
gr-rpitx: GNU Radio compatible general purpose SDR emitter using the
Raspberry Pi(4) internal phase locked loop

Jean-Michel Friedt JMFRIEDT@FEMTO-ST.FR

FEMTO-ST/Time & Frequency, Besançon, France

Évariste Courjaud EVARISTEC@GMAIL.COM

Abstract
gr-rpitx provides the support for the full
GNU Radio signal processing framework when
using the Raspberry Pi internal radiofrequency
Phase Locked Loop (PLL) controlled by the
Pulse Width Modulation (PWM) Direct Memory
Access (DMA) for tuning the output frequency.
Furthermore, the librpitx added amplitude
tuning. Thanks to frequency and amplitude tun-
ing capability, full IQ datastreams can be pro-
cessed, here within the framework of a GNU Ra-
dio Sink block. We promote gr-rpitx, despite
the multiple spurious spectral components pre-
venting the emission over the air, for educational
purposes including emitting and recording ana-
log and digital communication mode or probing
the transfer function of a device under test in a
scalar vector network analyzer configuration.

1. Introduction
Emitting radiofrequency signals from one of the Raspberry
Pi (RPi) General Purpose Intput Output (GPIO) pins
has been known since 2012 with the release of PiFm as
described at http://www.icrobotics.co.uk/
wiki/index.php/Turning_the_Raspberry_
Pi_Into_an_FM_Transmitter. Incremental im-
provements have included adding amplitude A tuning
to frequency f tuning, as described at (É. Courjaud,
2017), leading to full IQ stream controlling the radiofre-
quency output since I = Re(I + jQ) = A cos(ϕ) and
Q = Im(I + jQ) = A sin(ϕ) with the phase being
the integral of the frequency ϕ =

∫
f · dt. Packaging

such functionalities in a library with a blocking call to
filling the DMA buffer makes the transition to GNU
Radio trivial, and yet opens the doors to streaming any
signal generated by a GNU Radio Companion flowchart.

Proceedings of the 3 rd European GNU Radio Days, Copyright
2021 by the author(s).

The educational benefits of this radiofrequency signal
emission approach, when coupled with the RTL-SDR
Digital Video Broadcast-Terrestrial (DVB-T) dongles
used as general purpose Software Defined Radio (SDR)
receivers, is significant as long as over-the-air emission is
avoided and only short range communication is allowed
by the poor impedance matching of the pin length with the
radiofrequency wavelength of the emitted signal.

2. Basics of the sink block
The GNU Radio 3.8 Out Of Tree (OOT) module tree struc-
ture is generated with gr modtool with two arguments
shared with the constructor, the sampling rate defining the
rate which DMA transfers will occur between the GNU Ra-
dio buffer and the hardware peripheral, and the carrier fre-
quency. The constructor allocates the DMA buffer, defines
the nature of the exchanged data and the carrier frequency.
The main work function is reduced to a blocking call to
filling the buffer with the data transfered from the previous
block. The scheduler is informed of the timing capability
of this sink block, thanks to the blocking call to the DMA
filling function, with the throttle flag in the GNU Ra-
dio Companion YAML description of the block.

The Constructor initializes the DMA and datastream
structure following the example provided by sendiq
at https://github.com/F5OEO/rpitx/blob/
master/src/sendiq.cpp

1 #define IQSize 4096
2
3 namespace gr {
4 namespace rpitx {
5
6 rpitx_source_impl::rpitx_source_impl(float
7 samp_rate, float carrier_freq):
8 gr::sync_block("rpitx_source",
9 gr::io_signature::make(1,1,sizeof(gr_complex)),

10 gr::io_signature::make(0, 0, 0))
11 {iqtest=new iqdmasync(carrier_freq,samp_rate,
12 14,IQSize*4,MODE_IQ);
13 iqtest->SetPLLMasterLoop(3,4,0);
14 }
15
16 rpitx_source_impl::˜rpitx_source_impl()

http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
http://www.icrobotics.co.uk/wiki/index.php/Turning_the_Raspberry_Pi_Into_an_FM_Transmitter
https://github.com/F5OEO/rpitx/blob/master/src/sendiq.cpp
https://github.com/F5OEO/rpitx/blob/master/src/sendiq.cpp

17 {iqtest->stop();
18 delete(iqtest);
19 }

which also includes the destructor definition to release re-
sources. The work function is fed noutput items to
be transferred to the buffer as follows, using the blocking
iqtest→SetIQSamples to regulate the datarate when
filling the DMA buffer:

20 int rpitx_source_impl::work(int noutput_items,
21 gr_vector_const_void_star &input_items,
22 gr_vector_void_star &output_items)
23 {std::complex<float> CIQBuffer[IQSize];
24 int H=1; // Harmonic
25 int nbread=0,xferlen;
26 const gr_complex *in=\
27 (const gr_complex*)input_items[0];
28
29 while (nbread<noutput_items)
30 {if (nbread+IQSize<noutput_items)
31 xferlen=IQSize;
32 else xferlen=noutput_items-nbread;
33 iqtest->SetIQSamples((std::\
34 complex<float>*)&in[nbread],xferlen,H);
35 nbread+=xferlen;
36 }
37 return noutput_items;
38 }
39 } /* namespace rpitx */
40 } /* namespace gr */

This datarate regulation must be advertised to GNU Radio
Companion to avoid the missing Throttle block warning:
the YAML description file includes

id: rpitx_rpitx_source
label: rpitx source
category: ’[Rpitx]’
flags: throttle
...

to let GNU Radio Companion know that this flow graph
will regulate the datastream (Schroer, 2021).

3. Practical demonstration (1): analog FM
broadcast

FM broadcasting is demonstrated at https://www.
youtube.com/watch?v=JIiKZ3UVAIw in which
the signal emitted by gr-rpitx (Fig. 1) is collected by a
DVB-T dongle connected to the RPi4 and streamed through
a 0MQ socket to the laptop PC used as a sound card to
record the demodulated signal (Fig. 2).

In all these examples, “No GUI” flowcharts are assembled
on the host PC generating the Python3 script which is trans-
fered to the Raspberry Pi4 for execution on the target.

The maximum sampling rate we achieved on analog broad-

48000*5

Carson: 2*(48+75)=246 kHz

Options

Id: rpi_fm

Title: Not titled yet

Output Language: Python

Generate Options: No GUI

Run Options: Prompt for Exit

Variable

Id: samp_rate

Value: 240k

outin

WBFM Transmit

Id: analog_wfm_tx_0

Audio Rate: 48k

Quadrature Rate: 240k

Tau: 75u

Max Deviation: 75k

Preemphasis High Corner Freq: -1

out

Wav File Source

Id: blocks_wavfile_source_0

File: Radar Love.wav

Repeat: Yes

in

rpitx source

Id: rpitx_rpitx_source_0

Samp_rate: 240k

Carrier_freq: 86.6M

Figure 1. FM broadcast flowchart demonstrating the efficient in-
tegration of gr-rpitx with GNU Radio general purpose pro-
cessing blocks.

Figure 2. Experimental setup for assessing FM broadcasting from
gr-rpitx and reception using a DVB-T receiver used as gen-
eral purpose Software Defined Radio receiver connected to the
Raspberry Pi4 running GNU Radio. The demodulated output au-
dio stream is transferred to the host PC acting as a sound card for
playing the audio signal using a 0MQ publish-subscribe link.

cast wideband FM transmission with no audible loss of
quality or pitch is 48000×9 = 432 kHz while 48000×10 =
480 kHz led to an obvious slow-down of the output stream.
On the other hand, a continuous wave (CW) signal source
streaming a 70 kHz sine wave at a rate of 3.42 MS/s at 87
MHz brought to baseband by Xlating FIR demonstrated a
continuous transmission and no spreading by discontinuous
acquisition, while no at all was transmitted at 3.43 MS/s.

4. Practical demonstration (2): digital (DRM)
broadcast

As radiofrequency communication is shifting from analog
to the more efficient spectrum occupation digital modula-
tion schemes, we extend the analog FM broadcast demon-
stration to a digital mode. While Digital Audio Broadcast
(DAB) requires excessive bandwidth to be compatible

https://www.youtube.com/watch?v=JIiKZ3UVAIw
https://www.youtube.com/watch?v=JIiKZ3UVAIw

Figure 3. DRM (Digital Radio Mondiale) emission from gr-rpitx fed by gr-drm and reception using DREAM running on the host
PC. Notice how a Pulse Audio virtual sink is used to feed DREAM with the output of GNU Radio. Right is the spectrum (magnitude)
and raw constellation observed with GNU Radio, center-bottom is the constellation provided by DREAM, bottom left demonstrates how
the encoding and station identified are decoded, top left is the host PC reception scheme and top left is the Pulse Audio virtual sink
while top-middle is the Raspberry Pi 4 terminal emitting DRM using gr-rpitx. The signal to noise ratio is below 5 dB, preventing
the constellation from locking on the audio signal.

with gr-rpitx, Digital Radio Mondiale (DRM (ETSI,
2009)) provides an acceptable tradeoff between simplicity,
availability and bandwidth. Running gr-drm as found
at https://github.com/kit-cel/gr-drm is as
simple as replacing the UHD sink of the sample example –
already clocking the datastream at an acceptable 250 kHz –
to the gr-rpitx sink (Fig. 4). However, achieving such
a result on the Raspberry Pi(4) requires that the gr-drm
and its dependencies are installed on the embedded board.
Buildroot is an efficient and light framework for generating
dedicated images to embedded targets: gr-drm is pack-
aged for Buildroot in an extension available at https:
//github.com/oscimp/oscimp_br2_external
and more specifically in its package with the
dependencies faac. A complete image run-
ning GNU Radio on the Raspberry Pi4 is gener-
ated by using the configuration file provided at
https://github.com/oscimp/oscimp_
br2_external/blob/master/configs/
raspberrypi4_64_gnuradio_defconfig.

As demonstrated in Fig. 3, the simplest and sparsest
modulation schemes are well decoded. Indeed, the Fast
Acces Channel (encoded as 4-QAM, https://www.
drm-sender.de/?page=drm&lang=en#2_2) and
the Service Description Channel (SDR, also 4-QAM in
this setting) exhibit good enough signal to noise ratio for
analysis, while the Main Service Channel here encoded

Before generating the flow graph, define the path
to a 24 kHz wav-file and change the parameters
of the UHD sink. Do not forget to set the correct
audio_sample_rate.

Prevent clipping

Multiplex the three logical
channels and the pilot cells
and create transmission frames.

Additional interleaving

Apply channel coding
and interleaving

Ingoing sample rate is
assumed to be 48 kHz.
250 kHz is one of the
lowest achievable rates
of the USRP.

outfreq

Signal Source

Id: analog_sig_source_x_0

Sample Rate: 48k

Waveform: analog.GR_COS_WAVE

Frequency: 7k

Amplitude: 1

Offset: 0

Initial Phase (Radians): 0

out

Audio Source

Id: audio_source_0

Sample Rate: 44.1 kHz

rein
Complex To Real

Id: blocks_complex_to_real_0
out

in0

in1

Multiply

Id: blocks_multiply_xx_0
in

Wav File Sink

Id: blocks_wavfile_sink_0

File: drm_A5.wav

Sample Rate: 48k

Bits per Sample: 16

outin

Rational Resampler

Id: rational_...mpler_xxx_0_0

Interpolation: 240

Decimation: 441

Taps:

Fractional BW: 0

Options

Id: drm_transmitter

Title: DRM Transmitter

Author: Felix Wunsch

Description: Gener...emented.

Output Language: Python

Generate Options: No GUI

Run Options: Run to Completion

DRM Configuration

Id: tp

Robustness mode: B

Spectrum Occupancy: 10 kHz

Audio Sample Rate: 12 kHz

MSC Mapping: 16-QAM

SDC Mapping: 4-QAM

Interleaving: Long

Station Label: Euro...io Days

Text Message: This...NU Radio

outin

Multiply Const

Id: blocks_mu...y_const_vxx_0

Constant: 32.768k

outin

Multiply Const

Id: blocks_mu...y_const_vxx_1

Constant: 7m

out

Wav File Source

Id: blocks_wavfile_source_0

File: /tmp/RadarLove24kHz.wav

Repeat: No
out

MSC

SDC

FAC

DRM Cell mapping

Id: cell_mapping_cc_0

outin

OFDM Cyclic Prefixer

Id: digital_o...ic_prefixer_1

FFT Length: 1.024k

CP Length: 256

Length Tag Key:

outin
Audio Encoder

Id: drm_audio_encoder_sb_0

out
FAC Generator

Id: drm_generate_fac_b_0

out
SDC Generator

Id: drm_generate_sdc_b_0

outin
Cell Interleaver

Id: drm_interleaver_cc_0
outin

Scrambler

Id: drm_scrambler_bb_0

outin
Scrambler

Id: drm_scrambler_bb_0_0

outin
Scrambler

Id: drm_scrambler_bb_0_1

outin

FFT

Id: fft_vxx_0

FFT Size: 1.024k

Forward/Reverse: Reverse

Window:

Shift: Yes

Num. Threads: 1

outin

MLC Factory Block

Id: mlc_bc_0

Channel Type: FAC

outin

MLC Factory Block

Id: mlc_bc_0_0

Channel Type: MSC

outin

MLC Factory Block

Id: mlc_bc_0_1

Channel Type: SDC

outin

Rational Resampler

Id: rational_resampler_xxx_0

Interpolation: 250

Decimation: 48

Taps:

Fractional BW: 0

in

rpitx source

Id: rpitx_rpitx_source_0

Samp_rate: 250k

Carrier_freq: 86.6M

out

Virtual Source

Id: sym_in

Stream ID: symbols

in

Virtual Sink

Id: sym_out

Stream ID: symbols

Figure 4. Demonstration DRM flowchart as provided by
gr-drm, but replacing the USRP output with gr-rpitx.
Three datastreams – FAC, SDC and MSC – are summed and
transmitted as the DRM signal, but only the first two will be
demodulated due to insufficient signal to noise ratio of the
Raspberry Pi4 used as radiofrequency transmitter.

as 16-QAM and carrying the sound information cannot
be decoded due to the insufficient signal to noise ratio to
identify the symbols of this dense constellation. Indeed
with only 3-bit (7-levels) of amplitude tuning, gr-rpitx
lacks the flexibility to address more advanced modulation
schemes. This reception scheme emphasizes how GNU
Radio can benefit from external decoding software: here
DREAM (version 2.2.1 compiled using the instructions at
https://gist.github.com/onetransistor/

https://github.com/kit-cel/gr-drm
https://github.com/oscimp/oscimp_br2_external
https://github.com/oscimp/oscimp_br2_external
https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://github.com/oscimp/oscimp_br2_external/blob/master/configs/raspberrypi4_64_gnuradio_defconfig
https://www.drm-sender.de/?page=drm&lang=en#2_2
https://www.drm-sender.de/?page=drm&lang=en#2_2
https://gist.github.com/onetransistor/4cbe3a8ab5d47da22cde
https://gist.github.com/onetransistor/4cbe3a8ab5d47da22cde

4cbe3a8ab5d47da22cde since all newer versions
failed to run on a Debian/sid distribution as of this
writing in Summer 2021) expects a sound card input
while GNU Radio streams a sound card output. The link
between the two is achieved with a virtual audio cable
created with Pulse Audio using pactl load-module
module-null-sink sink name=virtual
sink properties=device.description="virtual".
The Pulse Audio control softare pavucontrol then
allows connecting the audio output of GNU Radio to this
virtual sink and feeding DREAM with this input stream.

5. Dynamically tuning the carrier frequency:
callback function

GNU Radio users expect to be able to define the carrier fre-
quency of a sink block and dynamically tune this parameter
e.g. through a slider or by sending the new value through
a client-server link. Dynamically updating the parameter
requires implementing a callback function: in this case the
set freq() callback function will de-activate the DMA
stream, and re-activate the buffer with the new carrier fre-
quency. Because the sampling rate must be provided as
argument, this value is saved as a private variable shared
by all functions of the class

1 samp_rate_=samp_rate;

but furthermore, the work function must be prevented from
writing in the DMA buffer as reconfiguration is ongoing.
A mutex (Mutually Exclusive) access is defined to make
sure that whenever the callback function is reconfiguring
the DMA buffer, the work function is prevented from writ-
ing as follows:

1 pthread_mutex_init(&th, NULL);

is defined in the constructor while the callback function
defining the new carrier frequency is

1 void rpitx_source_impl::set_freq(float freq)
2 {pthread_mutex_lock(&th);
3 iqtest->stop();
4 delete(iqtest);
5 iqtest=new iqdmasync(freq,samp_rate_,\
6 14,IQSize*4,MODE_IQ);
7 iqtest->SetPLLMasterLoop(3,4,0);
8 pthread_mutex_unlock(&th);
9 }

with the main work function updated with

1 while (nbread<noutput_items)
2 {if (nbread+IQSize<noutput_items)
3 xferlen=IQSize;
4 else xferlen=noutput_items-nbread;
5 pthread_mutex_lock(&th);
6 iqtest->SetIQSamples((std::\
7 complex<float>*)&in[nbread],xferlen,H);

8 pthread_mutex_unlock(&th);
9 nbread+=xferlen;

10 }

This new structure is deleted in the destructor with

1 pthread_mutex_destroy(&th);

6. Practical demonstration (3): scalar
network analyzer

As part of an undegraduate course on radiofrequency in-
strumentation, we aimed at characterizing the transfer func-
tion of a dual-resonator surface acoustic wave transducer
designed to exhibit two resonances around 434 ± 1 MHz.
Our initial investigation focused on a broadband noise
source as widely available by polarizing a Zener diode (Sli-
wczynski, 1999; Maxim Application Note 3469, 2005), but
due to remote teaching conditions, the 12 to 24 V high volt-
age needed to power the noise generator was not available
to most students assumed to only have access to the 5 V
output of a USB port. Hence, a noise source generated
by the Raspberry Pi(4) provided as recording platform was
needed: feeding a noise source IQ output to gr-rpitx
configured to operate at 86.8 MHz – limited to 125 MHz
based on (Pi, 2020) at p.82 “5.4.1 Operating Frequency” –
would generate on its 5th overtone the required signal. Fur-
thermore, the documented 200 kHz sampling rate at funda-
mental mode (86.8 MHz) would extend to 1 MHz on the 5th
overtone, allowing to cover the whole Industrial, Scientific
and Medical (ISM) band with only two carrier frequency
shifts by 1 MHz/5=200 kHz.

Dynamic carrier frequency tuning is demonstrated at
http://jmfriedt.free.fr/gr-rpitx_set_
freq.mp4 and a sample measurement is displayed in
Fig. 5.

For comparison, the characterization of this same device
using a Rohde & Schwarz vector network analyzer is dis-
played in Fig. 6.

7. Emitted spectra
The signal generated by the Raspberry Pi is a square wave
and hence exhibits many more spectral components than
expected. On a broad spectrum (Fig. 7) the harmonics
are clearly visible and although they can be beneficial for
reaching high radiofrequency (UHF) bands, analog filering
is needed for a single harmonic to probe the device under
test.

On a narrower bandwidth, intermodulation is clearly ob-
served when emitting an AM modulated sine wave at fre-
quency fAM over a carrier: while the theoretical spectrum
would be two Dirac spectral characteristics spaced by twice

https://gist.github.com/onetransistor/4cbe3a8ab5d47da22cde
http://jmfriedt.free.fr/gr-rpitx_set_freq.mp4
http://jmfriedt.free.fr/gr-rpitx_set_freq.mp4

Figure 5. Top: through configuration of the dual resonator
SENSeOR (France) SEAS10 transducer operating in the ISM
band as cooperative target for passive, wireless sensing. Bottom:
calibration with a through measurement as reference when no sen-
sor is present between the radiofrequency output and the DVB-T
receiver acting as general purpose software defined radio receiver.
Arrows on the top chart indicate the frequency offsets at which the
resonance modes are observed.

Figure 6. Reference measurement of the SEAS10 transducer used
in transmission mode in this experiment. The 5 MHz frequency
span is broader than the chart displayed in Fig. 5 to emphasize the
lack of spurious resonance out of band.

the AM modulation rate, the practical spectrum exhibits a
series of components separated by fAM . Fig. 8 illustrates
the emission of a 5-kHz amplitude modulation of a 86.6-
MHz carrier: while the spectrum would be expected to be
only two spectral components at ±5 kHz when the modu-
lation signal is a sine wave, a multitude of periodic compo-
nents is visible, degrading the signal to noise ratio.

Fig. 8 also emphasizes how inaccurate the carrier fre-
quency definition is with an offset of 20 kHz to the tar-
geted 86.6 MHz or 230 ppm. Finally, the fractional PLL 1

(Fig. 9) converting the 700 MHz reference oscillator V CO
divided by I to the GPIO output signal LO with a pre-

1https://elinux.org/The Undocumented Pi#Clocks

-70

-60

-50

-40

-30

-20

-10

 0

 10

 5x10
7

 1x10
8

 1.5x10
8

 2x10
8

 2.5x10
8

 3x10
8

 3.5x10
8

 4x10
8

 4.5x10
8

 5x10
8

p
o
w

e
r

(d
B

m
)

8
8
 M

H
z

4
4
0
 M

H
z

2
6
4
 M

H
z

frequency (Hz)

86.8 MHz
88.0 MHz

noise floor

Figure 7. Multiple overtones are emitted, allowing to reach the
434 MHz ISM band with the 5th overtone of a 86.8 MHz signal,
but also emphasizing that such a signal must not be emitted over
the air. Bottom: zoom on the signal in the ISM band, exhibiting
multiple spurious spectral features while a continuous sine wave
is being emitted.

Figure 8. Spectrum of a 5 kHz sine wave being transmitted as
an amplitude modulated carrier, emphasizing the many cross-
modulation spectral components beyond the expected two Dirac
components at ±5 kHz from the carrier.

scaler of Q by comparing LO/Q with V CO/I: the de-
scription provided in the Raspberry Pi4 peripheral stating
that V CO = LO

I+F/4096 (since F is defined on 12 bits) re-
lates to the classical fractional PLL descripion by equating

Q =
(
1 + F

4096×I

)−1

Considering that the denominator

F is a 12-bit integer, dV CO = LO/(4096 × I2) by tun-
ing the fractional part of the PLL with unit steps, so that
dF/4096 = 2−12 and I ' 8 for a 86.8 MHz output and
dV CO = 2.7 kHz.

/I

VCOLO

/Q

LO/D

VCO/Q

VCO=

700 MHz I=8 dVCO=2,6 kHz
(dQ=1/2)12

LOxQ/I
12dVCO=LO/I /22

=> LO/I=VCOx(1+F/4096/I)

Q=1/(1+F/4096/I)

Figure 9. Schematic of the fractional PLL relating the classical
PLL architecture with the quantities handled by the Raspberry Pi4
registers I and F (Pi, 2020) at p.81 “5.4 General Purpose GPIO
Clock”.

8. Conclusion
We have extended the capability of the Raspberry Pi(4) as
a radiofrequency source by providing compatibility with
GNU Radio and hence all the signal processing blocks
available to generate signals as simple as broadcast ana-
log frequency modulated signals to as complex as Digi-
tal Radio Mondiale digital communication streams. The
emphasis is on educational purposes to promote investi-
gations of real signals plagued by practical issues such
as fading and noisy communication channels between the
source and an inexpensive receiver such as a digital video
broadcast-terrestrial receiver used as general purpose soft-
ware defined radio receiver on the Raspberry Pi or the host
personal computer. The software is available at https:
//github.com/jmfriedt/gr-rpitx

Acknowledgement
Emitting digital mode broadcast signal and using DRM
for that purpose rather than DAB(+) which would re-
quire excessive bandwidth was supervised by Hervé Boe-
glen (XLim, Poitiers, France) who also improved the
manuscript by proofreading.

References
É. Courjaud, F5OEO. Rpitx: Raspberry Pi SDR transmit-

ter for the masses, 2017. https://www.youtube.
com/watch?v=Jku4i8t_nPc.

ETSI. Digital Radio Mondiale (DRM); system specifi-
cation – final draft ETSI ES 201 980 V3.1.1, 2009.
https://www.etsi.org/deliver/etsi_es/
201900_201999/201980/03.01.01_50/es_
201980v030101m.pdf.

Maxim Application Note 3469. Build low cost
white noise generator, Mar 14 2005. https:
//www.maximintegrated.com/en/design/
technical-documents/app-notes/3/3469.
html.

Pi, Raspberry. BCM2711 arm peripherals, 2020.
https://datasheets.raspberrypi.org/
bcm2711/bcm2711-peripherals.pdf.

Schroer, V., 2021. https://www.mail-archive.
com/discuss-gnuradio@gnu.org/
msg73035.html.

Sliwczynski, Lukasz. Zener diode and
mmics produce true broadband noise, Octo-
ber 14 1999. https://www.edn.com/
zener-diode-and-mmics-produce-true-broadband-noise/.

https://github.com/jmfriedt/gr-rpitx
https://github.com/jmfriedt/gr-rpitx
https://www.youtube.com/watch?v=Jku4i8t_nPc
https://www.youtube.com/watch?v=Jku4i8t_nPc
https://www.etsi.org/deliver/etsi_es/201900_201999/201980/03.01.01_50/es_201980v030101m.pdf
https://www.etsi.org/deliver/etsi_es/201900_201999/201980/03.01.01_50/es_201980v030101m.pdf
https://www.etsi.org/deliver/etsi_es/201900_201999/201980/03.01.01_50/es_201980v030101m.pdf
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3469.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3469.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3469.html
https://www.maximintegrated.com/en/design/technical-documents/app-notes/3/3469.html
https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf
https://datasheets.raspberrypi.org/bcm2711/bcm2711-peripherals.pdf
https://www.mail-archive.com/discuss-gnuradio@gnu.org/msg73035.html
https://www.mail-archive.com/discuss-gnuradio@gnu.org/msg73035.html
https://www.mail-archive.com/discuss-gnuradio@gnu.org/msg73035.html
https://www.edn.com/zener-diode-and-mmics-produce-true-broadband-noise/
https://www.edn.com/zener-diode-and-mmics-produce-true-broadband-noise/

