3) for the
attack variables. Python scripts and flow graphs with GUIs
run as-is and do not accept updates from the dashboard. The
flow graph attacks that do not utilize GUIs can change
attack variable values before and during runtime (see GNU
Radio Integration).

Multi-stage attacks string together a series of single-stage
attacks that get run on repeat for a set duration. Fuzzing
attacks can be in the form of data field fuzzing or flow graph
variable fuzzing. Data field fuzzing allows the user to
specify a particular packet type to fuzz and choose which
fields to fuzz (sequentially or randomly) and the ranges for
each field. Messages are generated at a configurable interval
and the CRCs are automatically calculated for each new
message. Flow graph variable fuzzing allows a user to load
a flow graph and choose which variable to fuzz.

As of Fall 2022, attacks are not evenly distributed across all
possible hardware types. Certain attacks are hardware-
specific and require modification to GNU Radio blocks to
replicate intended behavior. Not all protocols have fuzzing
capabilities.

2.4. IQ Manipulation

The IQ Data tab contains several functions for working with
IQ data (Figure 4). There are live inspection flow graphs for
manual inspection; capabilities for record and playback; a
data viewer with plot, zoom, pan, save, and measure
capabilities; data modification capabilities to include:
cropping, converting between data types, appending,
applying timeslots, overlapping signals, resampling,
normalizing; and some analysis capabilities in the form of
magnitude plots, instantaneous frequency, spectrogram,
FFT, moving average filters, Morse code deciphering, and
polar plotting.

Figure 3: Single-Stage Attack Example Figure 4: IQ Manipulation

2.5. Online Signal Archive

AIS has begun storing IQ signal data to an online signal
archive located at fissure.ainfosec.com to reduce the size of
the GitHub repository and to not force extraneous amounts
of data upon users. The FISSURE library holds the metadata
for each Archive file and the values can be viewed right
from the user dashboard. The user has the ability to
download specific files of interest from the Internet with a
single click. The Archive tab contains replay capabilities
which allows users to create playlists to simulate traffic and
test systems. This is also a convenient way to test the front-
end signal components (TSI, Protocol Discovery) for
FISSURE.

2.6. Packet Crafting

Custom packet crafting capabilities exist for protocols with
packet types entered into the FISSURE library. This allows
users to browse sample messages, change field values at the
bit-level, recalculate CRC values, construct sequences of
messages, and save data to a file. The Packet Crafter tab
also includes Scapy integration for transmitting different
types of 802.11 packets while in monitor mode.

2.7. Third-Party Tools

The third-party tools installed as part of FISSURE are
mostly self-contained as menu items in the form of
standalone flow graphs, tools, and help items. There are
some GNU Radio out-of-tree modules and a few other tools
that can be found in Protocol Discovery and some attacks.
The standalone flow graphs are favorites that can be quickly
accessed and are separate from the rest of FISSURE. They
will retain their last state upon reloading FISSURE. The
tools and help menu items will launch programs; open a
terminal with example commands; or open a browser to
reference material such as maps, calculators, and databases.

2.8. Lessons

Lessons and tutorials for interacting with various RF
technologies and tools within FISSURE are provided to
users as Markdown/HTML pages. The goal is to teach new
concepts and help refresh users on how the technology
works by always having a set of steps available that can be
utilized for quick reference. This is an area that is expected
to grow as FISSURE expands its role in education and
receives feedback from the community. As of Fall 2022,
topics include: OpenBTS, Lua dissectors, Sound eXchange,
ESP boards, radiosonde tracking, RFID, data types, custom
GNU Radio blocks, TPMS, ham radio exams, and Wi-Fi
tools.

3. GNU Radio Integration

GNU Radio flow graphs are found throughout FISSURE in
the form of detection, inspection, protocol discovery,
demodulation, sniffing, recording, replay, attacks, fuzzing,
and third-party tools. They utilize data and interact with
FISSURE components in many different ways as listed
below:

• The wideband detector flow graphs launch and
then accept commands to update parameters like
frequency, sample rate, FFT size, threshold level,
and gain. They return power, frequency, and time
values periodically over the network via a ZMQ
PUB socket.

• The inspection flow graphs contain GUIs with
widgets for changing variable values within blocks
that contain callbacks. As of Fall 2022, the variable
values do not get modified before runtime so
parameters like serial number are not utilized.

• The Protocol Discovery component currently only
demodulates a limited set of protocols and packet
types. The ones that do exist produce a bitstream
that gets forwarded over the network to a circular
buffer for further analysis. These demodulation
flow graphs will act as one of the final stages in a
recursive demodulation process.

• Sniffing flow graphs tap into the demodulation
flow graphs (via streams, tagged streams, and
messages/PDUs) and pipe the data into Wireshark
for live viewing of messages and recording of
traffic sessions.

• The IQ Data tab contains recording flow graphs for
quickly saving data to a file and viewing the
contents instantly. It also has the ability to record
several files at a set interval. This is useful for
hands-free recording operations. Playback flow
graphs will replay a file a single time or on repeat.

• The archive replay flow graphs load data into a file
source and are run individually as part of a playlist
that has the option to repeat indefinitely.

• Attack flow graphs can be run with or without a
GUI. Flow graphs without GUIs can have their
variable values changed before and during runtime.

• Fuzzing flow graphs contain a special fuzzer block
that accepts the parameters from the user
dashboard and reads in the protocol information
from the FISSURE library file to adjust fields and
calculate CRC values. The output of the fuzzer
block is a message that gets updated at a regular
interval that can be fed into other
transmit/modulation blocks.

• The ability to fuzz individual GNU Radio variables
for blocks with callbacks is built into the Attacks
tab.

• Third-party flow graphs/tools are typically in the

form of standalone flow graphs and compiled
Python files that get run from a terminal.

Running flow graphs with and without GUIs from Python is
an important distinction due to the way in which the
components control the flow graphs. Flow graphs without
GUIs are first loaded in Python using the “__import__()”
command. The text data for the variable default values is
modified prior to issuing a “compile()” command and
loading the altered result as a new module. The new flow
graph is then loaded with the “getattr()” function and used
with the conventional GNU Radio “.start()”, “.wait()”, and
“.stop()” commands. Changing flow graph variables during
runtime is done using the combination of “getattr()” and
“set_<variable>” calls. These steps cannot be reproduced
without error when flow graphs are compiled with GUIs
enabled. The default values for these flow graphs are not
modified and changes during runtime are done through the
callbacks from the GUI elements.

As of Fall 2022, FISSURE is divided into three branches to
reduce code redundancy and better support legacy versions
of Python, GNU Radio, and PyQt. These branches are
Python2_maint-3.7, Python3_maint-3.8, and Python3_
maint-3.10. The out-of-tree modules installed with
FISSURE are in the form of Git submodules that get cloned
directly from online repositories. These modules will need
to be monitored in case branch names change or updates
change the functionality in unexpected ways.

6. Conclusion and Future Work

FISSURE is a new framework that has a good starting
foundation which offers several features that can be utilized
as-is by many types of users. With further development and
support from the community, FISSURE will expand beyond
a few examples of what can be done with an RF framework
into a very extensive tool for working with RF and
performing reverse engineering techniques.

As an open-source project, showing interest in FISSURE is
vital to its success. By starring the project on GitHub,
joining the Discord server, following on Twitter, it will
make for an easier sell to internal/external customers.
Contacting the developers, encouraging collaboration, and
submitting contributions is sure way to speed up FISSURE
development and aid your own projects at the same time.

Growing a strong user community will strengthen the
software and expand the breadth of technologies it
encompasses. Feedback is vital for steering the direction of
the project and helping others who share similar
experiences. The developers will always welcome
suggestions for software tools, hardware suggestions, IQ
analysis algorithms, attacks scripts, new operating systems,

bug fixes, and any other improvements.

6.1. Moving Forward

The project will continue to encourage community
collaboration, expand capabilities, and push for funding
avenues to expedite development. The initial phase, which is
still underway, intends to make the software as open and
transparent as possible by supporting more types of
hardware; finding better ways of utilizing GNU Radio;
supporting more operating systems; producing a Docker
alternative; integrating popular tools; and releasing
documentation for user guides, instructional material, and
APIs.

Short-term development will focus on improving the
existing software (bugs, cleaning the code, testing more
SDRs, etc.) and expanding base capabilities that will round
out the framework and allow for task automation and the
introduction of machine learning techniques. This also
includes the creation of additional lesson material and
trialing it in classroom environments such as labs, high
schools, colleges, clubs, workshops, and RF/Cyber/Hacking
events.

The biggest holes that need to be filled are related to the
following topics: integrated fast-scanning signal detection,
signal conditioning, feature extraction, protocol/emitter
classification, recursive demodulation using flow graphs,
protocol identification using digital data, vulnerability
analysis against targets of interest, IQ measurement and
filtering, and building up the signal archive using a
standardized metadata format like SigMF.

Long-term goals include establishing more ties with
education to promote the combined realms of RF and Cyber,
exposing cutting-edge solutions from experts, expanding to
more RF protocols and applications, improving
visualization, comparing machine learning techniques, and
advancing towards a generic sensor node deployment
scheme to operate from multiple geographic locations.

