
Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time
Spectrum Sensing Block

Rylee G. Mattingly RMATTINGLY@OU.EDU

School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma

Justin G. Metcalf JMETCALF@OU.EDU

School of Electrical and Computer Engineering, Advanced Radar Research Center, University of Oklahoma

Abstract
RF Network-on-Chip (RFNoCTM) is an open
source framework from Ettus Research that al-
lows for convenient development access to the
field-programmable gate array (FPGA) within
Ettus brand USRP devices. By utilizing the floor
space available on the FPGA of select radio mod-
els, digital signal processing DSP can be done in
hardware before the data is ever streamed to the
host computer. Cross device heterogeneous pro-
cessing can increase the speed of computation-
ally intensive algorithms by helping to parallelize
operations on the FPGA prior to generalized pro-
cessing on the host computer. This paper and the
accompanying presentation discuss a design flow
that was derived from lessons learned while de-
veloping with RFNoC for use on the Ettus X310
radio. An implementation of a real-time spec-
trum sensing block is shown as an example of a
successful use of the proposed process.

1. Introduction
The RFNoC framework lowers the barrier of entry to de-
velop FPGA based digital signal processing (DSP) blocks
that can be used with UHD and GNURadio (Ettus Re-
search, 2020b). Deploying algorithms to the FPGA allows
for computational savings on the general purpose CPU of
the host PC. Additionally, utilizing the FPGA for process-
ing can reduce the latency of the critical path by removing
the need to send data to the host computer or reduce the
amount of data that needs to be streamed to and processed
by the host computer.

RFNoC provides several tools to try to reduce the overhead
required to build a custom FPGA block. Design complexity
is managing by utilizing abstraction and limiting the num-

Proceedings of GNU Radio Conference 2021, Copyright 2021 by
the author(s).

ber of files a user must interact with to succesfully imple-
ment an RFNoC block. This work describes the lessons
learned from the implementation of a fast spectrum sens-
ing (FSS) block by walking through the design flow from
custom IP module to functioning RFNoC block controlled
through GNURadio. All development took place on a desk-
top machine with an Intel® Xeon® processor and 256 gi-
gabytes of ram running Ubuntu 20.04 and using UHD 4.0
with no out-of-branch patches applied. Of course, the more
complex a block is and the more the structure deviates from
the default configuration, the more management must take
place. Numerous topics will be covered in an order that
mimics the actual order that a user may take to build a
block.

FSS operates by taking a sample of the spectrum and then
uses an a priori estimate of the noise environment to clas-
sify each bin, where each bin is a consecutive sample from
a fast Fourier transform (FFT), of a spectral frame as ei-
ther high-power or low-power (Kirk et al., 2018). Low-
power bins are considered unoccupied and available for
use. There are many ways to process or optimize utiliza-
tion from the resultant low-power ”meso-bands”, or groups
of consecutive low-power bins, identified by the FSS algo-
rithm (Martone et al., 2018). This work focuses on a greedy
approach and implements an architecture that returns the
widest low-power meso-band (Mattingly, 2021).

Due to the time-frequency agility of modern communica-
tion networks, any spectrum sensing algorithm must be
able to sense a new primary user of the band in sub mil-
lisecond timescales in order to minimize interference. Im-
plementing the FSS algorithm on the FPGA in the radio
helps to reduce latency and reduce the response time to new
emitters entering and leaving the environment. A brief de-
scription of the block architecture will be shown and the
latency metrics of that block will be described.

2. Selecting an Interface
Understanding the data flow between blocks is critical and
this starts by understanding how blocks are connected.

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

Data ports of blocks within the RFNoC framework are con-
nected using the Compressed Hierarchical Datagram for
RFNoC (CHDR) bus. The CHDR bus is a lightweight im-
plementation of the AXI bus interface introduced by Xil-
inx to standardize the connection between Xilinx-provided
IP blocks. The RFNoC implementation of this interface
utilizes only tdata, tvalid, tready, and tlast signal lines for
each input and output (Ettus Research, 2020b). This means
that a framer/de-framer is needed to divide the data packets
into their respective header, metadata, and data elements.
Fortunately, RFNoC provides two framer/de-framer inter-
faces, AXI-Stream Payload Context and AXI-Stream Data,
as part of their development tools.

Since both of these interfaces use the AXI-Stream interface
to some extent, a brief overview should be provided before
continuing. The AXI-Stream bus is a subset of a larger set
of AXI bus protocols (Xilinx, 2017). Table 1 describes the
signals that are used in AXI.

Signal Name Signal Description
tdata The payload word for the data stream.
tlast Asserted on the last payload word of

the packet
tvalid Asserted when the value on tdata is

valid.
tready Asserted when by the recipient to sig-

nal readiness.
tuser Describes the word type for the current

word on the bus.

Table 1. A description of the signal used in a simple AXI-Stream
interface.

Notably, this interface provides a valid signal that is fed
into the receiving block and a ready signal that comes from
the receiving block to the sender. This allows for the blocks
to agree on a successful transmission before the transaction
is complete. This also makes the logic for advancing the
stream incredibly simple. If the valid signal and ready sig-
nals are both asserted on a clock cycle then the stream can
be advanced. The user signal is not strictly required for the
AXI-Implementation but is used in the AXI-Stream Pay-
load Context interface. This signal provides information
about the currently presented word on the data line, which
is useful if different types of data encodings are used in a
single data stream.

The AXI-Data interface is the simpler of the two available
interfaces. The interface provides a standard AXI-Stream
interface for the payload data of the packet but removes
user-facing complexity by presenting the header data as
separate signals that are valid throughout the receipt of the
data packet. Table 2 provides a list of signals that are pro-
vided to the block in addition to the previously described
AXI-Stream signals that are used for the data stream.

Signal Name Signal Description
ttimestamp Timestamp associated with the packet.
tlength Length of the packet in bytes.
teov Signals the end of a vector.
teob Signals the end of a burst of associated

packets.

Table 2. The relevant signals for the AXI-Stream Data user inter-
face.

RFNoC™ Specification Version 1.0

 Copyright © 2018-2021 Ettus Research, A National Instruments Brand Page | 40

Figure 9: A 4-word packet with a header and timestamp on the AXIS Payload Context port

(CHDR_W = 64)

Figure 10: A 4-word packet with a header, timestamp and 2 metadata words on the AXIS Payload

Context port (CHDR_W = 64)
 Figure 1. The timing diagram for a the AXI-Stream Payload Con-

text interface. It shows a 4 word data packet with timestamp (Ettus
Research, 2020b).

Although the AXI-Data interface does provide an easier in-
terface to use, the lock timing of the signal fields is not
constant. There is a setting that defines when the signal is
valid and how long it remains valid. The valid time of these
signals and the timing necessary to successfully output up-
dated header information can be ambiguous.

The other interface option is AXI-Stream Payload Con-
text. This interface provides an AXI interface for data,
like the previous option, but it also provides the header,
timestamp, and metadata information in an additional AXI-
stream called the context stream. Because both of these
streams are being put onto a single bus by the framer/de-
framer logic it is important to serve the context data before
the payload data. Both of the streams use the signals as
they are described in Table 1 to provide the AXI-Streams,
except that the user signal is only provided in the context
stream as the data stream only has one encoding type. The
timing diagram shown in Figure 1 shows how the context
and payload streams are linked together and the structure
that must be maintained when the packet is forwarded or
a new packet is created. Although this interface requires
more consideration for two separate data streams that are
linked in time, it allows a consistent model to be applied
to all data and allows metadata to be used if desired. It
is for those reasons that the AXI-Stream Payload Context
interface was chosen for this work.

The framer/de-framers are inside of the NoC shell where
data goes in from the CHDR bus and is output in the ac-
cording to the selected protocol as discussed above before
interacting with user logic. Similarly, the output interface
signals go back through the NoC shell on their way out

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

of the block. The NoC shell is mostly a black box to the
user, except for a first in first out (FIFO) buffer on each of
the ports. This buffer allows the user block to stop accept-
ing data briefly, using the tready signal, without dropping
packets or packet words. A backend interface is also imple-
mented in the NoC shell as a 512-bit status interface and a
separate control interface that is used by the larger frame-
work and is not of use to the user (Ettus Research, 2020b).

3. The FSS Architecture
FSS must scan through the data stream as it arrives and
classify each frequency bin as being high power (i.e oc-
cupied by a signal) or low power (i.e. noise only) based
on the threshold. The payload AXI-Stream that feeds data
into the block provides a single bin value per clock cycle.
Therefore a simple comparison can be carried out on each
element to determine if it is low power or not.

If a bin is the first low-power signal to be encountered, then
a ’bucket’, with start and size fields, should be initialized
with a start point of the current index and a size of one.
For each consecutive low power sample after a bucket has
been initialized the size of the existing bucket should be
incremented. Once a high-power bin is encountered the
bucket that was being used should be frozen.

This bucket initialization could lead to a very large number
of buckets being instantiated, which is unnecessary since
the only bucket of interest is the largest one. This means
that only two buckets should ever be needed to retrieve the
desired data. Instead of initializing a new bucket when a
new section of the available spectrum is encountered then
the smallest of the two buckets should be selected to be
overwritten. This is a simple comparison between the size
parameter of the buckets. Selecting the bucket with the
smallest size to be the new write space preserves the data
of the currently longest sample set.

Once the largest bucket is found, it needs to be sent out
of the block. There are a few options available. The first
option is to add the start point and size to the metadata at the
front of the packet. This was quickly ruled out as it would
require the entire packet to be cached until after a decision
had been made. Ideally, the block would allow the data to
stream through such that there was no interruption to the
stream. That means that the block will need a secondary
port to move the data along.

Secondly, the data could be sent across the control infras-
tructure to the next block. This would allow the FSS block
to utilize a single stream endpoint. Unfortunately, this
would prevent the data from being streamed directly to the
host PC without an intermediary block to convert the con-
trol data to a standard data stream. Although the block data
is intended to be consumed by another block in hardware

without traveling to the PC, for this work it is necessary to
offload the data to the computer for verification and anal-
ysis. This meant that the block would need to employ a
secondary data output stream to enable the full flexibility
that is needed. This comes with the additional overhead
of a secondary stream endpoint to dynamically connect the
secondary data output to other blocks of interest. The two
buckets need to have each of their fields maintained as each
frame of data is processed. The size of these registers
should be determined by the length of the packet, as each
of the registers should be able to store this value. The block
designed for this work is fed by a hardware FFT block with
an FFT length of 1024 setting the packet size. 1024 was
selected as the FFT length because 1024 is approaching the
largest power of two of samples that will comfortably fit
in a jumbo Ethernet frame. The default transporter block
puts each CHDR packet in its own Ethernet frames and
cannot split large CHDR packets between multiple Ether-
net frames. This means that our bucket sizes are stored in
11-bit registers so that they could, if necessary, store 1024
as the possible maximum size of available spectrum in a
frame. The start point fields are stored in 10-bit registers so
that that the index packet word index from 0 to 1023 can be
stored.

The packet words that are passed into the block are not
tagged with their number in the packet. That means that an
11 bit counter should also be kept. This packet counter al-
lows the block to keep track of the word index in the packet.
This will be used to generate the index value that will be
stored in the start field of a bucket when a low power bin is
detected.

A final set of buckets is needed to allow for seamless opera-
tion. A send bucket is maintained and on the last sample of
a packet, the data associated with the largest bucket is trans-
ferred to this set of registers. This allows all of the fields
associated with the FSS processing state machine to be re-
set on this last sample. Of course, it is important to consider
the effect that the last sample has on the data. This means
that if the last bin is below the threshold then the largest
bucket comparison should be made with this change con-
sidered. Similarly, if the value belongs in the bucket that
is being selected, then the value of the size of the send
bucket should be incremented with the transfer. With the
variables and structures laid out, the FSS state machine can
be presented. Figure 2 shows the FSS state machine with
the transition conditions and transition actions listed. Fig-
ure 3 shows the state machine diagram for sending a packet
on the secondary output.

4. Generating Verilog
The development journey begins with the rfnocmodtool, a
command-line tool that is used to create RFNoC modules

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

*State transitions only occur when
AXI-Stream signals tready and tvalid are

both asserted high. PacketCounter is
incremented every valid cycle.

(tdata < Thresh) &&
(B1Size < B2Size2 ||

B1Size == B2Size)

B1Start <= PacketCounter
B1Size <= 1

tdata < Thresh &&
BucketSize2 < BucketSize1

B2Start <= PacketCounter
B2Size <= 1

tdata > Thresh

PacketCounter += 1

Transition Condition

Transition Actions

Tdata < thresh

B2Size <= Size + 1
PacketCounter += 1

Tdata < thresh

B1Size <= Size + 1
PacketCounter += 1

Search

Fill Bucket 1 Fill Bucket 2

tdata > Thresh

PacketCounter += 1

tdata > Thresh

PacketCounter += 1

Reset on tlast ||
chdr_reset

PacketCounter = 0
B1Size, B2Size = 0
B1Start, B2Start = 0

Reset on tlast ||
chdr_reset

PacketCounter = 0
B1Size, B2Size = 0
B1Start, B2Start = 0

Figure 2. The basic FSS state machine shown with transition con-
ditions and transition actions.

Send Header Send Data
Send

Cleanup

~context_tready ~payload_tready

context_tdata <= header
context_tvalid <= 1
context_tlast <= 1

context_tuser <= 0x0
payload_tvalid <= 0

context_tready

payload_tdata <= {start, size}
payload_tvalid <= 1
Payload_tlast <= 1
context_tvalid <= 0

payload_tready

payload_tvalid <= 0
context_tvalid <= 0

SendFlag = 0

Figure 3. The state machine used for transmitting the a packet of
data out of an AXI-Stream port on an RFNoC block.

and blocks. Modules contain RFNoC blocks, this hierar-
chy allows users to group similar blocks together and help
manage files when many blocks are in development (Ettus
Research, 2020a). A module can be created using the fol-
lowing command:
$ rfnocmodtool newmod

The user will be prompted to enter information about the
module that will be used to create a directory with the re-
quired folder structure. Navigating inside of the file direc-
tory that was created from the newmod command, a user
can generate the files necessary to start work on the block.
$ rfnocmodtool add

The add command above prompts the user for information
about the block, of which only the name is a required field,
the defaults for the remaining options are sufficient for a
successful start to the process.

There are seven main files that the user needs to manipulate
to make a fully flexible RFNoC block. Table 3 lists the files
of interest and their location relative to the top level of the
module. These files will be used throughout the develop-
ment flow and their purpose will be discussed as they are
used.

The Verilog files rfnoc block blockName.v and
rfnoc shell blockName.v are both generated auto-
matically. rfnoc block blockName.v is the file that
describes the RFNoC block under development and this

File Name Location
rfnoc block blockName.v /rfnoc/fpga
noc shell blockName.v /rfnoc/fpga
blockName x310 rfnoc image core.yml /rfnoc/icores
blockName block ctl impl.cpp /lib
blockName.yml /rfnoc/blocks
module blockName.block.yml /grc

Table 3. The relevant files for the RFNoC block development cy-
cle.

is where the HDL for the user’s design will go. The
rfnoc shell blockName.v is instantiated inside the main
design and is responsible for the framer/de-framer of the
selected interface as discussed in the previous section. The
RFNoC shell also implements a backend interface that
helps control RFNoC that is completely invisible to the
user and should not be modified.

Before jumping into the Verilog files the user should first
configure the block and generate new HDL files to meet
their needs. Block configuration settings are the respon-
sibility of the blockName.yml file. YAML Ain’t Markup
Language (YAML) is a human readable format that is
used in several places to define parameters and describe
blocks and is denoted with the .yml or .yaml file extension
(YAML, 2009).

There are four main sections to the blockName.yml file:
block information, clocks, control ports, and data ports.
Block information should not be changed as it is mostly
informative. The clocks section controls the clock frequen-
cies of the various busses, there are two clocks that can be
chosen from on the X310: 200 MHz and 184.32 MHz. It
is critical to ensure that the CE clock is in the list and that
the desired clock speed is selected. Setting the clock is as
simple as

c l o c k s :
− name : ce

f r e q : ” [200 MHz] ”

This work did not utilize the control port as a master port
and therefore the default settings of this section were al-
ways used.

The final section defines the configuration of the data ports.
The framer/de-framer interface needs to be selected as ei-
ther axis chdr, axis pyld ctxt, or axis data and a clock
needs to be assigned and multiple named input and out-
put ports can be defined using the following parameters.
Defining the clocks is critical as it can lead to very hard to
diagnose drops in block performance and throughput.

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

d a t a :
f p g a i f a c e : a x i s p y l d c t x t
c l k d o m a i n : ce
i n p u t s :

i n p u t 1 :
i t e m w i d t h : 32
n i p c : 1
i n f o f i f o d e p t h : 32
c o n t e x t f i f o d e p t h : 32
p a y l o a d f i f o d e p t h : 32
f o r m a t : sc16
m d a t a s i g : ˜

Listing 1. Data interface settings that should be considered for
each block.

Buffer sizes are mostly up to the user to determine. These
FIFOs sit at the port edges and help to prevent overflows
if the user block very briefly stops accepting input. The
same settings apply to the output ports that have identical
parameters under an outputs tag instead of an inputs tag.

Once the block YAML is configured to the users desired
state, new Verilog files can be generated. RFNoC provides
a script called rfnoc create verilog.py that generates the
skeleton verilog files for the configuration defined in
blockName.yml. The script is a part of UHD and exits in
the UHD install directory under /host/utils/rfnoc backtool
directory. When the user is in the same directory as the
script it can be executed from the command line using the
following,
$./rfnoc create verilog.py -c

path/to/block/yaml

-d path/to/Verilog

Now that the two Verilog files have been updated,
the user can insert their IP module and connect it to the
defined interface.

5. Adding Registers and Ports
Now that the two Verilog files have been updated,
the user can begin to decide how many user registers
they want. Register logic is generated inside of the
rfnoc block blockName.yml file and a single register is de-
fined by default, providing a template for the addition of
more registers. Each register has an address parameter and
a reset parameter, with the default address set to zero and a
default value of 0. These two parameters should be copied
and used for each new register, incrementing the address by
four as the register words are passed in as 32-bit integers.

First, the user should instantiate a 32-bit Verilog register for
each new RFNoC controlled register that is needed. The
next part of the user logic is an always block synchronized

with the control port clock. Inside this always block there
are three if statements that control register functions. The
first of these if blocks checks the reset line, here the user
should add a simple register assignment resetting the Ver-
ilog register to the default value parameter

The other two if statements check for a register read or a
register write. Both of these contain case statements using
the address to multiplex between the registers. A copy of
the default register logic with the appropriate changes to
the parameters will successfully set up the hardware of the
registers. The Verilog code in Listing 2 provides this user
logic as it can sometimes be absent from generated files in
UHD version 4.0.

/ / Addres s f o r u s e r r e g i s t e r
localparam REG USER1 ADDR = 0 ;
/ / D e f u l t v a l u e
localparam REG USER1 DEFAULT = 0 ;

reg [3 1 : 0] Reg One Value
= REG USER DEFAULT ;

always @(posedge c t r l p o r t c l k) begin
i f (c t r l p o r t r s t) begin

Reg One Value = REG USER DEFAULT ;
end e l s e begin

/ / D e f a u l t a s s i g n m e n t
m c t r l p o r t r e s p a c k <= 0 ;

/ / Read u s e r r e g i s t e r
i f (m c t r l p o r t r e q r d) begin

case (m c t r l p o r t r e q a d d r)
REG USER ADDR : begin

m c t r l p o r t r e s p a c k <= 1 ;
m c t r l p o r t r e s p d a t a

<= Reg One Value ;
end

endcase
end

/ / W r i t e u s e r r e g i s t e r
i f (m c t r l p o r t r e q w r) begin

case (m c t r l p o r t r e q a d d r)
REG USER ADDR : begin

m c t r l p o r t r e s p a c k <= 1 ;
Reg One Value

<= m c t r l p o r t r e q d a t a [3 1 : 0] ;
end

endcase
end

end
end

Listing 2. The default register logic described above. Provided as

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

it is not always correctly generated in version 4.0.

After the (well-tested and simulated!) user module is in-
serted into the user logic section of the verilog file and the
hardware definitions for the registers is complete, the work
in the verilog files is done.

Next, the software interface must be informed of the
changes to the port configuration and the additional user
registers. blockName block ctl impl.cpp is where the the
API goes to generate the control signals necessary to con-
figure the block when the block constructor is called by the
user script or GNURadio. First, the user needs to create
new uint32 t constants for the registers that were just cre-
ated in the Verilog. A call to the register property function
should be made inside of the private register props func-
tion with a closure to provide the functional information.
After the property is registered, a custom property type
needs to be instantiated at the bottom of the file, this is the
property that is passed into the register property. The con-
stant declaration, property call, and property type should be
inferred from the default single register instantiated in the
file by default.

Similar to the process to create a register property, a block
edge property is required for each of the ports that are de-
fined in the YAML files discussed in the previous section.
Just like with the register, constants need to be defined for
each of the ports, each property must be registered and a
property type must be instantiated. Unlike the register, the
constants should only be incremented by 1 and the input
and output edges are indexed separately so there should be
an output zero and an input zero. A further difference from
the register is an additional property resolver that helps the
software to understand what data types should be sent in
and out of the block. This should match the value that was
used in the port definition of the block YAML, but there is
not a check to make sure that the values are consistent. How
to instantiate these new ports should be infered from the ex-
isting definitions in the blockName block ctl impl.cpp file.

6. GNURadio Integration
If the user is planning on using the block with GNU-
Radio then there is one more step before moving on to
the final image synthesis tasks. The graphical representa-
tion of the block that is used for drag and drop connec-
tion of the block needs to know what the port configu-
ration is and what each of the register callbacks and de-
fault values should be. All of this configuration is done in
the module blockName.block.yml file, utilizing three main
sections.

The first section is the template section, this provides the
import argument and the constructor parameters so that
GNURadio can correctly setup the auto generated script.

Of these parameters only the callbacks need to be manip-
ulated. These callbacks connect through to the previous
properties that were instantiated to manage the control read
and writes to the registers in the blocks. One call back is
needed for each of the registers that are used and it is im-
portant that the first argument in the callback is the same
as the one provided in the last property object in the imple-
mentation file.

The second section, parameters, is all of the fields within
the GNURadio block. Register fields for the user to input
values into the GUI block are created here. It is critical
that the ID of this value is the same as the one given to the
callback in the previous section of this file. The label and
default value can be anything the user wants to have visible
in the GUI. It is a good idea to have the block defaults in
this file be the same as the default parameters previously
set but, again, this is not a requirement.

The last section of this file is used to create the actual ports
on the GUI block. Each port has three parameters: do-
main, label and dtype. For the purpose of this work the
domain will always be rfnoc and the dtype will be sc16,
the label can be whatever the user wants to display. The
port assignment between these definitions and the proper-
ties defined in the previous file are based on the port num-
ber assigned previously, meaning that the first import port
reference in the .block.yml file corresponds to the zeroth
port in the property definition.

An example of each of the necessary fields are provided
below for illustration.

c a l l b a c k s :
− s e t i n t p r o p e r t y (’ u s e r r e g ’ ,

$ (u s e r r e g))
. . .
p a r a m e t e r s :
− i d : u s e r r e g

l a b e l : User R e g i s t e r Name
d t y p e : i n t
d e f a u l t : 0

. . .
i n p u t s :
− domain : r f n o c

l a b e l : I n p u t P o r t Name
d t y p e : ’ sc16 ’

o u t p u t s :
− domain : r f n o c

l a b e l : Outpu t P o r t Name
d t y p e : ’ sc16 ’

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

7. Image Synthesis and Loading
With all of the initial block setup and design complete the
user can define the blocks that are needed in the FPGA im-
age and how they are connected through the various cross-
bars. Settings for the layout of the blocks are handled
in the blockName rfnoc image core.yml file. This file is
structured into four section: streaming endpoint definitions,
block definitions, block connections, and clock assignment.

First the streaming endpoints need to be defined, each have
three block parameters: ctrl, data and buff size. The ctrl
and data parameters determine whether or not traffic from
that plane flows through the endpoint. buff size determines
the size of the buffer that is used to prevent dropped packets
if the recipient of the stream halts operation momentarily.
The parameters are formatted as follows

s t r e a m e n d p o i n t s :
ep0 : # Labe l can be a n y t h i n g

c t r l : F a l s e
d a t a : True
b u f f s i z e : 32768

Block definitions are next with each having a different
set of parameters. The only common parameter is the
block desc, this is the name of the blockName.yml file and
should be formatted as seen below. The parameters field
can also be used to set HDL parameters of the block adding
additional flexibility.

n o c b l o c k s :
blockName0 : # Labe l can be a n y t h i n g

b l o c k d e s c : ’ blockName . yml ’
p a r a m e t e r s :

Since the block and module were created by the modtool
then the software knows the directory structure and where
to find these files.

Next, connections must be defined for each of the blocks.
Decisions about the routing through an endpoint or through
the static crossbar only are made at this point. Two different
connection examples are given below. The first provides a
connection from the ep0 as the source of the data to the in-
put of duc0 (Digital Up Converter) block, then it is routed
from the duc0 output to the input of the radio0 block. This
is an example of a static connection between two block us-
ing only the static crossbar between the DUC and radio,
this forms the transmit chain to the radio hardware.

The second example shows a block connected with the
streaming endpoint on each end. It is important to note
that each endpoint should only be used for a single pair of
signals. If the user’s block has an odd number of ports or
multiple pairs of ports, multiple streaming endpoints are

necessary.

c o n n e c t i o n s :
− { s r c b l k : ep0 , s r c p o r t : out0 ,
d s t b l k : duc0 , d s t p o r t : i n 0 }
− { s r c b l k : suc0 , s r c p o r t : ou t 0 ,
d s t b l k : r a d i o 0 , d s t p o r t : i n 0 }

The final piece of this file defines the clock connections to
the block. Clocking is a critical piece for ensuring that the
operation of all of the blocks goes smoothly. For this work
all of the clocks were defined using the compute engine
(CE) clock except for radio blocks which are connected to
the radio clock. An example of both types of clocking con-
nections are shown as,

c l k d o m a i n s :
− { s r c b l k : d e v i c e , s r c p o r t : r a d i o ,

d s t b l k : r a d i o 0 , d s t p o r t : r a d i o }
− { s r c b l k : d e v i c e , s r c p o r t : ce ,

d s t b l k : ddc0 , d s t p o r t : ce }

Finally, after all of these files have been updated to set
up the configuration of the block, the module can be built
and the FPGA image synthesized. To start the build and
synthesis process the user needs to create and navigate,
within the terminal, to the module build directory. Once in
the build directory, the make files for the install need to be
created using and the c files built :
$ cmake ..

-DUHD FPGA DIR=./path/to/uhd/fpga/dir

$ make

After this process completes the make files can be used to
install the module into GNURadio with the command,
$ sudo make install

At this point the block should be visible inside of GNURa-
dio at the bottom of the module tree. The make files are
now ready for synthesis to the FPGA. Synthesis requires
that the Xilinx Vivado is already installed with version
2019.1 being the tested version. The Vivado build is
initiated by executing the following in the build directory.
$ make blockName rfnoc image core.yml

The build process can take a significant amount of time,
throughout this work 45 minutes was found to be very com-
mon but times of up to four or five hours were also encoun-
tered depending on the content of the user logic. Once the
build is complete a .bit file is generated in the uhd/rfnoc/-
top/usrp3/x300/build directory. The .bit file is used to pro-
gram the FPGA using the uhd image loader tool. The image
loader was the most successful when using the following
argument configurations:

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

$ u h d i m a g e l o a d e r
−− a r g s =” add r =Radio . IP . Address ”
−− f p g a p a t h . / p a t h / t o / . b i t

8. Performance
It is important to set a uniform way to measure perfor-
mance such that performance across different implemen-
tations can be assessed and compared. Creating a metric
for the designs in this work is even more challenging, as
much of the design exists as a module within a black box.
Therefore, the metric must be defined for only the logic that
is managed by the user block itself.

Two metrics are developed for the user blocks in this work.
The first describes the streaming efficiency of the block and
is the number of clock cycles between the receipt of the
final word in the packet and the transmission of the final
word in the packet. This data latency metric helps classify
the efficiency of data management for blocks that require
any data retention or data stream halts. When a result is
produced based on the data in a packet, it is useful to know
how many cycles after the last word of a packet is received
does the resultant data product get transmitted. This is the
measure of the second metric that this work will refer to as
product latency.

The first metric is easy to determine. The design goal of
this block was to implement the algorithm without inter-
rupting the AXI-Stream flow through the block. This was
accomplished as the input ports and output AXI ports are
wired directly together. This means that any stoppage of
the stream comes from the block connected to the output
of the FSS block. So the last sample is registered into the
output on the clock cycle after it is registered onto the wire
running through the block. This is the absolute minimum
data latency possible for an RFNoC block other than not
being present in the stream chain at all.

Data in
Context

Data

Valid

Last

Data in
Payload

Data

Valid

Last

Result Out
Context

Data

Valid

Last

Result Out
Payload

Data

Valid

Last

Header

Sample N-1 Sample N

Timestamp

Sample 1 Sample 2 Sample 3

Header

Start Size

Figure 4. The state machine used for transmitting the a packet of
data out of an AXI-Stream port on an RFNoC block.

To understand the result product latency, a timing diagram
showing the end of the packet must be examined. Figure 4
shows a timing diagram at the end of the packet where the
send flag is triggered by the tlast signal.

Here, the send flag is asserted by the tlast signal during
that same cycle that the copy of one FSS bucket into the
send bucket is carried out. On the clock after the tlast, the
send bucket is loaded, the FSS buckets are clear and a valid
marked header is on the context bus. Two clocks after tlast,
assuming the consumer of the result is ready, the header is
removed from the context bus and the data is on the pay-
load bus. This means that the data is consumed by the out-
put block on the rising edge of the third clock after tlast is
asserted. This means that the product latency is three clock
cycles. On the Ettus X310, the FPGA operates at 200 MHz,
giving a total time of 15 nanoseconds between the receipt
of the last data word and the output consuming the result.

9. Conclusion
This paper presented a development flow for implementing
RFNoC blocks that was derived from the lessons learned
from the design of a Fast Spectrum Sensing (FSS) block.
The data interface of the framework was described be-
fore identifying critical files necessary for creating custom
blocks. Additionally, an example block architecture for
FSS was presented and shown to operate at full streaming
rates.

New performance metrics were defined to determine per-
formance from only the user defined logic. These new def-
initions include a data latency metric to define streaming
performance and product latency to determine he time re-
quired to generate a result. The given FSS architecture adds
no additional latency to the data stream, other than that in-
troduced by the presence of the block. The block achieves
a product latency of three clock cycles or 15 nanoseconds
when running the X310 at its full clock rate of 200 MHz.

Acknowledgements
This work was sponsored by the Defense Advanced Re-
search Projects Agency (DARPA) under grant HR0011-20-
1-0007. The views expressed in this article are those of
the authors and do not reflect official policy or position of
DARPA, or the U.S. Government, No official endorsement
by DARPA should be inferred. Approved for public re-
lease; distribution is unlimited.

Adventures in RFNoCTM: Lessons Learned From Developing a Real-Time Spectrum Sensing Block

References
Ettus Research. Getting Started with RFNoC Development,

October 2020a. URL https://kb.ettus.com/
index.php?title=Getting_Started_with_
RFNoC_Development&redirect=no.

Ettus Research. RF Network-On-Chip (RFNoCTM) Specifi-
cation, 2020b. Rev. 1.0.

Kirk, Benjamin H., Narayanan, Ram M., Gallagher,
Kyle A., Martone, Anthony F., and Sherbondy, Kelly D.
Avoidance of time-varying radio frequency interference
with software-defined cognitive radar. IEEE Transac-
tions on Aerospace and Electronic Systems, pp. 1090–
1107, November 2018. doi: 10.1109.

Martone, Anthony F., Ranney, Kenneth I., Sherbondy,
Kelly, Gallagher, Kyle A., and Blunt, Shannon D. Spec-
trum allocation for noncooperative radar coexistence.
IEEE Transactions on Aerospace and Electronic Sys-
tems, 54(1):90–105, feb 2018.

Mattingly, Rylee G. Implementation and analysis of adap-
tive spectrum sensing. Master’s thesis, University of Ok-
lahoma, 2021.

Xilinx. AXI Reference Guide, 2017.

YAML. YAML Ain’t Markup Language (YAML) Version
1.2, 2009. URL https://yaml.org/spec/1.2/
spec.html.

https://kb.ettus.com/index.php?title=Getting_Started_with_RFNoC_Development&redirect=no
https://kb.ettus.com/index.php?title=Getting_Started_with_RFNoC_Development&redirect=no
https://kb.ettus.com/index.php?title=Getting_Started_with_RFNoC_Development&redirect=no
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html

