
Abstract

Indoor digital communication, such as
Wi-Fi, can be used to provide real-
time indoor intrusion detection. In this
work, we use signals internal to the
radio receiver, such as the PLL or
AGC block, to identify when a
channel is changing due to a target
moving within the physical channel.
We describe a test using GNU Radio
and Ettus USRP N310 hardware for
both a test transmitter and receiver.
Test results include a coverage map
for a system in a large building.

1. Introduction

Indoor communication such as WiFi typically occurs
over a multi-path channel, with transmitted signals
reflecting from several surfaces before being received.
Modern digital receivers deal with vagaries of such
received signals using a variety of internal algorithms,
including automatic gain control (AGC), symbol timing
tracking, phase-locked loops (PLLs), and equalizers
(Rice, 2009). Such receivers also deal with time-varying
channels, such as channels having moving reflectors.
This is a familiar phenomenon: users of WiFi are
accustomed to working online even as objects in their
vicinity (people walking, doors opening) are moving
around.

Because the internal algorithms of a digital receiver adapt
to compensate for time-varying channels, internal
variables of these algorithms can provide an indication of
when the channel has changed. In this paper, we explore
using signals from internal algorithms as a means of
detecting channel variations due to the presence of a
human in the channel between a transmitter and a
receiver. Basically, we want to reach inside a radio
receiver and grab signals that can tell us when someone
has walked into the channel. We call this problem the
intrusion detection problem. More colloquially, this could
be referred to as a burglar alarm. Development of this

research could provide every WiFi-equipped home or
business with a broad way of securing the premises.
Similar research has been done with WiFi signals (Wang,
et al., 2019; Z. Tian, et al., 2018), but those results
remain outside the scope of GNU Radio.

Specifically we address the following questions: What
internal algorithm signals can be used to provide an
effective intrusion detection system, that provides a high
probability of detection and low probability of false
alarm? What is the coverage of a transmitter/receiver pair
that provides good performance?

These questions are explored by a radio system
implemented using GNU Radio. In our prototype system,
we implemented a QPSK transmitter/receiver system,
preparatory to future investigations using WiFi signals.

2. Feasibility Testing

The testing occurred in the building diagrammed in figure 1
(the Sant Engineering Research Building at Utah State
University). Six antennae were placed in the ceiling of the
second floor: northwest (NW), north center (NC), etc. The
dimensions of the building, assuming largest distances, are
approximately 40.84 m (134 ft) from east to west, and about
25.6 m (84 ft) from north to south.

Initial testing was done with the transmitter antenna in the
lab, mounted approximately 1.2 m above floor level. The
receive antenna used was mounted in the ceiling outside the
entrance to the lab (just north of the “transmitter” location in
figure 1), about 2.7 m to the north and 0.6 m to the east of the
transmitter. By placing these in close proximity, we were able
to test whether movement developed any response at all.

Multi-Receiver Real-time Intrusion Detection with GNU Radio and USRP N310

Daren Swasey DAREN.SWASEY@USU.EDU
Department of Electrical and Computer Engineering, 4120 Old Main Hill Logan, UT 84322-4120 USA

Todd K. Moon TODD.MOON@USU.EDU
Department of Electrical and Computer Engineering, 4120 Old Main Hill Logan, UT 84322-4120 USA

Mirelle DeSpain MIRELLE2U@GMAIL.COM
Department of Electrical and Computer Engineering, 4120 Old Main Hill Logan, UT 84322-4120 USA

The QPSK transmitter was implemented in GNU Radio. Two
Ettus USRP N310s were used, one as a transmitter and the
other as a receiver. The transmitted signal ran through two
Shireen 90305 amplifiers. Random data was transmitted in
the Industrial, Scientific, and Medical (ISM) band at 905
MHz. Figure 2 illustrates the flowgraph for the transmitter
and receiver.

Two signal scenarios were considered. The first was
"quiescent" data, when it was determined (visually) that there
were no people walking around on the floor. The other data
was "active" data, when an intruder was present. The active
data was obtained when a person was walking laps around the
hallways.

2.1. Close-proximity Testing

The first tests used the output data from the Carrier Phase
Synchronization block as a baseline. This block may also be
referred to as a phase-locked loop (PLL). Figure 3 shows a
side-by-side comparison between the raw quiescent and the

raw active data from that block. There are obvious differences
in the data, making it easier to isolate for intrusion detection
purposes. Each prolonged spike seen in the active data is
when the tester was closest to the receive antenna.

From the data it is visually clear when an intruder walked past
the receive antenna. Of course, the data from the PLL was
only one of many options. We also did testing using the AGC.

There are two signal conditions in which the AGC can be
placed, bandpass and baseband. For bandpass, Rice
recommends placing it after resampling takes place, which in
our case is immediately after the USRP Source. The baseband
location is after the matched filter, which is the RRC filter in
our flowgraph.

The AGC serves to suppress large variations, however,
variables internal to the AGC in GNU Radio must contain
that information in order to suppress it. The variable in GNU
Radio that provides that information is _gain. This gain
variable is equivalent to A(n+1) in equation 1 (Rice, 2009, p.
591),

 A (n+1) = A(n) + α [R − |(A (n) A r(nT))|] (1)

which is represented by the following in the GNU Radio
AGC code within the scale function. R is equivalent to
_reference, the input signal amplitude Ar(nT) multiplied by
the amplitude from the AGC A(n) is equivalent to output, and

α is equivalent to _rate.

 _ gain += (_ reference – fabsf (output))∗ _ rate (2)

In order to access _gain, a custom AGC block was written
based on code from GNU Radio’s original AGC block, with
an additional output port for the gain. Code written to the new
files is highlighted in red boxes in figure 4. The original code
is from the agc_xx_impl.cc and the agc.h files. The work
function comes from the agc_xx_impl.cc file and the scaleN

Figure 1: Original testing setup, modified from Bradshaw’s
figure 2.6

Figure 2: GNU Radio flowgraph for original transmitter and receiver setup

function can be found in the agc.h file.

The custom AGC was placed immediately after the USRP
Source, where the incoming signal was still at bandpass
frequencies. Bandpass data can be slightly more effective and
responsive than baseband AGC data, because the baseband
signal amplitude has been somewhat normalized by the
matched filter (Rice, 2009, p. 589). The quality of the gain
data here functioned equally as well as the data from the
carrier phase synchronizer.

Though testing with the initial antenna configuration was
promising, it is unlikely that a transmitter and receiver would
be so close in a real-world situation. Such a setup would also
be ineffective, as it limits the direct path length and amount of
possible multi-path reflections, which seem to influence the
detectable range of each receiver.

2.2. In-Ceiling Testing with Custom AGC

After testing with the initial setup, we began to use the SW
in-ceiling antenna as the transmitter and various other in-
ceiling antennae were used as receivers. Using this setup, all
data transmission and reception would happen in the ceiling

of the building, where there is a less direct path from
transmitter to receiver. After performing tests with a new
transmitter location, it became clear that the system could not
function as normal without the AGC. Due to this issue, the
data from the PLL became irrelevant, as it could not function
well without the AGC. At this point, the AGC gain data
became the best option and was used for the remainder of our
testing.

Data from the AGC gain indicated two viable detection
conditions. One condition shows active movement, and the
other is apparent when a non-moving target is present. Each
condition can be identified in figure 5. Data for the figure is
from the SE antenna in a test where a target stood in several
locations around the building, each for a one-minute period.
The detection metrics are based on the shown conditions,
which were most apparent in the time domain. The frequency
domain was less useful, but it also showed signal energy was
a valid metric, bringing the number of detection metrics to
three.

2.3. Intrusion Detection Metrics

Three methods were implemented for threshold setting and
intrusion identification. These include the standard deviation
of the signal amplitude, standard deviation of the signal
energy, and the average signal level. In real-time, each of
these are calculated in a moving window. An effective length
of the window proved to be anywhere between 1 and 3
seconds. Windows longer than this can be used, but are
unreasonable for intrusion detection purposes due to
lengthened update times. Processing on shorter windows
often could not accurately detect intrusion conditions when
using standard deviation.

Standard deviation is used as a metric for comparison because

Figure 5: Categorized AGC data from SE antenna

Figure 4: Code additions for custom AGC

Figure 3: Raw quiescent and active data from Carrier
Phase Synchronizer in close-proximity setting.

it can isolate localized signal variations. Using a metric like
the amplitude of the signal would not capture enough
information to make reasonable detection decisions. This is
especially true of the AGC gain, as it could vary in range for
different receivers from below 500 for one receiver to over
10,000 on others, depending on the signal strength at the
receiver.

The level-based detection method is useful for determining
when a target may be present but not in motion. Data in figure
5 shows the signal level shifting and remaining at different
levels after the target moved to a new location. This
information suggests that target localization is possible as
well. That concept is not expanded upon here, but can
certainly be explored in future research.

2.3.1. STANDARD DEVIATION OF SIGNAL AMPLITUDE

As can been seen in figure 5, amplitude variation is a clear
indicator of movement. When there is movement, there are
rapid fluctuations in the AGC gain as the AGC adjusts to the
incoming signal and stabilizes the output. When there is no
movement or presence, the amount of fluctuation decreases.

By calculating the standard deviation of the signal amplitude,
we can capture useful information from the fluctuations. For
the in-ceiling testing, standard deviation of signal amplitude
provided the best overall receiver operating characteristic
(ROC) curves. This indicates the highest probability of
accurate detection, and the lowest probability of false alarms.

The amplitude standard deviation (ASD) equation used for
data post-processing in Matlab is shown in (3). Sample
indices are represented by i, and N is the number of samples
per window.

 √∑i=0

N−1

xi
2

N
−μ2 (3)

2.3.2. STANDARD DEVIATION OF SIGNAL ENERGY

The standard deviation of signal amplitude captures most of
the movement information, but not all. Signal spectrograms
indicated that signal energy increased when movement
happened in testing. In the time domain, signal energy
displayed similar characteristics to signal amplitude when
movement occurred in testing.

The standard deviation of signal energy and signal amplitude
capture slightly different information, so it was deemed
beneficial to include both as metrics for intrusion detection.
What one metric might not capture, another potentially could.
To calculate energy standard deviation (ESD), all the values
in the window are simply squared, and the ASD calculation is
repeated:

 √∑i=0

N−1

(x i
2)2

N
−μ2 (4)

where μ is now defined as the mean of the signal energy.

 μ =

∑
i=0

N−1

xi
2

N
 (5)

Notice that this is the same summation that occurs in equation
3 for ASD. When running post-processing or real-time
processing, the ASD calculation already contains values for
the ESD calculation, saving valuable processing time.

2.3.3. AVERAGE LEVEL

A third metric is the average level of the signal. This is a
valuable metric for determining environmental changes even
when nothing significant appears from the ASD or ESD. The
AGC data gathered shows that in different positions, the gain
of the AGC will shift to different levels and remain there
while the target is still there. Conveniently, the average level
μ is already calculated in the ASD calculation.

2.3.4 MATLAB RESULTS

The equations and logic for the detection metrics were first
implemented in Matlab in post-processing. For ease of
visualization, a highlighter program was created. The
program took three input files, the first is used as quiescent
data, and other two files are used as comparison tests. The
tests performed to get quiescent data required starting the test
in the lab and walking out of the building. For this reason, the
option of setting bounds was included in the Matlab script to
isolate the true quiescent data. This option also served to
isolate good data from longer tests.

The script opened the first data file and ran the moving
window across the data, getting the maximums for the ASD,
ESD, and the average minimums and average maximums for
the level. A variable was defined for the number of segments
the quiescent data should be broken up into. By using the
sample rate of the data and the window length, the number of
segments calculated implicitly defined the amount of overlap
between each calculation. This process established the
foundation for the arming phase of the intrusion detection
prototype.

After the arming process takes place, the script looks at the
other two data files. For the first set of data, the program finds
where the ASD or ESD (only one or the other could be
selected) exceeds the respective maximum value calculated in
the arming process. For each window location where this is
the case, the program plots the same data on top of the
original data in a different color, indicating a detection.

Figure 6 shows a combination of ASD/ESD detection and

level detection. If the window calculations for the current data
indicate that the average level extends beyond the average
minimum or maximum level of the quiescent data (indicated
by the red lines), the current data is also highlighted a
different color than for ASD or ESD detection. In figure 6,
ASD/ESD detections are highlighted in purple, and level
detections are blue. The original signal is green. Here, the
original data gets mostly covered by the detection metric
highlighter.

3. gr-RID

Initial testing with the custom AGC and data processing in
Matlab for each detection metric provided an algorithmic
basis for a full real-time detection system. All these functions
were developed into a new GNU Radio sync block, written in
C++. This block is known as RID (Real-time Intrusion
Detection).

There are three components or phases the RID block utilizes.
The first is initialization, in which an internal buffer is created
to store data and run calculations. Variables related to
detection thresholds are also calculated. The second phase is
to take input data in a quiescent state and “arm” the block
using the quiescent data. The third phase is detection mode. In
this state, the block periodically evaluates data for the
detection metrics to determine if there has been an intrusion.

3.1. Block Setup

When the RID block is initialized, several variables are used
to set the internal buffer size, calculate how many iterations
are required for arming the block, and set how many samples
should be collected before processing data again. These
variables are the sample rate, window time, arming time, and
the overlap percent. Of these variables, only the overlap is
run-time adjustable.

The internal buffer is created by simply multiplying the
sample rate by the window time. After the internal buffer size
is determined, calculations are done to determine how many
times the block needs to call its arming sequence before the
block is considered to be armed. This is based on the arming

time and the overlap percentage. The amount of overlap can
range from 0 to 100 percent. Zero overlap means the block
will process data for every n samples, and 100 percent
overlap means the block will process the window with every
new sample obtained. Based on conditional statements shown
in figure 7, the number of samples between window
processing is calculated and stored in the shift_samples
variable. Here, the number of iterations of the arming phase is
also calculated.

The calculations done in the constructor are set up such that
when the full system is run, the arm_time and window_time
variables would be in units of seconds. Later testing revealed
that the precision of these variables relative to real-time is
poor, likely due to lack of clock cycles per second for
processing a whole iteration during the arming phase.

After initialization, the block waits to activate until a
start_test variable becomes true. The start_test variable may
be implemented by using a Qt GUI Checkbox in GNU Radio
to give the user control of when the block begins the arming
phase. All outputs of the RID block are set to -1 until
start_test is true. This allows for easy visual confirmation that
the block has begun to function when running tests.

3.2. Arming Phase

In the arming phase, the arm_chunks variable shown in figure
7 defines how many times the arming section of the code will
be accessed. The arming code gets accessed every time
shift_samples samples have been obtained from the custom
AGC in the GNU Radio flowgraph. In this section of code,
the block implements the formulas shown in section 2.3 to
calculate the thresholds for the detection metrics.

During arming, the maximum and minimum values are
accumulated for level detection, and the maximum ASD and
ESD are stored. After the calculations are performed
arm_chunks times, the accumulated level detection variables
are averaged and stored. Tolerances are introduced here,
which are defined with tolerance percentages set by the user.

Figure 6: Detection highlighter example for the SE antenna
Figure 7: RID constructor calculations for arming and
detection phases

The tolerance for level detection is set by multiplying the
level’s tolerance percentage by the difference between the
average maximum and average minimum level. The ASD and
ESD tolerances are determined by multiplying the respective
tolerance percentage by the maximum ASD and ESD values.
All tolerances are added to the original value from which they
were calculated and results are used as the final thresholds.

Finally, the block prints out a message to the console
indicating that it is armed. At this point, if the start_test
variable become false, all the quiescent values and tolerances
that were stored are cleared, and the block will again wait to
do any processing until start_test becomes true.

3.2. Detection Mode

When the arming phase has finished, the block continues to
run calculations and the results are compared to the quiescent
thresholds. If the current measurements exceed the thresholds
of any metric, the output value for the respective metric will
be changed to one, indicating a detection. Otherwise each
output will be set to zero. Each metric has a run-time
adjustable tolerance percentage that can be used to tweak the
detection sensitivity if necessary.

Comparison logic for the standard deviation metrics for signal
amplitude and energy is simple. If the standard deviation is
greater than the standard deviation threshold, indicate a
detection. For level detection, if the average level of the
current data is greater than the average maximum level
threshold, a detection is triggered. Similarly, a detection is
triggered if the current average level drops below the average
minimum level threshold.

A final feature of the RID block is sound output for when
detection happens. There are three conditions for an alarm.
One condition is for when both ASD and ESD detections are
triggered, one is for when either ASD or ESD is triggered,
and the last is for when only the level metric is triggered. In
the first case for an alarm, a detection is far more likely to be
correct because two metrics are indicating a presence. This
aids in reducing the chance of a false alarm. The sound output
is run-time adjustable, which is useful for when multiple
receivers are being used at the same time. All sound playback
was implemented using the system() C++ command to call
the canberra-gtk-play terminal command in Linux.

4. Intrusion Detection System Architecture

The intrusion detection system prototype consists of a
transmitter and up to four receivers. The multi-receiver
system is wrapped up into a hierarchical block written in
Python, composed of duplicates of a base flowgraph. The full
intrusion detection system uses a hierarchical block that
combines up to four copies of a receiver section similar to the
one from figure 2. The transmitter portion remains the same.
For intrusion detection, additions were made to the receiver
side of the flowgraph, including the custom AGC with gain

output and the RID block, as depicted in figure 8. For the
purposes of testing RID on non-AGC data ports in the system,
the post-AGC blocks remain available.

As an aside, the RID block in figure 8 has an additional
output port called new_level, but that is a feature that is still
being developed. It could potentially be used as a method of
intruder localization, but it is not necessary for intrusion
detection as described in this paper, and thus is not explained
here.

5. Testing and Results

The simple tests conducted with the intrusion detection
capability have shown very encouraging results. The test
described here was performed per-receiver for the NC, SC,
NE, and SE antennae. The SW antenna was used as the
transmitter in all cases. The aim of the test was to determine
what areas are covered by each receiver’s detection
capabilities.

The test for intrusion detection was performed at a medium-
speed walking pace by an adult. Audio feedback was enabled
for one receiver at a time to determine per-receiver detection
ranges. The tester walked around the hallways of the building
and through the rooms in the center as shown in figure 9. As
much space was covered as possible. Bluetooth headphones
were connected to the test computer to allow the tester to
receive auditory detection feedback while performing the
tests. The test for each receiver was performed when the
tester was the only person on the 2nd floor of the building so
as to prevent erroneous data during the arming and detection
phases of the RID block. During the arming phase, the tester
could not leave the building, so instead remained still at the
testing computer for arming duration.

Variables such as transmitter and receiver gain were adjusted
such that the receiver blocks could achieve stable lock in both
PLLs and symbol timing synchronizers. This was done as a
visual confirmation of consistency between tests. The

Figure 8: Receiver section of flowgraph with intrusion
detection blocks added.

transmitter gain was set to 65 dB (absolute), and the gain
values for the receivers were set to 65, 65, 65, and 51 dB
(absolute) for the NE, SE, NC, and SC receivers respectively.
The AGC rate was set to 0.25. Other AGC values were left at
default values established in the original GNU Radio AGC.
The tolerance percentages for ASD, ESD, and level detection
are listed in table 1. The random data was transmitted at a
frequency of 905 MHz.

Table 1: Detection metric tolerances

Receiver
ASD

Tolerance
(%)

ESD
Tolerance

(%)

Level
Tolerance

(%)

NE 75 75 30

SE 10 10 25

NC 15 5 5

SC 15 15 5

While testing, a printed, blank version of figure 9 was used to
record where an alarm was activated. Detectable areas were
marked for any of the three detection metrics. Figure 9 shows
the results for the SC antenna. The NE, SE, and NC antennae
covered a lot of similar area between each other and thus are
shown here. Figure 10 is a heat map of the combined cover
for the floor of the lab building. Testing showed that all
locations have at least two antennae that will react to walking
motion.

Some of the receivers were more sensitive to different
metrics. The sensitivity was such that the tolerances were
adjusted to remove any erroneous detection indications. This
was possible to do given that the tester was the only person
on the test floor. After tuning the tolerance percentages for
each receiver, detections were accurate and reliable as long as
there was only one person in the testing environment.
Tolerance tuning also served to reduce random hardware-
induced detection from any hardware noise, which seemed to
be prevalent in an overnight test run before the full test.

A pattern emerged when post-processing data with Matlab
that was again valid in these real-time tests. For our specific
setup, it appears that the sensitivity of a given receiver is
largely determined by two parameters: distance from
transmitter location, and how indirect the signal path is. The
NE antenna is the farthest away from the transmitter and was
able to detect motion around the entire testing area. The SC
antenna is significantly closer to the transmitter and could
detect just under half of the motion in the testing area.

6. Conclusion and Further Research

The intrusion detection system was designed to be a viable
and sensitive method of detecting intruders in a real-world
test environment using GNU Radio. Early testing showed
some metrics that could be processed to identify the presence
of an intruder based on detection theory concepts. These
metrics were successfully integrated into a real-time GNU
Radio block as a component of a QPSK communication
system. The system is able to provide real-time feedback
about intrusion using real-time hardware.

The intrusion detection system is highly tunable, allowing for
generalization to other situations and building layouts than
were used in our testing. As long as the state of the test
environment is known and detection metric tolerances,
transmit/receive gain, and AGC rates are tuned correctly, the
intrusion detection system can provide very good results
under basic testing conditions.

In further research, we aim to learn more about the capability
of the system in other testing conditions. We also seek to
implement the same process of detection by using Wi-Fi
signals within GNU Radio. Another possible research route is
target localization based on the level detection metric. This
may be combined with other work from this lab, which
involves identifying and processing Doppler-shifted radio
signals for motion tracking. Motion detection and the
potential for localization with this project may enhance the
tracking capability of the motion tracking concept.

Figure 10: Heat map of the lab building for walking test of
all four receivers. Darker colors indicate areas covered by
more receivers.

Figure 9: Detection Range for SE antenna during walking
test. Detection area is highlighted in dark blue. The
transmitter is centered in the purple rings and the receiver is
centered in cyan rings. Each square represents a square foot.

References

Bradshaw, Thomas L., "Alternative Doppler Extraction for
Indoor Communication Signals" (2021). All Graduate
Theses and Dissertations. 8111.
https://digitalcommons.usu.edu/etd/8111
https://doi.org/10.26076/82c8-42ac

Rice, Michael. (2009). Digital Communications : A Discrete-
Time Approach . Upper Saddle River: Pearson.

Wang, T., Yang, D., Zhang, S., Wu, Y., & Xu, S. (2019). Wi-
Alarm: Low-Cost Passive Intrusion Detection Using WiFi.
Sensors (Basel, Switzerland), 19(10), 2335.
https://doi.org/10.3390/s19102335

Z. Tian, Y. Li, M. Zhou and Z. Li, "WiFi-Based Adaptive
Indoor Passive Intrusion Detection," 2018 IEEE 23rd
International Conference on Digital Signal Processing
(DSP), 2018, pp. 1-5, doi: 10.1109/ICDSP.2018.8631613.

https://digitalcommons.usu.edu/etd/8111
https://doi.org/10.3390/s19102335
https://doi.org/10.26076/82c8-42ac

