Motivating Undergraduate Communication Theory
Using GNU Radio

Peter Mathys

MATHYS @ COLORADO.EDU

University of Colorado Boulder, Department of ECEE, UCB 425, Boulder, CO 80309-0425 USA

Abstract

Typical undergraduate communication theory
textbooks start from amplitude, frequency, and
phase modulation using continuous time signal
processing, followed by an introduction to ran-
dom processes, before digital (and discrete time)
communications systems are introduced in the
second half of the book. This has led to a drop
in enrollment in our undergraduate communica-
tions track sequence, largely due to students be-
ing overwhelmed with the mathematics of linear
systems and probability theory before they have
been motivated enough by seeing the applicabil-
ity of communication theory to the wireless de-
vices that they have come to embrace in their
daily lives. We promote a modified approach that
uses GNU Radio flowgraphs early in the course
to build and analyze a basic digital communica-
tion system in parallel with developing the nec-
essary communication theory background. Since
GNU Radio is a complex and sophisticated soft-
ware development toolkit, we place a lot of em-
phasis on making it a tool that is as transparent
and as easy to use as possible by creating care-
fully designed hierarchical blocks that partition
the communication system into subsystems with
well defined interfaces and parameter settings.

1. Introduction

Typical undergraduate communication theory textbooks
(Lathi & Ding, 2009), (Haykin & Moher, 2009), (Proakis
& Salehi, 2002), start out with a review of continuous
time linear systems, followed by amplitude, frequency and
phase modulation. In some cases, probability theory and
random processes also appear prominently at the beginning
of the book. Digital data communication and digital signal
processing are usually deferred until the second half of the
course and the first complete digital communication sys-

Proceedings of the 6! GNU Radio Conference, Copyright 2016
by the author(s).

tem that resembles what is actually used in smartphones
and other modern wireless systems appears only some 300
to 400 pages into the book. That makes it difficult to mo-
tivate students who are hesitant to begin from a mostly
abstract mathematical exposition to the topic and we are
thus promoting an approach where we start with a simple
ideal communication system, e.g., using binary phase shift
keying to transmit ASCII code text messages. In subse-
quent steps we can then introduce practical constraints and
impairments such as channel bandwidth, noise, and tim-
ing synchronization. Along the way such concepts as the
matched filter, signal space, and phase locked loops can
be introduced naturally. To give the students opportunity
to experiment and explore *what-if” scenarios, GNU Radio
and the GNU Radio Companion (GRC) provide an ideal
and very affordable platform. But there is a ’chicken and
egg’ problem. If you already know communication theory,
GNU Radio is a great tool for experimentation, but if you
are new to the field there is a steep learning curve. Just to
demonstrate the concept of signal space and what happens
if there is noise and the transmitter and receiver are not ex-
actly synchronized, one quickly fills an entire flowgraph
screen with some 30 blocks whose function is not always
self-evident. Thus, some tailored blocks along the lines
of an idealized textbook exposition to communications are
needed to demonstrate the applicability of the material and
to let students gain confidence in their ability to analyze
and design such systems. In the following sections we de-
velop GNU Radio blocks with well defined interfaces and
parameters to explore a basic digital communication sys-
tem in four acts (which could easily be extended if there
was no page limit).

2. Basic Digital Communication in Four Acts

You are new to communications and you are given the task
to transmit a text, say ’ Zombie’, over a pair of wires.
What are the fundamental operations that you need to per-
form in order to accomplish this task? We break this up
into four acts. In act 1 the ASCII coded text is converted
to a serial stream of A-ary symbols, e.g., for M = 2,4.
In act 2 the M -ary symbols are converted to waveforms us-
ing pulse amplitude modulation (PAM) with different pulse
shapes. In act 3 we transmit the PAM signal over a noisy

Motivating Undergraduate Communication Theory Using GNU Radio

channel and observe the resulting errors. In act 4 we de-
velop the matched filter as the receiver’s solution to maxi-
mize the signal-to-noise ratio (SNR).

2.1. Act 1, ASCII and Parallel Serial Conversion

The ASCII (American Standard Code for Information In-
terchange) is a well-established 7-bit code for standard
English text, punctuation, and symbols. Because digital
computers typically use wordlengths in multiples of 8 bits,
ASCII encoded text usually uses 8 bits per character with
the most significant bit (MSB) set to 0. In hexadecimal
notation, the code for Zombie is 5a, 6f, 6d, 62,
69, 65. To transmit these codes we have to break them
up into symbols that can be sent to the receiver. In the sim-
plest case we just transmit the 0’s and 1’s that make up the 8
bits, but we might also be able to combine pairs of bits and
transmit symbols for 00, 01, 10, and 11 (e.g.,as 0, 1, 2, and
3). We call these M-ary symbols with M = 2 for binary
and M = 4 for pairs of bits or M = 3 for triplets of bits,
etc. These symbols have to be sent serially to the receiver
and the process of converting from ASCII code to M-ary
symbols is called parallel-to-serial conversion. Similarly,
the process of reconstructing ASCII codes from received
symbols is called serial-to-parallel conversion. The rate at
which symbols are transmitted is called Baud rate (or sym-
bol rate) and denoted with the symbol F'g. In the GRC we
can use the flowgraph in Figure 1 to generate a stream of
binary symbols from the text Zombie.

Options Variable Tag Object
1D: pam_001p ID: FB 1D: tag
Title: Pulse Am...lation 001p Value: 32k Offset: 0
Author: Peter Mathys Key: Z

Description: Conve... symbols
Generate Options: QT GUI

Value: 0x5a
Source ID: Vsrc

Vector Source
Vector: 90, 111...8, 105, 101
Tags: Ox5a

Repeat: Yes

» Throttle
Sample Rate: 32k

Figure 1. Parallel to Serial Conversion of ASCII Text

Packed to Unpacked
Bits per Chunk: 1
Endianness: L5B

QT GUI Time Sink
[Number of Points: 1.024k
Sample Rate: 32k
Autoscale: No

UcChar To Float [

Each GRC flowgraph has an options block which is the top-
level hierarchical block representing the flowgraph. It is
used to set global parameters, e.g., to use the QT GUI for
the display of graphs, or specification of parameters during
flowgraph execution. The Vector Source is used to generate
the ASCII code bytes. We also specified a tag using the Tag
Object so that we can identify the beginning of the text later
in a time display. The detailed settings for these two blocks
are shown in Figure 2.

o Properties: Vector Source (] Properties: Tag Object

General Advanced Documentation General | Advanced Documentation

D blocks_vector_source_x_0 D tag
Output Type Byte = Offset 0
Vector list(ord(i) Foriin'Zombie") Key pmt.intern("Z")
Tags [tag] Value pmt.intern("0x5a")
Repeat Yes Source ID pmt.intern("vsrc")

Vec Length 1

Figure 2. Properties of Vector Source and Tag Object

The Packed to Unpacked block performs the actual
parallel-to-serial conversion. Specifying 1 bit per chunk
creates binary symbols, 2 bits per chunk would create 4-
ary symbols, etc. Whenever a parallel-to-serial conversion
is performed there are two ends to start from, either LSB
(least significant bit) first or MSB first. In the Packed to
Unpacked block this is specified as LSB (1) or MSB (0) En-
dianness. The Throttle block together with the FB Variable
limits the flow of the symbols generated to the specified
Baud rate F'p. Finally, to check that the correct sequence of
symbols is generated, we use a QT GUI Time Sink. Since
this block only accepts Float or Complex number inputs, it
is preceded by a UChar to Float type converter. The graph
of the generated binary time sequence is shown in Figure 3.

1] m Data 0
0.8 4
[7
o]
= 7
g 04
< 7
0.2
a1 z{oxs

0

T [' T T 1 v T T 1 r T T 1 T T

3 3.2 3.4 3.6 3.8

Time (ms)

Figure 3. Generated Serial Stream of Binary Symbols

Note the tag Z: 0x5a that was set in the Vector Source to
indicate the beginning of the text (which is repeated over
and over again). To trigger on the tag and to display the
actual sample points as circles, click on the middle mouse
button and select the appropriate menu item. Use the mouse
to select and zoom in on an area of the graph.

Now that we have the basic conversion from parallel ASCII
to serial symbols in place, we see that there are a number
of parameters that could be set in different ways and if we
want our transmitter to be reasonably universal we need
some additional settings. These include (i) the number of
bits per symbol, (ii) LSB or MSB first, (iii) unipolar (e.g.,
0,1 or 0,1,2,3) or polar (e.g., -1,+1 or -3,-1,+1,43), (iv) bit

Motivating Undergraduate Communication Theory Using GNU Radio

inversion of the ASCII code (to accomodate polarity rever-
sals), and (v) 8-bit or 7-bit (true) ASCII code generation.
In addition we may want to send other data than ASCII
text, e.g., random bytes for making different kinds of mea-
surements. This will require a few additional blocks and
it is cumbersome to repeat these every time we need a se-
rial symbol stream. Luckily, the GRC includes a feature
where several blocks can be combined into one hierarchical
block with specified inputs, outputs, and parameters. This
is shown in the next flowgraph in Figure 4 for a ASCII to
Float Symbols conversion block which incorporates all the
additional options that we listed above in the form of pa-
rameters.

Options Parameter Parameter Parameter Parameter Variable
1D: asc2sym_of 1D: 3 bpsym 1D b ece 1D: € pol 1D d inv 1D: 1
Title: ASCII to Float Symbols | | Label: Bits per Symbol | | Label: LSE First | | Label: Polar | | Label: Invert Bits Value: 2
Author: Peter Mathys Value: 1 Value: 1 Value: 1 Value: 0
Syr Type: Int Type: Int Type: Int Type: Int
Generate Options: Hier Block

Category: grconl6

Pad Source And Const Map :;keﬂr ::“:;"T“"
Labet: in Constant: 255 Map: o invlist(20%8. L1 . per Chunk:
pofj Char To Float Add Const Pad Sink
Seale: 500m Constant: 1 Labet: out

Figure 4. ASCII to Float Symbols Hierarchical Block

The type of the top-level Options block is now set to Hier
Block. The number M of symbols generated is computed
as 2x+a_bpsym. This, together with the properties of the
other blocks is shown in Figure 5.

(~] Properties: Options (~] Properties: Char To Float
General Advanced Documentation General | Advanced | Documentation
D asczsym_bf D blocks_char_to_float_0

amor ey s cporosi<poles

pescrioten - Coversion from ASCI (bytes) to M-ary symbals [Y=Y r e P
Y (.ol e | Docurmentation

Generate Options Hier Block - D blocks_add_const_vxx_0
cregoy GroRTeN—— owpe | Float

Constant -¢_pol*(M-1)+(1-c_pol)*0

Vec Length 1

Canvas Size

(] Properties: Map (] Properties: Variable
General | Advanced Documentation General Advanced Documentation
D digital_map_bb_1 2} M

&

lue 2**3_bpsym

Figure 5. Properties of Blocks in ASCII to Float Symbols Block

Now we can use this hierarchical block to generate dif-
ferent forms of symbol streams for transmission from a
given source. Some of the parameters, like polar versus
unipolar can be changed on the fly and the effect can be
viewed directly as the simulation is ongoing. The next
flowgraph, shown in Figure 6, uses the text Zombie to
generate 4-ary symbols with selectable unipolar (0,1,2,3)
or polar (—3,—1,+1,+3) values.

The Bits per Symbol parameter in the ASCII to Float
Symbols block is set to the Variable bps and the Po-

Options Variable Tag Object Variable QT GUI Chooser Variable

1D: pam_002p ID: FB ID: tag 1D: bps. 1D: polar ID: M
Title: Pulse Am..lIation 002p | | value: 32k | | Offset: 0 Value: 2 Num Options: 2 Value: 4
Author: Peter Mathys Key:Z Default Value: 1
Description: ASCIL.settings Value: 0x5a Option 0: 0
Generate Options: QT GUI Source ID: Vsrc Label 0: unipolar

option 1: 1

Labe! 1: polar

ASCII to Float Symbols
Vector Source Bits per Symbol: 2

Vector: 90, 111..8, 105, 101 LSB First: 1

Tags: 0x5a Polar: 1

Repeat: Yes Invert Bits: 0

7-Bit ASCII: 0

QT GUI Time Sink

Throttie Number of Points: 1.024k
> Sample Rate: 32k Sample Rate: 32k
No

v

Figure 6. 4-Ary Symbol Generation Unipolar and Polar Se-
lectable

lar parameter is set to the variable polar which is the
ID of the QT GUI Chooser. The resulting graph in
the polar setting is shown in Figure 7 in the form of a
stem plot (using the middle mouse button for the graph
type selection). Note that / Z’ =5a and ' o’ =6f convert
to-1,-1,+1,+1,+3,+3,-1,+1 4-ary polar and LSB
first ASCIL.

e g AT T
I AR

Time (ms)

Figure 7. 4-Ary Polar Symbol Sequence for ’ Zombie’

Now we are ready to tackle the reverse problem of receiv-
ing a serial stream of symbols and converting them back to
parallel bytes that represent ASCII characters. We use the
same general principle of identifying the parameters that
may need adjustment as for the parallel-to-serial conver-
sion and then building a hierarchical block that can accom-
plish the task. At the receiver there are some new chal-
lenges in addition to the possible options that we consid-
ered for the transmitter. First of all, the signal level will
most likely change along any realistic transmission path
and we need an adjustable gain parameter. Then there is
the important issue of synchronization. If we use binary
transmission as an example, then each ASCII character is
8 bits long. For various reasons we may lose a few bits
during transmission and the first bit that arrives may not
be at a boundary between ASCII characters. Thus, an ad-
justable symbol delay is needed so that synchronism can
be established at the receiver. A hierarchical block that can
accomplish this task is shown in Figure 8.

Motivating Undergraduate Communication Theory Using GNU Radio

Options
1D: sym3ascl6 T
Titte: Ficat Symbols to ASCII Label: Symbol Delay.
Author: Peter Mathys Value: 0
Deseription: Conve.. (bytes) Type: Float | | Type:Int

: Hier Block
Category: grconls Parameter
10: g true_asc
Label;: 7-6i ASCI
Value: 0
Type: Int

o source gy Const naa const Floet To s
et n Constant Consant: s som o0
e wan Ana onst o sk
= : Map: f invHlist(28- 1 . Constant: 255 Label: out

Figure 8. Float Symbols to ASCII Conversion Hierarchical Block

The next interesting question is how to display the output of
the Float Symbols to ASCII conversion block. To complete
this first act of exploring the basics of communication with
a sense of accomplishment we don’t want to see just num-
bers or graphs, we want to be able to read the text (which
we of course already know) at the receiving end. Luck-
ily Linux treats all devices, including the terminal, as files.
Thus, we can use a File Sink and use /dev/pts/n, where
n is a number, as file name. To obtain n for a specific ter-
minal, open it and type tty at the command prompt. The
flowgraph in Figure 9 shows our completed discrete-time
baseband system for transmitting an ASCII text using se-
rial M-ary symbol transmission.

QT GUI Chooser | [QT GUI Range
1D: sym_aly

Default Value:

Start: 5

stop:8

step: 1

Float Symbols to ASCIl

Symbol Delay:0 Fte sink
Bieper Symbo: 1 s deuptsna
Lsn et 1 B0 vriuerecion

Polar: 1 Append file: Overwrite.

ASCII to Float Symbols
Bits per Symbol: 1

158 First: 1
| g [ty

7Bt ASCI: 0

Invert Bits: 0
7-Bit ASCI: 0

QT GUI Time Sink
Number of Points: 1.024k
Sample Rate: 32
Autoseale: No

Figure 9. Discrete Time Serial Baseband Transmission System

You can try changing the number of bits per symbol,
change the Symbol Delay at the receiver, change polar to
unipolar, etc. It is also instructive to see how garbled up the
received text becomes when there is a mismatch in the pa-
rameters between the transmit and receive sides. If all goes
well the QT GUI Time Sink display and the tty terminal
display should look as shown in Figure 10.

2.2. Act 2, Symbol to Waveform Conversion

A pair of wires is an analog communication channel that
needs to have a defined signal level at all instants of time.
Thus, a discrete-time (DT) sequence of symbols needs to be
converted to a continuous-time (CT) waveform for proper
transmission. A simple way to accomplish this is to use
pulse amplitude modulation (PAM) which can be expressed

00 .

sym_dly

olar
e q W Data 0

") unipolar

Amplitude
: o

@ polar

T
3 3.5 4 45
Time (ms)

bieZombieZombieZombieZombieZombieZombieZombieZombieZombieZo
bieZombieZombieZombieZombieZombieZombieZombieZombiezZombieZomb

ombieZombie.
viby@USB-890815:~5 tty
/dev/pts/13
viby@uss-eges1s:~$ I

Figure 10. Received Signal in the Time Domain and on the tty
Screen

mathematically as

s(t) = Z an p(t —nTp) (1)

where a,, are the values of the DT symbols, T = 1/Fp
is the symbol time, p(t) is a CT pulse shape and s(¢) is the
CT PAM signal. Inside GNU Radio all signals are sam-
pled and we cannot have a true CT signal. However, we
can use a sampling rate F that is sufficiently larger than
the Baud rate F'g to obtain "CT” waveforms that work
well for simulation and visualization purposes. The ra-
tio Fs/Fp is equal to the number of samples per symbol
(Fs/Fp = sps). For actual software radio implemen-
tations sps may be chosen as low as 2. But to generate
“nice” looking waveforms during simulations sps should
be chosen higher, e.g., sps=10. Figure 11 shows the hier-
archical block that we use to produce PAM waveforms for
different pulse types.

Options

1D: pam_xmtrl6_ff ID: a_sps ID: b_ptype 1D: c_alpha ID:d k
Title: PAM Transmitter Label: Samples/Symboel Label: Pulse Type | | Label: Alpha | | Label: Tail Length
Author: Peter Mathys Value: 2 Value: rect Value: 200m | | Value: 5

Description: Pulse..."'tri’)
Generate Options: Hier Block
Category: grconl6

Pad Source I
Label: in

Figure 11. PAM Transmitter Hierarchical Block: DT Symbol to
CT Waveform Conversion

Type: Int Type: String Type: Float | | Type: Float

Import Variable
Import: pf | | ID: pt taps
Value: 1,1

Interpolating FIR Filter
Interpolation: 2
Taps: 1,1

The increase in sampling rate from F'p to Fs for the DT
to CT conversion is achieved using an Interpolating FIR
Filter with the Interpolation value set to sps. The Property

Motivating Undergraduate Communication Theory Using GNU Radio

settings of the blocks in the PAM Transmitter Hierarchical
Block are shown in Figure 12.

(] Properties: Options (> Properties: Import
General| Advanced Documentation General Advanced Documentation
D pam_xmtr16_ff D import_0_0

Title Import import ptFun as pF

_ © Properties: Interpolating FiR Filte|
[PUEESMpIEIGE MOGUBEOAWIEN GIffEreNEPUBEE eneral Advanced Documentation

D interp_fir_filter_xxx_0

Author
Description
Canvas Size

Generate Options Hier Block -
caregory [greomie Y epotion ipe
) Properties: Variable Taps pt_taps

Sample Delay [0

Type Float->Float (Real Taps)

General Advanced Documentation
jio) pt_taps
value pf.pampt(a_sps,b_ptype,[d_k,c_alpha])

Figure 12. Block Properties of PAM Transmitter Blocks

The most important part is setting the Taps of the Inter-
polating FIR Filter to obtain a PAM pulse p(t) of the de-
sired shape. This is done through the Variable pt_taps
which generates the taps from our own Python module
ptfun.py that contains the function pampt:

File: ptfun.py
import numpy as np
def pampt (sps, ptype, pparms=[]):

if ptype == ’'rect’:
nn = np.arange (sps)
pt = np.ones(len(nn))
elif ptype == ’'rcf’:
nk = round (pparms[0]*sps)
nn = np.arange (-nk, nk)

pt = np.sinc(nn/float (sps))

if len(pparms) > 1:
p2t = 0.25%np.pixnp.ones(len(nn))
atFB = pparms[1l]/float (sps) *nn
atFB2 = np.power (2xatFB,2.0)

ix = np.where(atFB2 != 1) [0]
p2t[ix] = np.cos(np.pi*atFB[ix])
p2t[ix] = p2t[ix]/ (1l-atFB2[ix])
pt = ptx*p2t

else:

pt = np.ones(l) # default value

return pt

This generates the taps for rectangular (’ rect’) and
raised cosine in frequency (' rcf’) PAM pulses. Other
pulses of interest which we included in pampt are the
manchester (man’) and triangular (tri’) PAM pulses.
The simplest strategy is to use rectangular pulses, i.e., keep
the level of the PAM signal s(¢) at value a,, for the n-th
symbol interval. But looking at the Fourier transform (FT)

S = [se I = A1) P(S)
(where A(fTg) is the DT-FT of a,,) of a general PAM sig-
nal s(t), we see that the spectrum of the signal is shaped
by the FT P(f) of the pulse p(¢). For a rectangular pulse
of amplitude 1 and width T, P(f) = sin(nfTg)/(7f)

which has a 95% power bandwidth of 2Fg. To re-
duce the bandwidth to Fiz/2, the ’ sinc’ pulse p(t) =
sin(wt/Tg)/(wt/Tg), or the related " rc £’ pulse

sin(nt/Tg) cos(rat/TR)
Wt/TB 1— (2Oét/TB)2

p(t) =

with bandwidth control parameter 0<=a <=1 can be used
(the case a=0 corresponds to the sinc’ pulse). The —6
dB bandwidth of rc£’ PAM pulses is (1+«) Fg /2. Plots
of " rcf’ pulses in the time domain are shown in Figure 13
for different values of .

12 rcf: Raised Cosine in Frequency PAM Pulse

g a=0
— a=0.3 [

- a=0.5[]

0.8}
0.6
0.41
0.0 fr———is

—-0.2}

—-0.4 L L L L L |

p(t)

tT.B

Figure 13. Raised Cosine in Frequency Pulses for Different Val-
ues of o

Note that ideal * rcf’ pulses extend fromt = —ocotot =
+00. For practical purposes the “tails” of the pulses must
be truncated, e.g., to k zero crossings to the left and right
of the main lobe as we did in the pampt function. Thus,
for " sinc’ and ’ rcf’ weuse pparms= [k, «|, whereas
for 'man’, ' rect’ and ' tri’ we set pparms= [].

The flowgraph in Figure 14 implements a PAM transmitter
for different pulse shapes and an impulse sampling receiver.
Impulse sampling is implemented using a Decimating FIR
filter with decimation factor sps and a unit impulse re-
sponse function h,, = d,,. That is the equivalent of using a
switch that closes for one time period Ty = 1/F} and stays
open for sps-1 time periods 7. An adjustable time delay is
put in front of this filter so that the optimal sampling time
(e.g., tip of triangular pulse) can be chosen.

The sampled signal at rate Fp is passed on to the Float
Symbols to ASCII conversion block. It is also upsampled
again by sps with the help of an Interpolating FIR Fil-
ter with impulse response d,, so that the received waveform
and its sampled (at rate F'g) version can be viewed together
using a 2-input QT GUI Time Sink (note that the Time Sink
does not work well when it receives signals with different
sampling rates). Figure 15 shows the spectrum of a rectan-
gular polar binary PAM signal on the left and the received
PAM signal (blue) and its sampled version (red) in the time
domain on the right side. The correct sampling time in-
stants are easily found by adjusting the sampling delay and

Motivating Undergraduate Communication Theory Using GNU Radio

QTGUI Range | | @7 GUI Range | [QT GUI Range
1D: samp_aty ly

step: 10m step:1

PAM Transmitter QT GUI Sink
FFT Size: 1024k

quency (Ha): 0
Bandwidth (Hz): 320¢
Update Rate: 10

Jl QT GUI Time Sink
E] Number of Points: 1.024k

Interpolating FIR Filter
Interpolation: 10
Taps: 1

Sample Rate: 320¢
Autoscale: No

7-Bit ASCIl: 0

Figure 14. ASCII Transmission Using PAM and Impulse Sam-
pling at Receiver

observing the locations of the resulting samples (shown as
red diamonds in the graph).

alpha e 02000 | samp_dly e m
BTN — 10 |
ptype 24
Frequency Display | Waterfall Display | Time Domain Disple ¢ ! mData0
mData 1
o mData0 e

@ rect

Power (dB)

Amplitude

150.06100.0050.00 0.00 50.00100.00150.00

Frequency (kHz)
rcf

Max Hold Average

Min Hold 10

ek

Display RF Frequencies FFT Size: (1024

T Sanasay
14 15 16 17 18 19 2

Window: |slackmanharris Time (ms)

Figure 15. Noiseless PAM Signal for Rectangular Pulse Shape

2.3. Act 3, Channel Noise

Now let’s see what happens if we use impulse sampling at
the receiver when the PAM signal is transmitted through
a noisy channel. In practical implementations a substan-
tial portion of the noise is actually generated by the cir-
cuitry of the receiver front end, but for the analysis of com-
munication systems it is more convenient to attribute all
the noise to the channel. The flowgraph in Figure 16 is
similar to the one in Figure 14, with the exception of the
Fast Noise Source that has been added. This source gen-
erates white Gaussian noise and the channel model that re-
sults from adding this noise to the transmitted waveform is
called AWGN (additive white Gaussian noise) model.

The amplitude An of the noise is controlled by one of the
QT GUI Range sliders. The graphs in Figure 17 show the
spectrum on the left, and the received as well as the sam-
pled PAM signal on the right when An=0.32 (correspond-
ing to a noise power of 0.1).

Figure 18 shows the resulting errors in the received ASCII

QT GUI Chooser QT GUI Range | [o7 GuI Range | [oT GUI Range
10: samp_dly 1D: sym _aly :
Default Value: 0 | | Default Value: 0 | | Default Value: 0
Start:0 Start: 5 Start: 0

Stop: 20 Stop: 8 Stop: 1

Step: 1 step: 1 Step: 10m

QT GUI Range
aipha

Seed: 0
Variate Pool Size: 8,152

QT GUI Sink
PAM Transmitter FFT Size: 1024
ce

Samples/Symbol: 10 ada 1} conter Frequency (k:0
1 usetyperrect [Bandwidth (He): 206
Atpha: 20 Update Rate: 10
oy

Tail Length: 5

Interpolating FIR Filter
Interpolation: 10

7-BitASCIl: 0

Figure 16. PAM Transmitter, Channel Noise, and Impulse Sam-
pling at Receiver

alpha

02000 1 samp_dly e— 70 -

An

03200 0 symdly e—— 1.0 -

ptype - - - 2+ mData 0
Frequency Display | Waterfall Display = Time Domain [< » A=
o = Data 1
03 mData 0
@ rect 7 207 14
= 0]
g 0
3 @
R S 807 <
tri 2
-100 § = g
s e |
AL MLA A <
~150.0000.0650.000.00 50.00100.0050.00
3 e Frequency (kHz)
ﬂ{
-
() Max Hold Average zipgea
(1 Min Hold 10
O rrcf
24

() Display RF Frequencies FFT Size: (1024 2

e
13 14 15 16 17 18 19

Window: |Blackmanharris + Time (ms)

Figure 17. Noisy PAM Spectrum and Waveform for Rectangular
Pulse Type

text.

This is clearly non-negligible and depends very much on
whether the one sample per symbol that the receiver uses
happens to be affected or spared by the noise.

2.4. Act 4, Matched Filter and SNR

The flaw of impulse sampling at the receiver is that it re-
lies on a single sample per symbol rather than taking into
account that the waveforms of all possible symbols are ac-
tually known to both transmitter and receiver. Thus, the
key idea is to use a filter with impulse response hr(t) at
the receiver that somehow incorporates this knowledge be-
fore sampling at rate Fg. The block diagram of a PAM
communication system is shown in Figure 19.

To keep things simple, it is assumed that only a single
symbol with value ag is transmitted over a noisy channel
with impulse response h¢(t). The received noisy signal is
r(t) = aopel(t) + n(t), where pe(t) = p(t) * ho(t) is
the convolution of the PAM pulse p(t) with the impulse re-

Motivating Undergraduate Communication Theory Using GNU Radio

-

viby@USB-090815: ~
ombieZkmbieZombieZombiaZ-mbiiZomfidZombie
h1=7:)mhh=7x)nhk=7Dnbmﬁ)nblﬂonbkﬂmb'
ezFmb)ezombieZo} i

x)mbleRx)mbLejx)mb'

"ieZoobieZomcimZoo|

eZomfieZombiseomci

ombiaZomb)eZoobieZ

ombieZombkeZoMbiezZom
fieZomridZomfieZombI

ieRombie[omb Zombieeoe! ZombiezZImbieZ

ieZombieZoebae omb)DeombieZo Zol'ieZombieZom

bieZOmbIeZoobie. ekombyeeombieZol oebieZo}bieZomb obieZomfheZombi]
eZomeieZonfiezonbiezoobI+zonbiezonBie[[nb)[fFonbieZoebieZombieZonbieRoor ie[fAmbie.

oifieZo- bLe[x)mlneﬁ)muEﬁ)mbmeﬁ)mbwzx)muwﬁ)mbwl

'l=7onb1=7omb1=Homf1exm

Figure 18. Rectangular PAM: Errors in Received Text due to
Channel Noise

Noise n(t)

Channel r(t) Filter | b(t) b,

p(t) Ho(f) . Ha(f) !
t=nTp

Transmitter Channel Receiver

Figure 19. Block Diagram of PAM Communication System
Model

sponse of the transmission channel. The receiver filters ()
and produces the CT signal b(t) = r(t) * hg(t) which is
then sampled at time ¢ to produce the received symbol by
which is hopefully a good estimate of ag. In this model ag
is a random variable (e.g., taking on values +1 or —1) and
n(t) is a random process (e.g., with power spectral density
Sn(f) = Ny/2 for all f for the AWGN channel).

A simple intuitive choice for the receiver would be to use
a low-pass filter (LPF) of bandwidth ~Fz. But it turns
out that we can do better by explicitly looking for a fil-
ter response h g (t) that maximizes the signal-to-noise ratio
(SNR) in by for a given p(t), after sampling b(t) at the re-
ceiver. To develop this approach, some basic knowledge of
probability theory and random processes is needed. Here
we skip the details and state the relevant results. In the ab-
sence of noise the expected signal power is

Ellbo|*] = E[b(to)[?]

= Blaof2)| [, Ha(f) Po(f) e df|

where Hr(f) and Po(f) are the FTs of hg(t) and pe(t),
respectively. In the presence of noise only (i.e., ag = 0),
the expected noise power for the AWGN channel is

2 NO

[b(tl)b* tg ’t —t, =0y = 9

| iHatnPa
where Ny is the (one-sided) power spectral density of the
white Gaussian noise assumed for the AWGN channel.
Thus, the SNR for the received symbol by is

s Bllaof?)| [, Hr(f) Po(r) e gf|

N No/2 [Z2 |Hr(f)? df

The thought of maximizing this by choice of hgr(t) <
Hpg(f) looks intimidating at first, but it turns out that this
can be done relatively easily by invoking the Schwartz
Inequality (see, for example, (Haykin & Moher, 2009),
p- 282). Skipping the details, the resulting optimal receiver
filter is the (normalized) matched filter (MF) with unit im-
pulse response

__pelto—t)

hn() 75 Ipe(p)[? du

where * denotes complex conjugate. The resulting (mini-
mum) SNR is

S 2E[aol?] [lpc ()| dp

N Ny

A hierarchical GRC block, called PAM Receiver 2, that im-
plements the (normalized) MF is shown in Figure 20.

Options.
1D: pam_rvr216 1

Parameter
1D: dly.
Label: Sample Delay

/alue: 0
Type: Int Import
Import: pf

P stk
Label: out
g P sine

Label: samp

Interpolating FIR Filcer
fil mterpotation: 2
=

Figure 20. PAM Receiver Hierarchical Block: Matched Filter

This block has one input, three outputs, and 5 parameters.
The main processing path goes from the Pad Source in
to the Decimating (with factor 1) FIR Filter which acts
as MF followed by the (adjustable Sample) Delay and an-
other Decimating (with factor sps) FIR Filter to the Pad
Sink out. The other two Pad Sinks are used to observe
the waveform b(t) after the MF (MFout) and the sample
values b,, after after the sampler (samp). Note that the lat-
ter output is upsampled to the same rate as MFout so that
both outputs can be displayed on the same QT GUI Time
Sink. The most important block settings of the blocks in-
side PAM Receiver 2 are shown in Figure 21.

Note that the MF taps are obtained from the Python func-
tion pamhRt in the module pt fun. This is the same func-
tion as pampt, except that p(¢) is time reversed and nor-
malized to obtain hg(t):

def pamhRt (sps, ptype, pparms=[]):
pt = pampt (sps, ptype, pparms)
hRt = pt[::-1] # h_R(t) = p(-t)
hRt = 1.0/sum(np.power (pt,2.0)) *hRt
return hRt

Returning to the block diagram in Figure 19 we can see
that, assuming an ideal channel with he(t) = §(t) and

Motivating Undergraduate Communication Theory Using GNU Radio

Properties: Decimating FIR Filter

Properties: Options

General| Advanced Documentation General| Advanced | Documentation

D pam_revr216_ff D fir_Filter_xxx_0
Title _ Type Float->Float (Real Taps)
oot puseAmplitudeoduationmtched fiterres Tws pi taps
== T - 0
categary [GreoRTC I (General | Advanced | Documentation
D pt_taps
Value pf.pamhRt(a_sps,b_ptype,[d_k,c_alpha])

Figure 21. Block Properties of PAM Receiver 2 Blocks

hr(t) = p(—t) for simplicity, the received signal at b(t)
is essentially the convolution p(t) % p(—t), scaled by ag. If
we transmit a whole sequence a,, of symbols then we get
intersymbol interference (ISI) after sampling b(¢), unless
p(t) *x p(—=t) = 0 for t = nTp for all integers n, except
n = 0. This works fine for some pulses, e.g., ' rect’
and (ideal) * sinc’, but not for others, e.g., ' rcf’ pulses
with @ > 0. To keep the bandwidth requirement below
Fg, we need to come up with a pulse p(t) for which p(t) %
p(—t) has the shape of the ' rcf’ pulse. The resulting
root raised cosine in frequency” (rrc£f’) PAM pulse is

_ Tjsin((l—a)ﬁt/TB) + % cos((14+a)mt/Tg)

pt) == (1= (dat/TR)D) 1

with bandwidth control parameter a<=0<=1.

Now we are ready to put PAM signaling with a matched
filter receiver to the test on a noisy channel. The complete
GRC flowgraph is shown in Figure 22.

Options Tag Object e | [ot Gui chooser
1D: pam_006p 1D:tag 1D: prype
Title: Puise Am.lation 0060 | | Offset: 0 Value: 10 | | Num Options: 4
Author: Peter Mathys

Defaut Value: rect
Description: ASCIL.receiver | | vatue: 0xa
Generate Options: QTGUI | | source ID: Virc

QT GUI Range | [oT GUI Range | [oT GuI Range
1D: samp_aly 10: sym_dly 1D: An

Default Value: 0 | | Defaut Value: 0 | | Defautt vaue: 0
Start: 0 Start: -5 start:0

stop: 1

Step: 10m

Stop: 20 Stop: 5
Step: 1 Step: 1

Varlate Pool Size: 8,192

QT GUI Sink
PAM Transmitter FFT Size: 1024k

Sampies/Symbot: 10 [9] conter Frequency (ha:0
1 usetvperrect e Bandviath (He): 3206

Update Rate: 10

ASCII to Float Symbols
Vector Source Bits per Symbol: 1
111..8,105, 101 g

Ta
Repeat: Yes Invert Bits: 0
7-BItASCIL: O

QT GUI Time Sink

‘Sample Delay: 0] autoscate: o
ascn

Gam:12
SymbolDelay:0
Bits per Symbel: 1
0 s et
potar: 1

Invert ats:0
7o Asci:o

Figure 22. PAM Transmitter, Channel Noise, and Matched Filter
Receiver

Using the ' rrcf’ instead of the ' rect’ PAM pulse for
variation, but the same noise amplitude as in Act 3, we now
obtain the results shown in Figure 23. On the left is the
spectrum of the transmitted PAM signal and on the right is
the received signal after the MF (blue) and after sampling
(red).

alpha e 0.2000 © samp_dly ={ 10 [C

>

(DT .| symdly e— 00 :

ptype Data0
Frequency Display | Waterfall Display ~Time Domain Displa; < » Lzt

15 mData1
LE! mData0 Z:0fs:

O rect

Power (dB)
T,

Amplitude

S —
+150.08100.0050.00 0.00 50.00100.00150.00
Frequency (kH2)

o quency (kHz)
Max Hold Average

7] Min Hold o - 154

@® et

) Display RF Frequencies FFT Size: | 1024

W16 18 2
Window: Blackmanharris Time (ms)

Figure 23. Noisy PAM Spectrum and Waveform after MF for
‘rref” Pulse Type

As shown in Figure 24, there are much fewer errors in the
received ASCII text when a MF receiver is used.

Figure 24. ’rrcf” PAM with MF: Errors in Received Text due to
Channel Noise

One thing that is interesting to try with the flowgraph in
Figure 22 is to use PAM with different pulse shapes, e.g.,
"rect’ or’tri’,andtocompare the amount of errors in
the received text. Some pulse shapes (ask yourself which)
will create a sizeable amount of errors due to ISI after the
MF.

3. Actx,forz > 4

In act 5 it is time to make the transition from baseband
to bandpass communication systems by using amplitude
modulation (AM) to put the PAM signal s(t) onto a car-
rier with frequency f.. Now wireless communication with
software-defined radios (SDR) becomes possible. Issues to
be treated in act 6 are the use of complex baseband sig-
nals and signal constellations which translate to quadrature
amplitude modulation (QAM) for bandpass signals. Wire-
less communication between physically separated trans-
mitters and receivers which have a slightly different per-
ception of time leads to treating synchronization issues in
act 7. Mobility of transmitters and/or receivers creates mul-
tipath propagation scenarios which necessitate discussion
of more sophisticated channel models, channel equaliza-
tion, and different modulation techniques (e.g., orthogonal
frequency-division multiplexing or OFDM) in act 8 and be-

Motivating Undergraduate Communication Theory Using GNU Radio

yond.

References

Haykin, Simon and Moher, Michael. Communication Sys-
tems. John Wiley and Sons, 5th edition, 2009.

Lathi, B. P. and Ding, Zhi. Modern Digital and Analog
Communication Systems. Oxford University Press, 4th
edition, 2009.

Proakis, John G. and Salehi, Masoud. Communication Sys-
tems Engineering. Prentice Hall, 2nd edition, 2002.

