gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

Shane Flandermeyer

SHANE.FLANDERMEYER @OU.EDU

School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma

Rylee Mattingly

RMATTINGLY @ OU.EDU

School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma

Justin Metcalf

JMETCALF@OU.EDU

School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma

Abstract

A low-cost experimental setup is an invaluable
tool for rapid prototyping of radar signal pro-
cessing algorithms. Here, the gr-plasma
out-of-tree module is presented as a convenient
way to collect radar data using UHD-compatible
software-defined radio (SDR) systems. The
module operates entirely over the GNU Ra-
dio message passing interface, packetizing each
pulse received by the radar into a protocol data
unit (PDU) to simplify downstream processing
and minimize latency. It includes blocks for
waveform generation, monostatic transmission
and reception, and data storage, and supports
both CPU and GPU backend processing. All
signal processing functionality in gr-plasma
is an implementation of plasma_dsp, a sepa-
rate companion library that can also be used for
projects outside the GNU Radio ecosystem. In
this paper, the utility and structure of each block
is discussed, and the results of range-Doppler
processing are shown for data collected with gr-
plasma and an Ettus X310 in an open-air test.

1. Introduction

Building experimental radar systems has traditionally re-
quired expensive custom hardware. Such designs are of-
ten difficult to program or modify, preventing easy exper-
imentation with new radar signal processing algorithms.
While SDR hardware is not inherently designed to operate
as aradar, there have been numerous documented examples
of software-defined radar implementations on commercial-
off-the-shelf systems, such as Christiansen & Smith (2019)
and Wunsch (2014). This work aims to combine the best

Proceedings of the 1°* GNU Radio Conference, Copyright 2016
by the author(s).

t=0 t=Tprl t=2TpR t=MTpg

PDU 1

A

PDUM

—

r o A
o o o
t
A
»

Figure 1. Pulsed radar data structure

PDU 2
A

features from previous projects to facilitate experimenta-
tion by both academics and hobbyists while making it easy
for developers to extend the module to other use cases.

There are two key challenges with software-defined radar
that differ from most communications protocols: trans-
mit/receive synchronization and ultra-reliable high-speed
duplex operation. Radar systems operate by transmitting
electromagnetic waves into the environment and measuring
their reflections off of objects. To achieve localization ac-
curacy, the transmit and receive processes must be synchro-
nized down to the sample level. The pulsed radar developed
for this work maintains precise knowledge of the beginning
and end of each pulse along with the beginning of the re-
ceive interval. Since the range resolution of a radar sen-
sor is inversely proportional to the bandwidth of the emit-
ted waveform, the radar module must also be capable of
streaming data at high sample rates in order to maximize
performance.

This work will demonstrate the utility of GNU Radio’s
message passing interface in achieving these goals. Mes-
sages are well-suited for bursty data, and they make it easy
to determine the bounds of each radar pulse compared to
traditional stream buffers that are not large enough to pro-
cess entire pulses of data unless the pulse duration is short
or the sample rate is sufficiently small. Each pulse rep-
etition interval (PRI) of received radar data can then be

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

packaged into a protocol data unit (PDUs) as shown in Fig.
1, which simplifies processing by providing a standardized
data format for downstream signal processing blocks. Mes-
sage passing also increases the maximum sample rate that
can be achieved for USRP devices (compared to the in-
tree UHD source and sink blocks) because timing and data
throughput limitations can be managed with no reliance on
the scheduler.

The remainder of this paper is outlined as follows: Sec-
tion 2 outlines the signal processing blocks that are im-
plemented in gr-plasma, along with select features in
plasma_dsp that are useful for development. Section
3 describes an open-air testing setup used for collecting
radar data, including system specifications and required
software. Section 4 shows the results of this experiment
along with range-doppler maps that were generated during
data collection. Finally, Section 5 outlines the conclusions
and presents future plans for the gr—-plasma module.

2. Blocks and Features
2.1. Waveform Generators

gr-plasma currently implements two types of radar
waveforms. The first is a linear frequency-modulated
waveform (LFM), which is the most common waveform
used in pulsed radar systems due to its simplicity in imple-
mentation and desirable pulse-Doppler ambiguity proper-
ties. As the name implies, an LFM “chirp” sweeps linearly
across its frequency range over a finite time duration. In
gr-plasma, the Linear FM block generates an LFM at
complex baseband (i.e., centered around 0 Hz) that sweeps
upwards from the lower frequency to the higher frequency,
or
(o) o)
z(t) =exp |jm | =Bt + —=t* | + 6, (1)
Ty

where B is the bandwidth of the waveform, T}, is the du-
ration of the frequency sweep, and 6 is an arbitrary start-
ing phase. The time-domain output of the LFM block is
shown in Fig. 2 for a waveform with B = 40 MHz and
T, = 20 ps.

gr-plasma can also generate polyphase-coded FM
(PCFM) waveforms, which were first introduced in (Blunt
et al., 2014a) and (Blunt et al., 2014b). PCFM wave-
forms are based on the continuous phase modulation
(CPM) scheme from the communications literature, which
maps a sequence of data symbols into a nearly continu-
ous constant-amplitude waveform. Rather than modulat-
ing symbols in a data stream, PCFM modulates discrete se-
quences of phase values known as phase codes (Levanon &
Mozeson, 2004). A waveform can be formed from a length-
N, code by transmitting each code value for some amount
of time 7, producing a waveform of length 7T}, (Fig. 3).

Figure 2. LFM waveform in the time domain

Unlike traditional waveforms (such as the LFM) which are
a function of only a few parameters, phase-coded wave-
forms are parameterized by the individual phase values in
the code, giving them many degrees of freedom that can be
used for optimization. However, due to the instantaneous
transitions between phase values, the resulting waveform
will be distorted when it is passed through a power ampli-
fier operating in the saturation region. PCFM addresses this
shortcoming by applying a smoothing filter to the wave-
form’s phase trajectory, resulting in an emission that is (ap-
proximately) both continuous and constant modulus and
thus amenable to transmission through a high-power am-
plifier (Blunt et al., 2014a).

1 TC > ejaNC—Z ejeNC—l
e/01]pif2 /03| mun
>
< >
T, = N.T,

Figure 3. Forming a phase-coded waveform from individual
phase values

The PCFM Source block in gr—plasma implements first-
order PCFM (Tan et al., 2015), which linearly interpo-
lates to K intermediate values between each phase code
value on the unit circle. Mathematically, the phase func-
tion at complex baseband resulting from phase code 8 =
[61,62,...,0x.] can be described as

Ne.—1

¢
P(t;0) = / we(A) * Z It —nT)andr+ 60y (2)
0

n=0

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

where w,(t) is a unit-energy shaping filter and «; is instan-
taneous frequency, which is the difference between succes-
sive phase code values (wrapped into the range [—, 7))
with ag = 0. In the PCFM source block, w, is rectan-
gular with length K and Barker, Frank, and P4 codes are
currently supported (Fig. 4).

2.2. USRP Interfacing and Control

Unlike in communications systems, a radar’s transmitter
and receiver are often co-located and managed by the same
host system (known as a monostatic configuration). There-
fore, gr-plasma uses a single custom block to handle
both the transmission and reception of radar pulses for
UHD-compatible SDR devices. Unlike the USRP Source
and Sink in the main tree, the USRP Radar block operates
entirely in the message domain. The block operates as fol-
lows: first, a waveform must be passed to the input port
as a PDU. The metadata dictionary in this PDU must con-
tain an item with a key called pr £ whose value defines the
pulse repetition frequency (PRF) at which the waveform is
to be transmitted. The PRF tag can be added to any PDU
using the Waveform Controller block. Although the Wave-
form Controller block is currently only used to set the PRF,
it will eventually be extended to facilitate cognitive opera-
tion in which it uses the results of downstream processing
to update the transmitted waveform.

When the PDU has been processed, the radar block will
repeatedly transmit and receive the waveform until a new
PDU is received. This method minimizes the number of
messages that must be processed by the block and makes it
possible to operate at higher sample rates since no overhead
is incurred from the scheduler. It also reduces latency dur-
ing processing compared to a stream-based approach since
messages can be processed immediately when they are re-
ceived, making it possible to update the waveform on a sub-
millisecond timescale. Moreover, unlike in tagged stream
blocks, the size of the waveform is not limited by the size of
each block’s buffer. Since radar returns are often processed
on a pulse-by-pulse basis, the received data is processed
into pulses and passed to the output as a new PDU. Meta-
data from upstream blocks is only propagated on the first
received pulse for which it applies in order to further min-
imize the amount of data to be processed by downstream
blocks. The complete USRP processing chain is summa-
rized in Fig. 5.

One hardware quirk that had to be addressed before the
USRP radar could be used for open-air experiments was
the delay between transmit (Tx) and receive (Rx) ports due
to the internal DSP of each device, which manifests as a
range offset for all targets during processing. This delay is
constant for a given device, sample rate, and master clock
rate, and can thus be accounted for in a pre-processing step.

The delay is computed using a streamlined version of the
Estimator Sync Pulse block from gr—radar: with the Tx
port connected directly to the Rx port (with a 30 dB atten-
uator in the loop), a known reference pulse is transmitted
and then cross-correlated with the received data, and the
first peak is taken to be the delay. The calibration can be
performed for any number of sample rates. For example, a
B210 may be calibrated for 10 MS/s and 20 MS/s with the
following command

plasma_calibrate_delay —--rates 10e6
20e6 —--filename S$HOME/delay.json

”B2107: [
{
“delay ”: 46,
"master_clock_rate”: 40000000.0,
”samp_rate”: 10000000.0
1
{
”delay ”: 165,
"master_clock_rate”: 20000000.0,
”samp_rate”: 20000000.0

}
]

Listing 1. Delay calibration output file format

The output of the calibration script is then saved to a JSON
file that stores a list of delays, master clock rates, and sam-
ple rates for each device configuration that has been cal-
ibrated. For the example above, the JSON in Listing 1
would be produced. The USRP radar block takes this file
as an input, and skips the first Ngeq, received samples if
the configuration is present in the file.

2.3. Signal Processing Blocks

Matched filtering, also known as pulse compression in
radar and sonar applications, is a method for detecting a
signal in the presence of comparatively high-power noise.
The goal of matched filtering is to maximize the signal-to-
noise ratio (SNR) at the filter output for a given transmit-
ted waveform. It can be shown that for a waveform xy, (¢)
with duration 7, in additive white Gaussian noise (AWGN),
the matched filter’s impulse response is given as (Richards,
2013)

h(t) = axy, (T —t) 3)

where scaling constant o has no impact on SNR and is of-
ten set to unity, and 7, is the time at which the SNR is
maximized. T}, can also be any value, but for causality it
is required that 75, > 7, (in the matched filter GNU Ra-
dio block, it is assumed that T,,, = 7,). Since h(t) is a

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

Waveforms 5 O @

Amplitude

05

15 2 25
Time (us)

(a) Barker Code (N, = 13, K = 16)

(b) Frank Code (N, = 64, K = 16)

(c) P4 Code (N, = 64, K = 16)

Figure 4. PCFM waveforms generated from common phase codes

PDU

(Waveform + Metadata)
Waveform

Controller
While no new

State information
(Detections,
spectrum occupancy, etc.)

PDU received

Radar |_
Processing |~ ppy pulses

UHD Radar

Figure 5. USRP radar operational logic

time-reversed, complex conjugated version of the . (¢), it
is said to be “matched” to x,(t). Performing a convolu-
tion of the matched filter with some received signal ;. (t)
gives

(Tpg * Tpy)(T) = /00 h(T — t)x (t)dt

— 00

_ / T = Dt @

= (Ttg * Tpg)(7)

where a(t) xb(t) denotes the cross-correlation between sig-
nals a(t) and b(t). Therefore, the matched filter is mathe-
matically equivalent to the cross-correlation between the
transmitted and received signals. When a copy of the trans-
mitted pulse is present in the received signal, there will be
a peak in the matched filter response at the corresponding
delay. Noise and interference, on the other hand, will be fil-
tered as long as they are not highly correlated to the trans-
mitted pulse. An example matched filter output is shown
in Fig. 6 for an LFM transmitted by an NI USRP-2901 in
loopback mode so that 7 = 0. The waveform is sampled
at 50 MS/s with bandwidth B = 25 MHz and pulse width
Tp = 50 us. Before applying the matched filter, the signal is
hardly visible above the noise (Fig. 6a). However, applying
the matched filter to the received pulse produces a distinc-
tive peak more than 30 dB above the noise floor (Fig. 6b).
Although there is no delay, the peak exhibits a time shift

equal to the duration of the waveform. The width of the
peak, known as the range resolution, is primarily a func-
tion of the waveform bandwidth and determines the ability
of the radar to distinguish targets that are similar in range.

(a) Before matched filtering

(b) After Matched filtering

Figure 6. Time-domain data from an LEM pulse in loopback

Once the matched filter has been used to determine the
range of a target, the target’s Doppler shift can be ex-
tracted using a technique known as pulse-Doppler process-

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

ing. In gr-plasma, this algorithm is implemented in the
“Doppler Processing” block and works as follows. Con-
sider a radar that transmits M pulses that are reflected from
an object moving with constant radial velocity such that the
received signal is Doppler shifted by Fp Hz. If the matched
filter output for a single pulse is y,(¢), the matched filter
output for all M pulses is given by

M1
y(t) =« Z exp(j2mFpt)y,(t — mTprr —) (5)

m=0

where 7, is the target delay at each pulse, and « is a com-
plex scale factor that encapsulates global amplitude and
phase factors that do not vary significantly over the process-
ing interval. Next, the signal is sampled in both fast-time
(analog-to-digital converter (ADC) samples) and slow-time
(pulses). Defining T as the sampling interval of the ADC
and k as the sample index, Eq. 5 can be re-written as

ylk,m] = aexp(j2rFpmTprr)y,(kTs — 7)) (6)

which is a matrix where each column is the matched filter
output for each pulse. For a given Doppler shift, a peak
can be produced at the target range by coherently integrat-
ing the signal in slow-time so that the pulse-to-pulse phase
rotation is eliminated. In practice, the Doppler shift is un-
known a priori and the coherent integration must be per-
formed for a Doppler filter bank, where each filter applies
a phase correction for a different Doppler shift. Thus, for
each possible Doppler Fp, the Doppler processing block
computes

M—-1
Yk, Fp] = Z ylk, m] exp(—j2rFpmTprr) (7)

m=0

which is equivalent to the discrete Fourier transform (DFT)
of each row in y. Each element in the resulting matrix is a
range-Doppler parameter pair, and a statistical hypothesis
test can be applied to each element to determine if an object
is present. Fig. 7 shows the range-Doppler response for
an NI USRP-2901 in loopback, which produces a “target”
at zero delay and Doppler. gr-plasma also includes a
Range Doppler Sink block for displaying these maps in real
time.

The signal processing and waveform generation blocks dis-
cussed above are implemented using ArrayFire (Yalaman-
chili et al., 2015), and the user can choose to perform the
computations using CUDA, OpenCL, or CPU backends.

Pulse Doppler Processing ® 0O €

Range (m)
Asusau)

[10
Velocity (m/s)

Figure 7. Range-Doppler map for a loopback configuration

On a host system with an AMD Ryzen 5800x CPU and
Nvidia RTX 3070 GPU, range-Doppler processing could
be performed in real time at sample rates up to 100 MS/s
on the CUDA and OpenCL backends. If the message queue
of a signal processing block has overflowed above a user-
specified size (i.e., the host PC cannot achieve the required
throughput for a given rate), messages are dropped until
there is again space in the queue. Since data is processed
on a CPI-by-CPI basis, this ensures that the processed data
remains coherent even when samples must be dropped.

2.4. Miscellaneous Blocks

In addition to the waveform generation and signal process-
ing blocks described above, gr-plasma also contains
blocks for managing PDUs. As mentioned in Section 2.2,
the USRP radar block outputs one PDU per pulse. How-
ever, many radar signal processing tasks operate on a num-
ber of pulses combined to form a coherent processing in-
terval (CPI). For example, the DFT operation in Doppler
processing assumes coherence over many pulses. There-
fore, the “Pulses to CPI” block can be used to consolidate
Ncpr PDUs containing individual pulses into one large
PDU. This block also propagates any metadata in the in-
put directly to the output for use by downstream process-
ing. A custom PDU file sink block was also designed to
facilitate saving the collected data for future use without
first converting back to a traditional stream. The new file
sink block can also (optionally) save metadata to a sepa-
rate file by converting PDU metadata dictionaries to JSON.
This makes it simple to save metadata that complies to
the SigMF standard (Hilburn et al., 2018), and it is flexi-
ble enough to easily extend to other formats. A sample of
the JSON metadata output that is generated automatically
from the blocks is shown in Listing 2. In future work, this
non-standard format will be replaced with a formal SigMF
extension for processing radar data.

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

{

”annotations”: [
{

“core:label”: ”pcfm”,
“core:sample_start”: O,
“radar:doppler_fft_size”: 1024,
”radar:duration”: 5.12e-05,
“radar:num-_phase_code_chips”:
“radar:num_pulse_cpi”: 1024,
“radar : phase_code_class”: “p4”,
“radar:prf”: 10000.0

128,

}
I,

“captures 7: [

{
”core: frequency ”: 5000000000.0,

“core:sample_start”: 0O
]

”global”: {

“core:datatype”: “cf64_le”,
“core:sample_rate”: 20000000.0,
”core:version”: 71.0.0”

Listing 2. PDU file sink metadata output
3. Experiment Design

To verify the functionality of the module, an open-air ex-
perimental test bed was created using only commercial-off-
the-shelf (COTS) components. In the experiment, an NI
USRP-2901 was connected to 25 dBi parabolic dish anten-
nas in a simultaneous transmit and recieve (STAR) con-
figuration (Fig. 8) using only the internal amplification in
the radio. The host PC was a Dell XPS 13 9310 laptop
with an Intel i7-1165G7 CPU, 32 GB of RAM, and inte-
grated graphics. This laptop was used for the experiment
to demonstrate the utility of gr—-plasma for performing
radar tasks with low-cost, general-purpose systems. Since
it does not have a dedicated GPU, it is unable to perform
pulse-Doppler processing in real time. Instead, it simply
performs range-Doppler processing as quickly as it can and
drops any excess PDUs it receives while data is being pro-
cessed.

The signal processing chain and the parameter specifica-
tions used in the experiment are as shown in the flowgraph
in Fig. 9. Here, an LFM waveform is transmitted and re-
ceived at the constant PRF. When a full CPI has been col-
lected, matched filtering and Doppler processing are per-
formed and the resulting range-Doppler map is plotted at
the fastest rate that the host PC can sustain. At the same
time, raw I/Q data from each pulse is saved to a file (along

Rx Antenna Tx antenna

Host PC

NI USRP-2901 »

Figure 8. Experimental test bed setup

Figure 9. Pulse-Doppler processing experiment

with its associated metadata) for further offline process-
ing. This process continues until the flowgraph is manually
stopped. Relevant radar processing parameters are summa-
rized in Table 1. Note that the USRP source and sink blocks
in the main tree are unable to support this sample rate for
B210 devices due to overhead from the scheduler, resulting
in fatal underflows and late commands.

Fig. 10 outlines the geography of the area used for the
test. The target is a vehicle that accelerates in the direction
shown until it reaches the speed limit of 25 mph. When it
reaches the end of the street, it turns around and accelerates

Parameter | Value |
Sample rate 50MS/s
Center frequency | 5 GHz
Bandwidth 40 MHz
Pulse width 20 ps
PRF 10kHz
Range resolution | 3.75m
Pulses per CPI 256

Table 1. Radar Operational Parameters

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

Figure 10. Data collection geometry

again toward the radar before decelerating to a stop. This
test setup is desirable for a number of reasons. First, a short
collection range is needed since the output power is limited
by the internal amplification in the SDR. Moreover, a short
collection range can be used since the radar has no blind
range in the STAR configuration. Although the vehicle is
not instrumented with GPS, having a known speed limit
also makes it easy to validate the range-Doppler output as
the car accelerates and decelerates.

4. Experiment Results

Fig. 11 shows the range-Doppler maps that were produced
from the Range Doppler Sink block during the experiment,
zoomed in to the range and Doppler values that were rele-
vant for the given geometry. No windowing was performed
in range or Doppler to maximize SNR and resolution at the
expense of higher sidelobes. In Fig. 11a, the vehicle is ac-
celerating away from the radar. There is a pronounced clut-
ter ridge near zero Doppler from stationary scatterers in the
scene (e.g., buildings, trees, and the ground), and the vehi-
cle can be clearly seen at a range of 50 m as it moves away
from the radar at roughly 10 m/s (with a negative Doppler
shift).

In the range-Doppler map in Fig. 11b, multiple vehicles
are traveling along the road. In this figure, the car from
Fig. 11a is moving towards the radar and can be seen with
range and velocity (R,v) = (115m,10m/s). At the same
time, a large truck and a small car can be seen driving away
from the radar (on the left). The large truck is located at
(135m, —6m/s), and is the brightest scatterer in the scene
besides the clutter. The small car is following the truck
at the same speed, but at 120 m from the radar. The car’s
range-Doppler response has a much lower amplitude than
the truck’s since the truck has a much larger radar cross
section (RCS) than the car.

(a) Vehicle moving away from radar

(b) Vehicle moving toward radar

Figure 11. Range-Doppler maps

5. Conclusion and Future Work

In this paper, the gr-plasma module has been presented
as a new tool for generating and processing radar data
from within GNU Radio. Every block in the module
uses the message passing architecture to process data as
PDUs, which better captures the bursty nature of radar pro-
cessing while improving performance by avoiding over-
head from the scheduler. The module currently imple-
ments blocks that generate LFM and PCFM waveforms,
collect data from USRP SDRs, and perform pulse-Doppler
processing on both the CPU and GPU. In future work,
gr-plasma will be extended to include a more diverse
collection of waveform generators and more signal pro-
cessing blocks (e.g., for constant false alarm rate (CFAR)
detection). Adaptive capabilities that utilize the results of
downstream processing are also planned for a future re-
lease.

References

Blunt, Shannon D., Cook, Matthew, Jakabosky, John,
De Graaf, Jean, and Perrins, Erik. Polyphase-coded
fm (pcfm) radar waveforms, part i: implementation.
IEEE Transactions on Aerospace and Electronic Sys-
tems, 50(3):2218-2229, 2014a. doi: 10.1109/TAES.
2014.130361.

Blunt, Shannon D., Jakabosky, John, Cook, Matthew,
Stiles, James, Seguin, Sarah, and Mokole, E. L.

gr-plasma: A New GNU Radio-based Tool for Software-defined Radar

Polyphase-coded fm (pcfm) radar waveforms, part ii:
optimization. [EEE Transactions on Aerospace and
Electronic Systems, 50(3):2230-2241, 2014b. doi: 10.
1109/TAES.2014.130362.

Christiansen, Jonas Myhre and Smith, Graeme E. Develop-
ment and calibration of a low-cost radar testbed based on
the universal software radio peripheral. IEEE Aerospace
and Electronic Systems Magazine, 34(12):50-60, 2019.
doi: 10.1109/MAES.2019.2953803.

Hilburn, Ben, West, Nathan, O’Shea, Tim, and Roy,
Tamoghna. Sigmf: The signal metadata format.
Proceedings of the GNU Radio Conference, 3(1),
2018. URL https://pubs.gnuradio.org/
index.php/grcon/article/view/52.

Levanon, Nadav and Mozeson, Eli. Radar Signals.
John Wiley Sons, Ltd, 2004. ISBN 9780471663089.
doi: https://doi.org/10.1002/0471663085.ch6. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/0471663085.che.

Richards, M.A. Fundamentals of Radar Signal Processing,
Second Edition. McGraw-Hill Education, 2013. ISBN
9780071798334. URL https://books.google.
com/books?id=zQ1VAgAAQBAJ.

Tan, Peng Seng, Jakabosky, John, Stiles, James M., and
Blunt, Shannon D. On higher-order representations of
polyphase-coded fm radar waveforms. In 2015 IEEE
Radar Conference (RadarCon), pp. 0467-0472, 2015.
doi: 10.1109/RADAR.2015.7131044.

Wunsch, Stefan. gr-radar. https://github.com/
kit-cel/gr-radar, 2014.

Yalamanchili, Pavan, Arshad, Umar, Mohammed, Zakiud-
din, Garigipati, Pradeep, Entschev, Peter, Kloppenborg,
Brian, Malcolm, James, and Melonakos, John. ArrayFire
- A high performance software library for parallel com-
puting with an easy-to-use API, 2015. URL https:
//github.com/arrayfire/arrayfire.

https://pubs.gnuradio.org/index.php/grcon/article/view/52
https://pubs.gnuradio.org/index.php/grcon/article/view/52
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471663085.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471663085.ch6
https://books.google.com/books?id=zQlVAgAAQBAJ
https://books.google.com/books?id=zQlVAgAAQBAJ
https://github.com/kit-cel/gr-radar
https://github.com/kit-cel/gr-radar
https://github.com/arrayfire/arrayfire
https://github.com/arrayfire/arrayfire

