
Abstract

Indoor digital communication, such as
Wi-Fi, can be used to provide real-
time indoor intrusion detection. In this
work, we use signals internal to the 
radio receiver, such as the PLL or 
AGC block, to identify when a 
channel is changing due to a target 
moving within the physical channel. 
We describe a test using GNU Radio 
and Ettus USRP N310 hardware for 
both a test transmitter and receiver. 
Test results include a coverage map 
for a system in a large building. 

1. Introduction

Indoor communication such as WiFi typically occurs 
over a multi-path channel, with transmitted signals 
reflecting from several surfaces before being received. 
Modern digital receivers deal with vagaries of such 
received signals using a variety of internal algorithms, 
including automatic gain control (AGC), symbol timing 
tracking, phase-locked loops (PLLs), and equalizers 
(Rice, 2009). Such receivers also deal with time-varying 
channels, such as channels having moving reflectors. 
This is a familiar phenomenon: users of WiFi are 
accustomed to working online even as objects in their 
vicinity (people walking, doors opening) are moving 
around.

Because the internal algorithms of a digital receiver adapt
to compensate for time-varying channels, internal 
variables of these algorithms can provide an indication of
when the channel has changed. In this paper, we explore 
using signals from internal algorithms as a means of 
detecting channel variations due to the presence of a
human in the channel between a transmitter and a 
receiver. Basically, we want to reach inside a radio 
receiver and grab signals that can tell us when someone 
has walked into the channel. We call this problem the 
intrusion detection problem. More colloquially, this could
be referred to as a burglar alarm. Development of this 

research could provide every WiFi-equipped home or 
business with a broad way of securing the premises. 
Similar research has been done with WiFi signals (Wang,
et al., 2019; Z. Tian, et al., 2018), but those results 
remain outside the scope of GNU Radio.

Specifically we address the following questions: What 
internal algorithm signals can be used to provide an 
effective intrusion detection system, that provides a high 
probability of detection and low probability of false 
alarm? What is the coverage of a transmitter/receiver pair
that provides good performance?

These questions are explored by a radio system 
implemented using GNU Radio. In our prototype system,
we implemented a QPSK transmitter/receiver system, 
preparatory to future investigations using WiFi signals.

2. Feasibility Testing

The testing occurred in the building diagrammed in figure 1 
(the Sant Engineering Research Building at Utah State 
University). Six antennae were placed in the ceiling of the 
second floor: northwest (NW), north center (NC), etc. The 
dimensions of the building, assuming largest distances, are 
approximately 40.84 m (134 ft) from east to west, and about 
25.6 m (84 ft) from north to south.

Initial testing was done with the transmitter antenna in the 
lab, mounted approximately 1.2 m above floor level. The 
receive antenna used was mounted in the ceiling outside the 
entrance to the lab (just north of the “transmitter” location in 
figure 1), about 2.7 m to the north and 0.6 m to the east of the 
transmitter. By placing these in close proximity, we were able 
to test whether movement developed any response at all.
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The QPSK transmitter was implemented in GNU Radio. Two 
Ettus USRP N310s were used, one as a transmitter and the 
other as a receiver. The transmitted signal ran through two 
Shireen 90305 amplifiers. Random data was transmitted in 
the Industrial, Scientific, and Medical (ISM) band at 905 
MHz. Figure 2 illustrates the flowgraph for the transmitter 
and receiver.

Two signal scenarios were considered. The first was 
"quiescent" data, when it was determined (visually) that there 
were no people walking around on the floor. The other data 
was "active" data, when an intruder was present. The active 
data was obtained when a person was walking laps around the
hallways.

2.1. Close-proximity Testing

The first tests used the output data from the Carrier Phase 
Synchronization block as a baseline. This block may also be 
referred to as a phase-locked loop (PLL). Figure 3 shows a 
side-by-side comparison between the raw quiescent and the 

raw active data from that block. There are obvious differences
in the data, making it easier to isolate for intrusion detection 
purposes. Each prolonged spike seen in the active data is 
when the tester was closest to the receive antenna. 

From the data it is visually clear when an intruder walked past
the receive antenna. Of course, the data from the PLL was 
only one of many options. We also did testing using the AGC.

There are two signal conditions in which the AGC can be 
placed, bandpass and baseband. For bandpass, Rice 
recommends placing it after resampling takes place, which in 
our case is immediately after the USRP Source. The baseband
location is after the matched filter, which is the RRC filter in 
our flowgraph.

The AGC serves to suppress large variations, however, 
variables internal to the AGC in GNU Radio must contain 
that information in order to suppress it. The variable in GNU 
Radio that provides that information is _gain. This gain 
variable is equivalent to A(n+1) in equation 1 (Rice, 2009, p. 
591),

       A (n+1) = A(n ) + α [ R − |(A (n) A r(nT ))|]      (1)

which is represented by the following in the GNU Radio 
AGC code within the scale function. R is equivalent to 
_reference, the input signal amplitude Ar(nT) multiplied by 
the amplitude from the AGC A(n) is equivalent to output, and

α is equivalent to _rate. 

   _ gain += (_ reference – fabsf (output))∗ _ rate    (2)

In order to access _gain, a custom AGC block was written 
based on code from GNU Radio’s original AGC block, with 
an additional output port for the gain. Code written to the new
files is highlighted in red boxes in figure 4. The original code 
is from the agc_xx_impl.cc and the agc.h files. The work 
function comes from the agc_xx_impl.cc file and the scaleN 

Figure 1: Original testing setup, modified from Bradshaw’s 
figure 2.6 

Figure 2: GNU Radio flowgraph for original transmitter and receiver setup



function can be found in the agc.h file. 

The custom AGC was placed immediately after the USRP 
Source, where the incoming signal was still at bandpass 
frequencies. Bandpass data can be slightly more effective and 
responsive than baseband AGC data, because the baseband 
signal amplitude has been somewhat normalized by the 
matched filter (Rice, 2009, p. 589). The quality of the gain 
data here functioned equally as well as the data from the 
carrier phase synchronizer.

Though testing with the initial antenna configuration was 
promising, it is unlikely that a transmitter and receiver would 
be so close in a real-world situation. Such a setup would also 
be ineffective, as it limits the direct path length and amount of
possible multi-path reflections, which seem to influence the 
detectable range of each receiver.

2.2. In-Ceiling Testing with Custom AGC

After testing with the initial setup, we began to use the SW 
in-ceiling antenna as the transmitter and various other in-
ceiling antennae were used as receivers. Using this setup, all 
data transmission and reception would happen in the ceiling 

of the building, where there is a less direct path from 
transmitter to receiver. After performing tests with a new 
transmitter location, it became clear that the system could not 
function as normal without the AGC. Due to this issue, the 
data from the PLL became irrelevant, as it could not function 
well without the AGC. At this point, the AGC gain data 
became the best option and was used for the remainder of our 
testing.

Data from the AGC gain indicated two viable detection 
conditions. One condition shows active movement, and the 
other is apparent when a non-moving target is present. Each 
condition can be identified in figure 5. Data for the figure is 
from the SE antenna in a test where a target stood in several 
locations around the building, each for a one-minute period. 
The detection metrics are based on the shown conditions, 
which were most apparent in the time domain. The frequency 
domain was less useful, but it also showed signal energy was 
a valid metric, bringing the number of detection metrics to 
three.

2.3. Intrusion Detection Metrics

Three methods were implemented for threshold setting and 
intrusion identification. These include the standard deviation 
of the signal amplitude, standard deviation of the signal 
energy, and the average signal level. In real-time, each of 
these are calculated in a moving window. An effective length 
of the window proved to be anywhere between 1 and 3 
seconds. Windows longer than this can be used, but are 
unreasonable for intrusion detection purposes due to 
lengthened update times. Processing on shorter windows 
often could not accurately detect intrusion conditions when 
using standard deviation.

Standard deviation is used as a metric for comparison because

Figure 5: Categorized AGC data from SE antenna

Figure 4: Code additions for custom AGC

Figure 3: Raw quiescent and active data from Carrier 
Phase Synchronizer in close-proximity setting.



it can isolate localized signal variations. Using a metric like 
the amplitude of the signal would not capture enough 
information to make reasonable detection decisions. This is 
especially true of the AGC gain, as it could vary in range for 
different receivers from below 500 for one receiver to over 
10,000 on others, depending on the signal strength at the 
receiver.

The level-based detection method is useful for determining 
when a target may be present but not in motion. Data in figure
5 shows the signal level shifting and remaining at different 
levels after the target moved to a new location. This 
information suggests that target localization is possible as 
well. That concept is not expanded upon here, but can 
certainly be explored in future research.

2.3.1. STANDARD DEVIATION OF SIGNAL AMPLITUDE

As can been seen in figure 5, amplitude variation is a clear 
indicator of movement. When there is movement, there are 
rapid fluctuations in the AGC gain as the AGC adjusts to the 
incoming signal and stabilizes the output. When there is no 
movement or presence, the amount of fluctuation decreases.

By calculating the standard deviation of the signal amplitude, 
we can capture useful information from the fluctuations. For 
the in-ceiling testing, standard deviation of signal amplitude 
provided the best overall receiver operating characteristic 
(ROC) curves. This indicates the highest probability of 
accurate detection, and the lowest probability of false alarms.

The amplitude standard deviation (ASD) equation used for 
data post-processing in Matlab is shown in (3). Sample 
indices are represented by i, and N is the number of samples 
per window.

                                  √∑i=0

N−1

xi
2

N
−μ2                               (3)

2.3.2. STANDARD DEVIATION OF SIGNAL ENERGY

The standard deviation of signal amplitude captures most of 
the movement information, but not all. Signal spectrograms 
indicated that signal energy increased when movement 
happened in testing. In the time domain, signal energy 
displayed similar characteristics to signal amplitude when 
movement occurred in testing. 

The standard deviation of signal energy and signal amplitude 
capture slightly different information, so it was deemed 
beneficial to include both as metrics for intrusion detection. 
What one metric might not capture, another potentially could.
To calculate energy standard deviation (ESD), all the values 
in the window are simply squared, and the ASD calculation is
repeated:

                               √∑i=0

N−1

(x i
2)2

N
−μ2                          (4)

where μ is now defined as the mean of the signal energy.

                                 μ =

∑
i=0

N−1

xi
2

N
                             (5)

Notice that this is the same summation that occurs in equation
3 for ASD. When running post-processing or real-time 
processing, the ASD calculation already contains values for 
the ESD calculation, saving valuable processing time.

2.3.3. AVERAGE LEVEL

A third metric is the average level of the signal. This is a 
valuable metric for determining environmental changes even 
when nothing significant appears from the ASD or ESD. The 
AGC data gathered shows that in different positions, the gain 
of the AGC will shift to different levels and remain there 
while the target is still there. Conveniently, the average level 
μ is already calculated in the ASD calculation.

2.3.4 MATLAB RESULTS

The equations and logic for the detection metrics were first 
implemented in Matlab in post-processing. For ease of 
visualization, a highlighter program was created. The 
program took three input files, the first is used as quiescent 
data, and other two files are used as comparison tests. The 
tests performed to get quiescent data required starting the test 
in the lab and walking out of the building. For this reason, the
option of setting bounds was included in the Matlab script to 
isolate the true quiescent data. This option also served to 
isolate good data from longer tests.

The script opened the first data file and ran the moving 
window across the data, getting the maximums for the ASD, 
ESD, and the average minimums and average maximums for 
the level. A variable was defined for the number of segments 
the quiescent data should be broken up into. By using the 
sample rate of the data and the window length, the number of 
segments calculated implicitly defined the amount of overlap 
between each calculation. This process established the 
foundation for the arming phase of the intrusion detection 
prototype.

After the arming process takes place, the script looks at the 
other two data files. For the first set of data, the program finds
where the ASD or ESD (only one or the other could be 
selected) exceeds the respective maximum value calculated in
the arming process. For each window location where this is 
the case, the program plots the same data on top of the 
original data in a different color, indicating a detection.

Figure 6 shows a combination of ASD/ESD detection and 



level detection. If the window calculations for the current data
indicate that the average level extends beyond the average 
minimum or maximum level of the quiescent data (indicated 
by the red lines), the current data is also highlighted a 
different color than for ASD or ESD detection. In figure 6, 
ASD/ESD detections are highlighted in purple, and level 
detections are blue. The original signal is green. Here, the 
original data gets mostly covered by the detection metric 
highlighter.

3. gr-RID

Initial testing with the custom AGC and data processing in 
Matlab for each detection metric provided an algorithmic 
basis for a full real-time detection system. All these functions 
were developed into a new GNU Radio sync block, written in
C++. This block is known as RID (Real-time Intrusion 
Detection).

There are three components or phases the RID block utilizes. 
The first is initialization, in which an internal buffer is created
to store data and run calculations. Variables related to 
detection thresholds are also calculated. The second phase is 
to take input data in a quiescent state and “arm” the block 
using the quiescent data. The third phase is detection mode. In
this state, the block periodically evaluates data for the 
detection metrics to determine if there has been an intrusion.

3.1. Block Setup

When the RID block is initialized, several variables are used 
to set the internal buffer size, calculate how many iterations 
are required for arming the block, and set how many samples 
should be collected before processing data again. These 
variables are the sample rate, window time, arming time, and 
the overlap percent. Of these variables, only the overlap is 
run-time adjustable. 

The internal buffer is created by simply multiplying the 
sample rate by the window time. After the internal buffer size 
is determined, calculations are done to determine how many 
times the block needs to call its arming sequence before the 
block is considered to be armed. This is based on the arming 

time and the overlap percentage. The amount of overlap can 
range from 0 to 100 percent. Zero overlap means the block 
will process data for every n samples, and 100 percent 
overlap means the block will process the window with every 
new sample obtained. Based on conditional statements shown
in figure 7, the number of samples between window 
processing is calculated and stored in the shift_samples 
variable. Here, the number of iterations of the arming phase is
also calculated.

The calculations done in the constructor are set up such that 
when the full system is run, the arm_time and window_time 
variables would be in units of seconds. Later testing revealed 
that the precision of these variables relative to real-time is 
poor, likely due to lack of clock cycles per second for 
processing a whole iteration during the arming phase.

After initialization, the block waits to activate until a 
start_test variable becomes true. The start_test variable may 
be implemented by using a Qt GUI Checkbox in GNU Radio 
to give the user control of when the block begins the arming 
phase. All outputs of the RID block are set to -1 until 
start_test is true. This allows for easy visual confirmation that
the block has begun to function when running tests.

3.2. Arming Phase

In the arming phase, the arm_chunks variable shown in figure
7 defines how many times the arming section of the code will 
be accessed. The arming code gets accessed every time 
shift_samples samples have been obtained from the custom 
AGC in the GNU Radio flowgraph. In this section of code, 
the block implements the formulas shown in section 2.3 to 
calculate the thresholds for the detection metrics. 

During arming, the maximum and minimum values are 
accumulated for level detection, and the maximum ASD and 
ESD are stored. After the calculations are performed 
arm_chunks times,  the accumulated level detection variables 
are averaged and stored. Tolerances are introduced here, 
which are defined with tolerance percentages set by the user. 

Figure 6: Detection highlighter example for the SE antenna
Figure 7: RID constructor calculations for arming and 
detection phases



The tolerance for level detection is set by multiplying the 
level’s tolerance percentage by the difference between the 
average maximum and average minimum level. The ASD and
ESD tolerances are determined by multiplying the respective 
tolerance percentage by the maximum ASD and ESD values. 
All tolerances are added to the original value from which they
were calculated and results are used as the final thresholds. 

Finally, the block prints out a message to the console 
indicating that it is armed. At this point, if the start_test 
variable become false, all the quiescent values and tolerances 
that were stored are cleared, and the block will again wait to 
do any processing until start_test becomes true.

3.2. Detection Mode

When the arming phase has finished, the block continues to 
run calculations and the results are compared to the quiescent 
thresholds. If the current measurements exceed the thresholds 
of any metric, the output value for the respective metric will 
be changed to one, indicating a detection. Otherwise each 
output will be set to zero. Each metric has a run-time 
adjustable tolerance percentage that can be used to tweak the 
detection sensitivity if necessary.

Comparison logic for the standard deviation metrics for signal
amplitude and energy is simple. If the standard deviation is 
greater than the standard deviation threshold, indicate a 
detection. For level detection, if the average level of the 
current data is greater than the average maximum level 
threshold, a detection is triggered. Similarly, a detection is 
triggered if the current average level drops below the average 
minimum level threshold. 

A final feature of the RID block is sound output for when 
detection happens. There are three conditions for an alarm. 
One condition is for when both ASD and ESD detections are 
triggered, one is for when either ASD or ESD is triggered, 
and the last is for when only the level metric is triggered. In 
the first case for an alarm, a detection is far more likely to be 
correct because two metrics are indicating a presence. This 
aids in reducing the chance of a false alarm. The sound output
is run-time adjustable, which is useful for when multiple 
receivers are being used at the same time. All sound playback 
was implemented using the system()  C++ command to call 
the canberra-gtk-play terminal command in Linux. 

4. Intrusion Detection System Architecture

The intrusion detection system prototype consists of a 
transmitter and up to four receivers. The multi-receiver 
system is wrapped up into a hierarchical block written in 
Python, composed of duplicates of a base flowgraph. The full 
intrusion detection system uses a hierarchical block that 
combines up to four copies of a receiver section similar to the
one from figure 2. The transmitter portion remains the same. 
For intrusion detection, additions were made to the receiver 
side of the flowgraph, including the custom AGC with gain 

output and the RID block, as depicted in figure 8. For the 
purposes of testing RID on non-AGC data ports in the system,
the post-AGC blocks remain available. 

As an aside, the RID block in figure 8 has an additional 
output port called new_level, but that is a feature that is still 
being developed. It could potentially be used as a method of 
intruder localization, but it is not necessary for intrusion 
detection as described in this paper, and thus is not explained 
here.

5. Testing and Results

The simple tests conducted with the intrusion detection 
capability have shown very encouraging results. The test 
described here was performed per-receiver for the NC, SC, 
NE, and SE antennae. The SW antenna was used as the  
transmitter in all cases. The aim of the test was to determine 
what areas are covered by each receiver’s detection 
capabilities.

The test for intrusion detection was performed at a medium-
speed walking pace by an adult. Audio feedback was enabled 
for one receiver at a time to determine per-receiver detection 
ranges. The tester walked around the hallways of the building 
and through the rooms in the center as shown in figure 9. As 
much space was covered as possible. Bluetooth headphones 
were connected to the test computer to allow the tester to 
receive auditory detection feedback while performing the 
tests. The test for each receiver was performed when the 
tester was the only person on the 2nd floor of the building so 
as to prevent erroneous data during the arming and detection 
phases of the RID block. During the arming phase, the tester 
could not leave the building, so instead remained still at the 
testing computer for arming duration.

Variables such as transmitter and receiver gain were adjusted 
such that the receiver blocks could achieve stable lock in both
PLLs and symbol timing synchronizers. This was done as a 
visual confirmation of consistency between tests. The 

Figure 8: Receiver section of flowgraph with intrusion 
detection blocks added.



transmitter gain was set to 65 dB (absolute), and the gain 
values for the receivers were set to 65, 65, 65, and 51 dB 
(absolute) for the NE, SE, NC, and SC receivers respectively. 
The AGC rate was set to 0.25. Other AGC values were left at 
default values established in the original GNU Radio AGC. 
The tolerance percentages for ASD, ESD, and level detection 
are listed in table 1. The random data was transmitted at a 
frequency of 905 MHz.

Table 1: Detection metric tolerances

Receiver
ASD

Tolerance
(%)

ESD
Tolerance

(%)

Level
Tolerance

(%)

NE 75 75 30

SE 10 10 25

NC 15 5 5

SC 15 15 5

While testing, a printed, blank version of figure 9 was used to
record where an alarm was activated. Detectable areas were 
marked for any of the three detection metrics. Figure 9 shows 
the results for the SC antenna. The NE, SE, and NC antennae 
covered a lot of similar area between each other and thus are 
shown here. Figure 10 is a heat map of the combined cover 
for the floor of the lab building. Testing showed that all 
locations have at least two antennae that will react to walking 
motion. 

Some of the receivers were more sensitive to different 
metrics. The sensitivity was such that the tolerances were 
adjusted to remove any erroneous detection indications. This 
was possible to do given that the tester was the only person 
on the test floor. After tuning the tolerance percentages for 
each receiver, detections were accurate and reliable as long as
there was only one person in the testing environment. 
Tolerance tuning also served to reduce random hardware-
induced detection from any hardware noise, which seemed to 
be prevalent in an overnight test run before the full test.

A pattern emerged when post-processing data with Matlab 
that was again valid in these real-time tests. For our specific 
setup, it appears that the sensitivity of a given receiver is 
largely determined by two parameters: distance from 
transmitter location, and how indirect the signal path is. The 
NE antenna is the farthest away from the transmitter and was 
able to detect motion around the entire testing area. The SC 
antenna is significantly closer to the transmitter and could 
detect just under half of the motion in the testing area.

6. Conclusion and Further Research

The intrusion detection system was designed to be a viable 
and sensitive method of detecting intruders in a real-world 
test environment using GNU Radio. Early testing showed 
some metrics that could be processed to identify the presence 
of an intruder based on detection theory concepts. These 
metrics were successfully integrated into a real-time GNU 
Radio block as a component of a QPSK communication 
system. The system is able to provide real-time feedback 
about intrusion using real-time hardware. 

The intrusion detection system is highly tunable, allowing for 
generalization to other situations and building layouts than 
were used in our testing. As long as the state of the test 
environment is known and detection metric tolerances, 
transmit/receive gain, and AGC rates are tuned correctly, the 
intrusion detection system can provide very good results 
under basic testing conditions.

In further research, we aim to learn more about the capability 
of the system in other testing conditions. We also seek to 
implement the same process of detection by using Wi-Fi 
signals within GNU Radio. Another possible research route is
target localization based on the level detection metric. This 
may be combined with other work from this lab, which 
involves identifying and processing Doppler-shifted radio 
signals for motion tracking. Motion detection and the 
potential for localization with this project may enhance the 
tracking capability of the motion tracking concept.

Figure 10: Heat map of the lab building for walking test of 
all four receivers. Darker colors indicate areas covered by 
more receivers.

Figure 9: Detection Range for SE antenna during walking 
test. Detection area is highlighted in dark blue. The 
transmitter is centered in the purple rings and the receiver is 
centered in cyan rings. Each square represents a square foot.
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