Analysis of an Open Channel Identifier using Stochastic Gradient Descent and
GNU Radio

Ashley Beard

ASHLEY.BEARD @ SPECTRUMBULLPEN.COM

Spectrum Bullpen, LLC. 6050 Babcock St. SE., Ste. 26, Palm Bay, FL 32909, USA

Steven Sharp

STEVEN.SHARP @ SPECTRUMBULLPEN.COM

Spectrum Bullpen, LLC. 6050 Babcock St. SE., Ste. 26, Palm Bay, FL 32909, USA

Abstract

In this paper, we address the problem of radio
spectrum crowding by using a stochastic gradient
descent neural network algorithm on simulated
cognitive radio data to identify open and closed
channels within a specified RF range. We used
GNU Radio 3.8 flowgraphs to simulate cognitive
radio data for standard U.S. Wi-Fi channels, and
to design both the neural network and classical
power estimation algorithms. Our methods in-
clude the possibility for leveraged use in many
spectrum sensing applications such as channel
detection, modulation classification, and radio
fingerprinting. We provide analytical insight into
the performance of this neural network that goes
beyond that of previous work in this immediate
field. These analyses will show the stochastic
gradient descent algorithm achieves an advanta-
geous accuracy over the traditional channel oc-
cupation algorithm.

1. Introduction
1.1. Impact Statement

In Wi-Fi broadcasting, the signal traffic is becoming un-
wieldy for internet companies even when using the cur-
rent Orthogonal Frequency Division Multiplexing (OFDM)
modulation and several different frequency bands (Mathai
& Sagayam, 2013). Cognitive radio technology could be a
useful method to alleviate congestion by adaptive reuse of
the frequency bands. As more households and businesses
gain access to Wi-Fi routing, more signals need to be dis-
tributed in a set bandwidth without interfering. Our algo-
rithm can detect open channels given a list of frequencies
in any bandwidth in the electromagnetic spectrum. This
method can be propagated to many other uses, including ra-

Proceedings of the 11*" GNU Radio Conference, Copyright 2021
by the author(s).

dio transmission/receiving, utilizing “white spaces” in the
television spectrum noted from (Zeng et al., 2010), or effi-
ciently sorting through “Big Data” in radio astronomy (Lu-
kic et al., 2020) (Alhassan et al., 2020).

1.2. Neural Networks

Neural networks (NNs) use machine learning (ML) algo-
rithms with structures inspired by the theory of neuron
structure in biological systems. There can be an infinite
number of permutations of neurons and connections for
a NN, therefore there can be an infinite number of NN
topologies constructed. The advantages of using ML to
analyze data are the speed, accuracy, and autonomy im-
provements compared with human observation. These al-
gorithms can make classifications, sort and categorize data,
and find patterns in data that are otherwise elusive to tra-
ditional algorithms that don’t utilize ML. The performance
of a network depends on several factors such as size (num-
ber of neurons and/or layers), activation functions, organi-
zation, and the type of application one is attempting. For
example, research in the field has shown a better perform-
ing NN for an image classifier is one of several variations
of convolutional NNs (CNNs) because of the large number
of neurons that are layered and fully-connected between
each layer. This scheme allows for the comparing of pixel
groups with their neighbors.

The process of training NNs are categorized into two main
categories of ML: supervised and unsupervised. Super-
vised learning requires inputs from both raw data and as-
sociated training data which supplies the expected output
of the algorithm. Unsupervised learning uses an input of
only raw data and the algorithm will find a pattern with-
out knowing the expected output. The best learning type
choice depends on the type and context of data. Unsuper-
vised learning is best used for applications such as cluster-
ing data, classification, or finding anomalous data (Barlow,
1999). Supervised learning is used in applications such as
facial recognition or spectrum sensing in cognitive radios
(Thilina et al., 2013). The latter of which will be our focus
for this research.

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

Feedforward Neural Networks: Our algorithm for deter-
mining an unoccupied RF channel uses a simple feedfor-
ward (FF) NN topology. The network’s weights are up-
dated or trained using stochastic gradient descent and back-
propagation. The topology of the FF network consists of a
single input layer, one or more hidden layers, and a single
output layer. In stochastic gradient descent, the product of
the input data and its weight value is first fed into a cost
function. The gradient of the function is then calculated
using backpropagation. Depending on the sign and magni-
tude of the gradient calculated as well as the predetermined
learning rate, the weight values in each layer are recalcu-
lated according to their level of contribution when mov-
ing the layer values closer to the expected output (Nielson,
2015). At the start of the next training iteration of data, the
weights are re-introduced into the calculations and the pro-
cess continues until an acceptable error has been reached
or a specified number of iterations has been exhausted.

1.3. Cognitive Radio and Spectrum Sensing

An advantage of using a NN over a traditional power es-
timation method is virtually no need for a priori known
parameters of primary user activities. The primary broad-
caster may need to keep proprietary information about their
transmit and receive (Tx-Rx) system confidential, making
full communication between primary and secondary users
difficult or impossible (Duan et al., 2014). NNs can be fed
raw transmitted signals and characterize primary user sig-
nals without the need of system information. This allows a
faster and more efficient dynamic spectrum access (DSA)
(Tumuluru et al., 2010) (Zhou et al., 2018).

Our algorithm uses spectrum sensing to detect what fre-
quencies are available to use. Applying this process to a
radio, Wi-Fi router, wireless sensor, or base station, these
devices will then have the information needed to adjust
broadcasting frequency automatically. There are certain
standards designated for spectrum sensing given by the
IEEE 802.22 (Shellhammer, 2008). The required detec-
tion time is two seconds, meaning if two transmitters share
a frequency, a secondary transmitter must detect a primary
transmitter two seconds after the primary has started broad-
casting. The specified bandwidth needs to be vacated, oth-
erwise, there might be strong interference between the re-
ceivers (Zeng et al., 2010). Another requirement is to limit
the normalized probability of outputting a false signal de-
cision to 0.1 or less. In other words, the spectrum sensing
method must not exceed false signal decisions more than
10% of the time. The inputs used by the spectrum sens-
ing algorithm in (Shellhammer, 2008) include the channel
number, channel bandwidth, and optionally the input signal
type (analog, digital, etc.). Our algorithm accepts an input
of a list of ten channel frequencies on which to make sig-
nal decisions. The sensing mode that we have used in our

algorithm defines two outputs: the signal present decision
and the confidence metric. The first output gives a binary
value that specifies whether a signal is present in the given
channel and the second output is the percent error that the
spectrum sensing algorithm possesses when deciding.

Another possible spectrum sensing method is described in
(Nasser et al., 2021) as a “listen-and-talk™ approach called
Full-Duplex Cognitive Radio (FDCR). Self-interference
cancellation (SIC) is important in FDCR to allow simul-
taneous scanning and transmitting without detecting one’s
own signal. Three paradigms of cognitive radio are un-
derlay access, overlay access, and interweave access. In-
terweave access and FDCR are the main interests of this
paper due to the current challenge of energy and computa-
tional efficiency of these implementations. FDCR is most
beneficial for the standard in spectrum sharing of secondary
users cutting their transmission within the acceptable win-
dow as they detect a primary-user transmission (Liao et al.,
2017).

1.4. Related Work

e Tumuluru et al. use a multi layer perceptron very sim-
ilar to the feedforward model we design in this paper,
to sense the occupancy status of a spectrum (Tumu-
luru et al., 2010). They update parameters using batch
backpropagation similar to our NN training method.
We perform a more detailed analysis on our model us-
ing simulated GNU Radio signal data.

* A conference paper by Cao and Gu describes results
of neural network experiments on Gaussian and spe-
cific non-Gaussian distributions of data — in particular,
uniform distributions over a unit sphere, and transel-
liptical distributions (Cao & Gu, 2019). The work
we present in our manuscript uses stochastic gradient
descent with a sigmoid activation function similar to
one of their tested methods. However, our data differs
from their approach as it is a randomized sample dis-
tribution of frequencies, confirmed in our analysis in
Section 4.

e There has been previous work that utilize ML with
GNU Radio. For example, an Out-of-Tree (OOT)
module was designed by (Rodriguez & Dassatti,
2020) to use a deep-learning model - specifically a
CNN to classify modulation types in signals. They
use a PlutoSDR receiver to gather their data instead
of our method of simulating data using GNU Radio’s
Signal Source block. Rodriguez and Dassatti mention
taxing computational work in their model, but do not
quantitatively describe the computational cost of their
model.

¢ Solanki, Dehalwar, and Choudhary introduce a net-

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

Options Variable Parameter Parameter Parameter Parameter Import Import
Title: Data Files Generator Id: samp_rate || Id: source_amp 1d: freq 1d: freq_1 1d- filename Import: prmt || Import: random
Author: Ashley Beard Value: 166M || Value: Som Value: 2.412M | Value: 2.422M Value: C:\Users...ents\data_1
Output Language: Python
Generate Options: QT GUI Parameter Parameter Parameter
Id: noise_amp Id: freq 2 Id: freq_3
Value: 10m Value: 2.437M || Value: 2.452M
Signal Source
Sample Rate: 166M Parameter
‘Waveform: Cosine Id: freq_4
[freq| Frequency: 2.412m -\ Value: 2.462M

Amplitude: 50m
Offset: 0
Initial Phase (Radians): 0

Signal Source
Sample Rate: 166M
Waveform: Cosine
[freq| Frequency: 2.422M
Amplitude: 50m
Offset: 0
Initial Phase (Radians): 0

Signal Source
Sample Rate: 166M
‘Waveform: Cosine
|frag| Frequency: 2.437m
Amplitude: 50m
Offset: 0
Initial Phase (Radians): 0

Signal Source
Sample Rate: 166M
Waveform: Cosine
’qu Frequency: 2.412M
Amplitude: 50m
offset: 0
Initial Phase (Radians): 0

-—/

HNoise Source
Noise Type: Gaussian
Amplitude: 10m
Seed: 0

Signal Source
Sample Rate: 166M
Waveform: Cosine
’f?_g. Frequency: 2.412M
Amplitude: 50m
Offset: 0
Initial Phase (Radians): 0

File Sink
File: filename
Unbuffered: Off
Append file: Append

Throttle
Sample Rate: 166M

Figure 1. GNU Radio data generation flowgraph

work containing a combination of Long Short-Term
Memory and CNN layers to recognize temporal de-
pendencies and spatial dependencies of data respec-
tively. Their model was inspired by three previous
models by (Cheng et al., 2019) and (Gao et al., 2019);
the authors called it “DLSenseNet” (Solanki et al.,
2021). The Inception architecture used in their model
provides accurate results for the purposes of Solanki
et al, but it demands a high computational cost that is
not required for our model. This high accuracy is in
part due to the capability of accepting complex data
instead of our method of converting complex values
to magnitudes and hence stripping some relevant data
features in the process.

* A cognitive radio called MEGANSs was trained using
power spectral maps as images by Han, Xue, Shao,
and Xu in (Han et al., 2020). CNNs were used in this
case because they have documented superiority in im-
age classification and reconstruction (Jin et al., 2017).
Our FF NN is a form of CNN but we use a different
activation function from the commonly used softmax
function in CNNs (Agarap, 2019). They showed that
their MEGAN model outperforms various traditional
models in power spectrum map estimation however,

they did not explore the comparisons to other learning
models such as FF NNs. This manuscript provides
that lacking contribution towards power estimation.

These papers are described above to demonstrate our use of
methods that have been shown to work in past manuscripts,
as well as show the lack in critical analysis or compari-
son of these methods in the spectrum sensing and cognitive
radio fields. Our manuscript aims to use a common NN
model for the sake of simplicity and incorporate advanced
analysis methods to better describe the performance of ML
in a relevant real-world scenario.

The rest of the manuscript is organized as follows. Sec-
tion 2 describes the creation process and formatting of the
simulated data in our work. Section 3 describes the algo-
rithms and data manipulation for our two signal detection
methods followed by a description of the formatting of the
algorithm outputs. Section 4 contains a collection of anal-
yses on our results, including an analysis of the percent
error in our signal detection methods, of the random bias in
our algorithms, and of the compared computational com-
plexity of our methods. Our concluding statements and in-
tended future work are included in Section 5, followed by
Acknowledgements and References.

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

2. Data Creation Using GNU Radio

The data used to train and test the NN was generated using
GNU Radio, which is a DSP software. GNU Radio has a
graphic interface in which the user builds unique flowcharts
of digital signal processing components. Once compiled
and executed, these flowcharts can produce Python scripts,
which can also be modified for more specific intentions
such as iterating multiple times through a section of the
flowchart and outputting data files.

The basic form of what blocks were needed for the data
generation were called and organized using the GNU Radio
flowgraph tool. However, in order to automate generation
of large numbers of data files, we modified the compiled
Python file generated by the flowgraph. The flowgraph in
Fig. 1 represents one iteration of a looping, file-generating
process.

Table 1: Common Wi-Fi Band Frequencies (IEEE, 2016)

2.412 GHz

2.417 GHz

2.422 GHz

2.427 GHz

2.432 GHz

2.437 GHz

2.442 GHz

2.447 GHz

2.452 GHz

2.462 GHz

We designed a model using five signal sources, all with a
clockwise waveform, a sample rate of 166 Msps, and an
amplitude of -35.0 dBm. Each signal possessed a random-
ized selection of frequencies from Table 1 of commonly
used 2.4GHz ISM band Wi-Fi frequencies referenced from
(IEEE, 2016). The model also included a Gaussian noise
source with an amplitude of -79.0 dBm. These signal
sources were sent through an addition and throttle block
resulting in a single data stream set to the specified sam-
ple rate of 166 Msps. We chose this sample rate to fall
within the bounds of the Nyquist-Shannon sampling theo-
rem (Shannon, 1949). We generated a set of 800 files of
binary I/Q data and 800 accompanying text files listing the
open and closed frequencies (as Boolean values) associ-
ated with each I/Q data set. The I/Q data from our five
signal sources and one noise source is output as alternating
I (In phase) and Q (Quadrature) components of output sig-
nal. Those files were split into 80% or 640 file sets being
fed into the training phase of the NN and 20% or 160 file
sets being reserved for the test phase. Those 160 reserved
files were introduced as “novel data” to test the accuracy of
the algorithm output identifying the correct frequencies as
“open” or “in use”.

Start

|

all: 2* random(0,1) - 1

"synQ" size:(1024,15)

"syn1" size:(15,1000)

"syn2" size:(1000,15)
"syn3" size:(15,1)

!

P for index in
range(640)

"Y": Teaching
frequency list |

"X": Magnitude
list

forjin
range(1000)
| Comment:
"layer0" = X "layerQ" size:(15,1024)

) "layer1" size:(15,15)
) "layer2" size:(15,1000)
) "layer3" size:(15,15)
) "layer4" size:(15,1)

"layer1" = sigmoid(layer0.synO
"layer2" = sigmoid(layerl.syn1
"layer3" = sigmoid(layer2.syn2
"layer4" = sigmoid(layer3.syn3

if j % 1000 = 0 Print error

14_error, 14_delta
13_error, 13_delta
12_error, 12_delta
11_error, 11_delta
10_error, 10_delta

syn3 += layer3 * |4_delta
syn2 += layer2 * I13_delta
synl += layerl * 12_delta
syn0 += layerO * |1_delta

Print synO,

———— syn1, syn2,

syn3

Stop

Figure 2. Algorithm flowchart of Neural Network feedforward
and backpropagation calculations

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

3. Structure of Algorithms
3.1. Structure of the Neural Network

We used supervised ML as opposed to unsupervised ML
to allow us to train the algorithm using our known inputs
and expected outputs. A simple FF network trained using
backpropagation was selected because our input and output
data were both binary vector streams. We used stochastic
gradient descent in the NN algorithm because it was the
most computationally efficient choice for the size of our
input data as opposed to a batch gradient descent algorithm
or something similar. Our NN contained a sigmoid cost
function (1), three hidden layers (with one input and one
output layer), and four weight variables. The array sizes
and relationships of these layers and weights can be seen in
Fig. 2. A learning rate (¢g) of 0.0001 was incorporated into
the network as well. We use a standard value of 1076 <
€p < 1 for the learning rate that works best for gradient
descent learning (Bengio, 2012a).

1

Preprocessing the Data: To increase the accuracy of the
NN learning step, five consecutive sets of 1024 I/Q data
were taken from each data stream file. These sets were
combined into an array of 1024 averaged values. This pro-
cess was conducted ten times for a total of ten samples of
averaged sets of 1024 I/Q data. Averaging the complex val-
ues in this way allowed the NN to better read and catalog
the features of the input data. The data generated by GNU
Radio consisted of complex I/Q data while our NN model
is designed for real-valued data, so modifications needed to
be made to our input. The FF framework was compatible
with float input, not complex values, so we converted each
input sample into magnitudes. We achieved this by com-
puting the norm of each sample of I/Q data before feeding
the input matrix into the learning loop of the NN. The op-
tion of keeping the complex-valued data by treating the real
and imaginary components as separate features was consid-
ered. We chose to keep the data paired together to maintain
the 1024-sized input.

Each input sample contained a size 1024 vector of I/Q data,
making a 10-by-1024 size array for the ten samples. Four
common data features were concatenated to the end of the
NN data input array. The mean, variance, standard devi-
ation, and maximum of each size-10 column of I/Q data
were calculated and appended to the input. A final col-
umn of zeros was appended to the input array as sequence
padding. Using this method has shown to provide the NN
a better probability of learning the features of our data in-
put and improve the accuracy of a FF NN (del Rio et al.,
2020). This results in a final input size of 15-by-1024 after
incorporating the appended features.

3.2. Structure of the Traditional Algorithm

We created a power estimation algorithm to be used as a
competitor algorithm in both accuracy and computational
efficiency to the NN. It uses a single GNU Radio script
to produce signals with the same parameters as the data
generation for the NN script, identify their frequencies, and
finally produce the same output as the NN script. Below
describes first the signal generation of the script, then the
analysis that outputs the used and open frequencies. This
method works similarly to the signal detection block used
in (O’Shea et al., 2007). However we are not concerned
about multi-threading and do not run our blocks directly
through a Power Processing Element.

Five signals with the same parameters and a Gaussian noise
source are first added to a single total signal. They are then
throttled to a sample rate of 166 Msps like the NN script,
and a fast Fourier transform (FFT) is applied to the added
signals. The complex output of the FFT is separated into
eighteen frequency bins, the values of which are converted
to squared magnitudes and measured. The first ten bins are
intended to each contain a frequency channel shown in Ta-
ble 1, so in the script, the last eight bin values are no longer
needed and dropped. The flowgraph used to generate and
collect the data for the power estimation algorithm is shown
in Fig. 3. The squared magnitudes are sorted from small-
est to highest and the five lowest values are identified as
the empty or open channels. The five largest bin values are
identified as the channels in-use and are cross-referenced
with the frequency list to show the in-use frequencies cor-
responding to its respective bin. This process is repeated
160 times - the same number of unique channel data files
that are fed into the NN at the testing phase.

3.3. Format of Outputs

The output from the NN is in the form of a binary array
that classified the channel list as open or occupied. It out-
puts an array of ten “0’s” and “1°s”, with “1” identifying
if the algorithm detects a signal in the specified frequency
and ”0” identifying the channel as open. The backpropa-
gation loop used to train the NN was iterated 1000 times.
Every ten of these iterations, a training error was calcu-
lated. These training errors describe the discrepancy be-
tween the training data and the output array and ideally, as
the NN “learns” the data features fed to it, this error will
decrease with respect to increased iterations. At the end
of the training phase, we saved the set of final weights to
use in the testing phase. This phase used the same script as
the training phase, but with only the feedforward steps (ex-
cluding the backpropagation steps). The testing phase of
the NN yields the percent error showing how often the al-
gorithm incorrectly identifies an open or closed channel, as
well as the array of “0’s” and “1’s” and the training output

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

Options Variable Variable Variable Variable
ﬂth'::ow:;h:gg . 10z samp_rate | | 1d: noise_amp. d: freq 0 A Import Tmport
Author: Ashley Bear vate: 166M n Value: 24120 || Value: 2.422M " e,
Output L Pytbon Value: 10m Import: pmt | Tmport: rando
Generate Options: o GUI Variable Variable Variable
Run Options: Prompt for Exit 1d: source_amp 1d: freq 2 1d: freq 3
Realtime Scheduling: On Value: 5om Value: 2.437m || value: 2.442M

Signal Source Variable

Sample Rate: 166M 1d: freq 4
nai Source
Waveform: Cosine samngmu- 166M Value: 2.462M

raa| Freauency: 2.4121
Ampitude: 50m

Waveform: Cosine
Frequency: 2.422M

Offset: 0
Initial Phase (Radians): 0

Sample Rate: 166M
Waveform: Cosine

Complex to Mag~2 Probe signal |
Complex to Mag~2 Pmneslgnall
Comple to wag~2 [f——+{i Probe Signal |
uunplumuag"zH probe signal |
compo g [l e e
CcmkatuM?&‘ZH pmhesgnal]
mlolnmllaq"lH Pmlxsgnzll
Cmnpkuhuuzq“lH Fmbqsignxl‘
mmmmg-szbesigw[
tmnplumuag-zH Pmlxggnal‘

Vector to Streams

[srequency: 2.437m Sample Rate: 1661 T
Amphtude: 50m LTI FFT size: 18 Complex to Mag~ Probe Signal ‘
Offeet: 0 lfreq| Frequency: 2.442M Forward/ Reverse: Forward "
Initial Phase (Radians): 0 Sempltmta o Window: vindow. blackmanhar... Complex 10 Mog =2 e sgna |
set:
i Shift: Yes Complex to Mag~2 H Probe Signal]
—r— Initial Phase (Radians): 0 M. Threade: 1
e mmnhxmuag*zH I'mbesgnil‘
Waveform: Cosine Compia 3
|freql Frequency: 2.462m i S
Ampituade: 50m Wolse Type: Gaussian Complex to Mag~2
Offset: 0 Ampltude: 10m
Initial Phase (Radians): 0 Seed: 0) "“”‘b ‘p"'h“s"’""
Complx to Mag 2 [§—— i Probe sgnal |
Function Probe. function Probe ~r
1d: function_probe_1 1d: verizbe_..on_probe 0.0 | | 14 G e B SR Function Probe Function Probe Function Probe Function Probe Function Probe Function Probe
Block ID: blocks..._0_0_0_0_0 | plock ID: biocks.._0_0_0.0.0 yorioble...obe 00000 | 1d: variabl....e_0.0.0.0.0. | 14: variale ...0_0_0_0_0_0_0 || i: vorioble_..0_0_0_0_0_0_0 || id: varoble_...0_0_0_0_0_0_0 | | 1d: variabie_...0_0_0_0_0_0_0 | ya: voriabe....0_0_0_0_0_0_0 || 1d: varible_...0_0.0_0_0_0_0
Function Name: level Function Name: tovel | | oCk s blocks.-aLx.0.0.0 | Block ID: blocks-.anelx 0.0 | piocs 1 biocks..alx_0_0_1 || Biock ID: block...a x 0.0_1 | | Block ID: blocks..al x 001 | | Block ID: biocks... X 0_0_1 || aaoci - bocks..a1 ¥ 0.0.1 || Block ID: blecke.r % 0.0.1
Poll Rate (Hz): 10 Poll Rate (Hz): 10 :‘;“-‘"“ L3 e Function Hame: leve Function Hame: level Function Hame: level Function Name: level it s el i e il
: Rate (Hz): 10 Poll Rate (H2): 10 Poll Rate (H2): 10 Poll Rate (Hz): 10 Poll Rate (Hz): 10 Pol Rate (H2): 10 Pol Rate (Hz): 10 Poll Rate (H2): 10
function p Fonction Probe Gl Function Probe Function Probe Function Probe. Function Probe

d: variabe._.._probe_0_0_0 | 1q: variable_..probe_0_0_0_0 | 1 variable_...0_00_0_0_0.0 || 1d: variable_...0_0_0_0_0_0_0

Block ID: blocks...2L%.0_0_1
Function Name: level
Poll Rate (Hz): 10

Block ID: block:.._0_0.0_0.0 | gioci ID: blocks..._x_0_0_0_0 || Block ID: biocks...alx 0_0_1 (| Block ID: blocks...al_x_0_0_t
Function Hame: level Function Name: leve!

Poll Rate (Hz): 10 Poll Rate (Hz): 10 Poll Rate (Hz): 10

Poll Rate (Hz): 10

1d: varioble_...0_0_0_0_0_0_0 || sd: variable_..0_0_0_0_0_0_0
Block 1D: blocks...al_x_0_0_1 || Block ID: blocks...
Function Name: leve!
Poll Rate (Hz): 10

Function Probe

Function Name: leve

Function Name: level =
Pol Rate (Hz): 10

Poll Rate (Hz): 10

Figure 3. GNU Radio flowgraph of traditional algorithm data generation and collection

expected.

The power estimation algorithm explained in the previous
subsection is not separated into a training and testing phase
because it does not utilize any ML algorithms. However, to
better compare its accuracy to the NN script, it outputs the
same format of channel identifier and the average percent
error of its estimation is calculated.

4. Analysis
4.1. Analysis of Percent Errors

When comparing the percent errors that are given by the
validated NN and the power estimation (non-NN) algo-
rithm, we show that the NN calculates a smaller percent
error than the non-NN at a signal-to-noise ratio (SNR) = 44
dBm. Typical wireless networks need an SNR of at least 18
dBm to provide even a low data rate of 6-18 Mb/s (Jevre-
movic); with greater than 40 dBm being considered “ex-
cellent signal”. This SNR is the limit at which these two
algorithms can differentiate the simulated signal and noise
sources from GNU Radio, however, the NN is more accu-
rate at this limit than the non-NN, making it a better choice
for channel identification software. The NN learning at an
SNR within the range of what is ideal for most wireless
networks shows that the algorithm succeeds within what is
expected in real-world applications of a channel identifier.

The NN outputs a training error for its final training epoch
of 0.1814 and a final test phase error of 0.3383 or 33.83%.

The power estimation algorithm output an error of 0.5088
or 50.88%. Our accuracy goal for the stochastic gradient
descent algorithm is a correct identification at least 90% of
the time or an incorrect identification 10% of the time. The
testing phase of the stochastic gradient descent algorithm
achieved an accuracy of 66.17%, falling short of the goal by
23.83%. The secondary goal of the stochastic gradient de-
scent algorithm is to accurately identify channel use more
often than the power estimation algorithm. The power es-
timation algorithm achieved a percent accuracy of 49.12%,
demonstrating that using a stochastic gradient descent algo-
rithm with ML in a channel identifier offers a more advan-
tageous accuracy than a simple power estimation algorithm
without ML.

The accuracy of the NN can most likely be improved to our
initial goal of at least 90% by optimization of the learning
rate hyperparameter. The learning rate value is a hyperpa-
rameter of gradient descent learning and presents a strong
impact on the convergence or divergence in optimizing the
learning algorithm (Bottou & LeCun, 2003)(Darken et al.,
1992). To increase the chances of resulting in a global op-
timum, the learning rate must usually have an accuracy to
within a factor of two (Bengio, 2012b). This will allow
a global minimum in error calculations during the train-
ing phase as opposed to finding only a local minimum. It
is worth investigating in the future whether our stochastic
gradient descent algorithm converged to a local minimum,
resulting in lower accuracy.

Another possible cause of a lower accuracy could be ex-

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

Distribution of Randomly Selected Frequencies
120 T T

100 [~

80 -

60 -

Counts

40 -

20

2410 2420 2430 2440 2450 2460
Frequency (MHz)

Figure 4. Bin Counts as a function of frequency in MHz. There
are 11 bins between a range of 2410 MHz and 2465 MHz. The
plot includes data from 200 files each with 5 frequency choices
for a total of 1000 frequency choices plotted. The bin values only
vary from a median value of 100 counts by £10 counts, providing
arelatively precise discrete uniform distribution, and also provid-
ing an account of unbiased random selection of signal frequen-
cies.

plained by spectral bias. Lower frequencies in a NN data
feed are more robust to random weight changes. There-
fore, lower frequencies are learned first and higher frequen-
cies are learned late in the optimization process (Rahaman
et al., 2019). Since we are using signals in the GHz range,
learning may be less efficient than if the network was fed
frequencies from a lower frequency bandwidth such as the
Medium Frequency (MF) band in the 300 kHz to 3,000 kHz
range.

4.2. Testing for Randomness

The randomization functions we used for selecting the fre-
quencies of the radio signals were tested for “true random-
ness” by plotting the chosen frequencies into a histogram
(Fig. 4). The internal Python random selection functions
we used are not truly random, but they need to be a high
enough degree pseudo-random generator so there is less
likely to be any selection bias in the data creation process.
A selection bias would cause the NN algorithm to give in-
accurate responses to input with varying types of features
(Lebiere et al., 2013) (Bird et al., 2020).

A set of 200 generated data files were used in this analy-
sis with each file containing a random selection for a sub-
set of five frequencies out of the North American channel
list in the 2.4GHz ISM band (3¢, 2016). The histogram

shows a discrete uniform distribution of frequencies or am-
plitudes. There is a gap in the 2453 MHz to 2457 MHz
bin because our list of frequencies to choose from did not
include anything between 2452 MHz and 2462 MHz. The
range of frequencies in this gap could be removed from the
histogram and would not detract from the uniform distribu-
tion shape. All the bin counts fall within 100 £ 10 counts
and subsequently, we can say that the random Python func-
tion chose frequencies without showing any detrimental se-
lection bias. An advantage of having randomly selected
frequencies is the prevention of the NN overfitting the data
features and therefore the prevention of the necessary in-
corporation of regularization techniques such as dropout or
L2 and L1 regularization in the NN algorithm.

4.3. Analysis of Computational Cost

The following is an analysis of the computational costs
of both the traditional algorithm and the NN algorithm.
In minimizing the computational cost of an open channel
identifier, one is also helping decrease the energy expen-
diture of the spectrum sensing mechanism (Zhou et al.,
2018). This paper endeavors to analyze the theoretical
computational cost of the NN model proposed and compare
it to that of the classical power estimation algorithm. How-
ever, analyzing the system specific energy costs of these
is beyond the scope of this paper. For the analysis of the
time complexity, we are not including the calculations per-
formed to preprocess the input data before being fed into
the NN. Again, a simple demonstration of the flow of the
NN and traditional algorithms in terms of Python calcula-
tions can be seen in Figs. 2 and 3.

The traditional power estimation algorithm includes a
numpy sorted function, GNU Radio’s FFT algorithm, and
a conversion of complex to magnitude squared floats.

The sorted function in Python uses the Timsort algorithm
which has a time complexity O (NlogaN) (Python, 2018).
The FFT algorithm in GNU Radio has a time complexity of
O (NlogaN) (Loan, 1992). Finding the magnitude squared
of the complex input includes calculating the complex con-
jugate shown in (2) and multiplying by the complex com-
ponents. This leaves the computational complexity to be
O (N).

[|[Real + Imag(i)|| = /I? + Q?)

Substituting the dimensions of the input data array for the
values of N, we arrive at the following total computa-
tional complexity by adding each algorithm’s complexity

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

together:

O (NlogaN) + O (NlogaN)+ O (N) =
O (1024l0gs (1024)) + O (1024logs (1024)) (3)
+0 (1024) = O (21, 504)

The NN computational complexity primarily consists of
matrix multiplication and element-wise scalar operations.
The time complexity is calculated for each layer of the NN
as a matrix multiplication except the first layer, which is
only defined as the input array. The second through fifth
layers are calculated as the matrix product of the previ-
ous layer and weight, for example, the second layer is
calculated as the product of the first layer “layer0” and
first weight “syn0”. Typically, the complexity is calcu-
lated for the multiplication of square matrices as O (n3)
with matrix dimensions of n x n (Alon et al., 2012) (Cor-
men et al.,, 2009). However, the layers in our FF net-
work involve multiplication of rectangular matrices which
do not possess dimensions of n and n®. Therefore the to-
tal time complexity for the five-layered FF network will
be O (abc) + O(def) + O (ghi) + O (jkl) where a and
b are the dimensions of the first layer, “layer0”, b and ¢
are the dimensions of the first weight “syn0”, d through f
are the dimensions of the second layer and weight “layer1”
and “synl” respectively, and so on to the fourth layer and
weight represented by j, k, and [(Cormen et al., 2009).

By substituting the dimensions of the layer arrays with their
associated variable placeholders: as described in Fig. 2, we
arrive at the total computational complexity for the FF NN
algorithm to be shown in the calculation in (4).

O (abc) + O (def) + O (ghi) + O (jkI) =
O (15 (1024) (15)) + O (15 (15) (1000))
+0 (15 (1000) (15)) + O (15 (15) (1))

= 0 (905, 625)

4)

Each layer calculates a matrix multiplication and an ac-
tivation function which acts as an element-wise opera-
tion. Compared to models in (O’Shea & West, 2016) and
(Solanki et al., 2021), our 5-layer FF network is less com-
putationally intense. In particular, the Keras model from
O’Shea and West has 13 layers, making it much more com-
putationally intense than ours. For a machine limited in
computational power, one needs to balance their desired
NN accuracy and length of time needed to train the model.
The expected operational platform is a battery powered RF
network transceiver with limited resources. The backprop-
agation incorporated in our calculations is a large portion
of the computational cost of the network. We feel a net-
work would be trained externally and then weights would

be sent to the cognitive radio, to prevent over-taxing the
system with training.

5. Conclusions

Both algorithms did not obtain the goal for percent error of
10% or less. There are several possibilities for the lower-
than-expected accuracy of our NN. These may include but
are not necessarily limited to spectral bias, a loss of infor-
mation when taking the norm of the input, or unfortunate
random initial definitions of the weight values which lead
to diverging or only settling at a local minimum during cal-
culating error in backpropagation.

For the purposes of this paper, an extremely simple model
was created to simplify the debugging, training, and test-
ing phases of the NN algorithm. To ensure the data genera-
tion model is applicable to real-world scenarios, parameters
such as free space path (f.s.p.) loss and penetration loss
coefficients can be used for cooperative sensing schemes,
described in (Zeng et al., 2010), where loss coefficients
are provided for three different locations of receivers and
where each received signal is run through the algorithm.
The outputs are then combined to become more accurate in
signal identification with varying levels of attenuation.

An investigation in the advantages of modifying this NN al-
gorithm to be designed for calculations in the complex do-
main is in order. Designing a complex NN would require
an activation function that maps the input data not to the
range [0, 1] in the set of real numbers (R) like the sigmoid
function used in this example, but to a set of complex num-
bers (C) (Zimmermann et al., 2011). A hypothesized ad-
vantage of continuing calculations using complex numbers
until the end result is the regained information of the phases
of the wave sources and data features that were lost when
the complex numbers were initially computed into magni-
tudes at the start of our algorithm. This could potentially
lead to either a quicker convergence to a local minimum
error during training, a higher accuracy during training and
validating, or both.

5.1. Future Work

This project was designed as a NN puzzle-piece to a larger
project. This channel identifier can be used as an approach
to interference avoidance in DSA broadcasting. As a use
case scenario, one wants to broadcast Wi-Fi at a certain
channel but our algorithm shows this channel is occupied.
The script then lists to them which channel frequencies are
open to pick from. A DSA policy generator can have this
NN script consume raw, real-time signal data and output
frequencies as free or occupied. This answer from the NN
will be fed in as a parameter into the policy generator which
will then tell the user or radio how to operate within a par-

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

ticular bandwidth.

In the future, we intend to continue the digital signal model
with a closer real-world relationship and to improve com-
putational efficiency. One area of continued research is
optimization of the NN through linear activation func-
tions. This method would decrease computational expense
through the elimination of exponential functions.

Acknowledgements

We want to thank Raymond Shaw, Gary Coffey, Alejan-
dro Fuste and Dr. Analee Miranda whose comments and
suggestions helped clarify and improve this manuscript.

This manuscript reflects independently funded research and
development by Spectrum Bullpen, LLC.

The Python and GNU Radio flowgraphs as well as the
dataset used for this project are openly accessible at this
link: https://github.com/A ABeardSB/channelEst.

References

IEEE 802.11-2016: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications, Decem-
ber 2016. Table 15-6.

Agarap, A. F. Deep learning using rectified linear units
(ReLU). 2019. URL https://arxiv.org/abs/
1803.08375.

Alhassan, W., Taylor, A. R., and Vaccari, M. The FIRST
classifier: Compact and extended radio galaxy classifica-
tion using deep convolutional neural networks. Monthly
Notices of the Royal Astronomical Society, 480:2085—
2093, October 2020.

Alon, N., Shpilka, A., and Umans, C. On sunflowers
and matrix multiplication. In IEEE 27th Conference on
Computational Complexity, pp. 214-223, Porto, Portu-
gal, 2012.

Barlow, H. B. Unsupervised learning. In Hinton, G. and
Sejnowski, T. J. (eds.), Unsupervised Learning: Foun-
dations of Neural Computation, pp. 1-17. MIT, Cam-
bridge, MA, USA, 1999.

Bengio, Y. Practical recommendations for gradient-based
training of deep architectures. In Montavon, G., Orr,
G. B, and Miiller, KR. (eds.), Neural Networks: Tricks
of the Trade. Lecture Notes in Computer Science, volume
7700, pp. 437-478. Springer, Berlin, Heidelberg, 2012a.
ISBN 978-3-642-35288-1.

Bengio, Y. Deep learning of representations for unsuper-
vised and transfer learning. In JMLR: Workshop on Un-
supervised and Transfer Learning, pp. 17-37, 2012b.

Bird, J. J., Ekart, A., and Faria, D. R. On the effects of
pseudorandom and quantum-random number generators
in soft computing. Springer: Soft Computing, 24:9243—
9256, 2020.

Bottou, L. and LeCun, Y. Large scale online learning. In
Advances in Neural Information Processing Systems 16,
Vancouver, BC, Canada, 2003.

Cao, Y. and Gu, Q. Tight sample complexity of learning
one-hidden-layer convolutional neural networks. In 33rd
Conference on Neural Information Processing Systems,
Vancouver, BC, Canada, 2019.

Cheng, Q., Shi, Z., Nguyen, D. N., and Dutkiewicz, E.
Sensing OFDM signal: A deep learning approach. IEEE
Transactions on Communications, 67(11):7785-7798,
November 2019.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to Algorithms, chapter 28, pp. 813-842.
The MIT Press, Cambridge, MA, USA, 3 edition, 2009.

Darken, C., Chang, J., and Moody, J. Learning rate sched-
ules for faster stochastic gradient search. In Proceedings
of the 1992 IEEE Workshop, 1992.

del Rio, A. Lopez, Martin, M., Perera-Lluna, A., and Saidi,
R. Effect of sequence padding on the performance of
deep learning models in archaeal protein functional pre-
diction. Nature: Scientific Reports, 10, September 2020.

Duan, L., Gao, L., and Huang, J. Cooperative spectrum
sharing: A contract-based approach. IEEE Transactions
on Mobile Computing, 13:174-187, 2014.

Gao, J.,, Yi, X., Zhong, C., Chen, X., and Zhang, Z. Deep
learning for spectrum sensing. /EEE Wireless Commu-
nications Letters, 8(6):1727-1730, December 2019.

Han, X., Xue, L., Shao, F,, and Xu, Y. A power spectrum
maps estimation algorithm based on generative adver-
sarial networks for underlay cognitive radio networks.
MDPI Sensors, 20(311), January 2020.

Jevremovic, V. 7 key factors to consider when designing
Wi-Fi networks. Technical report, iBWave.

Jin, K. H., McCann, M. T., Froustey, E., and Unser, M.
Deep convolutional neural network for inverse problems
in imaging. IEEE Transactions on Image Processing, 26
(9):4509-4522, September 2017.

Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-
Taylor, M., Staszewski, J., and Anderson, J. R. A func-
tional model of sensemaking in a neurocognitive archi-

tecture. Computational Intelligence and Neuroscience,
July 2013.

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375

Analysis of an Open Channel Identifier using Stochastic Gradient Descent and GNU Radio

Liao, Y., Wang, T., Song, L., and Han, Z. Listen-and-talk:
Protocol design and analysis for full-duplex cognitive ra-
dio networks. IEEE Transactions on Vehicular Technol-
0gy, 66(1):656—667, January 2017.

Loan, C. Van. Computational Frameworks for the Fast
Fourier Transform. SIAM, Philadelphia, PA, USA,
1992.

Lukic, V., de Gasperin, F., and Briiggen, M. ConvoSource:
Radio-astronomical source-finding with convolutional
neural networks. MDPI Galaxies, 8(3), 2020.

Mathai, V. and Sagayam, K. M. Comparison and analysis
of channel estimation algorithms in OFDM systems. In-
ternational Journal of Scientific & Technology Research,

2(3):76-80, March 2013.

Nasser, A., Hassan, H. A. H., Chaaya, J. A., Mansour, A.,
and Yao, K-A. Spectrum sensing for cognitive radio:
Recent advances and future challenge. MDPI Sensors,
21, March 2021.

Nielson, M. A. Neural Networks and Deep Learning, chap-
ter 2. Determination Press, 2015.

O’Shea, T. J., Clancy, T. C., and Ebeid, H. J. Practical sig-
nal detection and classification in GNU Radio. In Pro-
ceeding of the SDR 07 Technical Conference and Prod-
uct Exposition, 2007.

O’Shea, T. and West, N. Radio machine learning dataset
generation with GNU Radio. In Proceedings of the 6th
GNU Radio Conference, Boulder, CO, USA, 2016.

Python. Time complexity, August 2018. URL https:
//wiki.python.org/moin/TimeComplexity.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M.,
Hamprecht, F. A., Bengio, Y., and Courville, A. On the
spectral bias of neural networks. In 36th International
Conference on Machine Learning, pp. 5301-5310, Long
Beach, CA, USA, 2019.

Rodriguez, O. and Dassatti, A. Deep learning inference in
GNU Radio with ONNX. In /0th Annual GNU Radio
Conference, 2020.

Shannon, C.E. Communication in the presence of noise.
Proceedings of the IRE, 37(1):10-21, 1949. doi: 10.
1109/JRPROC.1949.232969.

Shellhammer, S. J. Spectrum sensing in IEEE 802.22. In
1st IAPR Workshop on Cognitive Information Process-
ing, Santorini, Greece, 2008. Qualcomm Inc.

Solanki, S., Dehalwar, V., and Choudhary, J. Deep learning
for spectrum sensing in cognitive radio. MDPI Symme-
try, 13(147), January 2021.

Thilina, K. M., Choi, K. W., Saquib, N., and Hossain, E.
Machine learning techniques for cooperative spectrum
sensing in cognitive radio networks. IEEE Journal on
Selected Areas in Communications, 31(11):2209-2221,
November 2013.

Tumuluru, V., Wang, P., and Niyato, D. A neural network
based spectrum prediction scheme for cognitive radio.
In 2010 IEEE International Conference on Communica-
tions, Cape Town, South Africa, 2010.

Zeng, Y., Liang, Y., Hoang, A. T., and Zhang, R. A review
on spectrum sensing for cognitive radio: Challenges and
solutions. EURASIP Journal on Advances in Signal Pro-
cessing, 2010.

Zhou, X., Sun, M., Li, G. Y., and Juang, B-H. Intelligent
wireless communications enabled by cognitive radio and
machine learning. China Communications, 15:16—48,
December 2018.

Zimmermann, H. G., Minin, A., and Kusherbaeva, V. Com-
parison of the complex valued and real valued neural net-
works trained with gradient descent and random search
algorithms. In 19th European Symposium on Artificial
Neural Networks, pp. 213-218, Bruges, Belgium, April
2011.

https://wiki.python.org/moin/TimeComplexity
https://wiki.python.org/moin/TimeComplexity

