
Decoding LoRa:
Realizing a Modern LPWAN with SDR

Matthew Knight MATT@BASTILLE.NET

Bastille Networks, 101 2nd Street Suite 510, San Francisco, CA

Balint Seeber BALINT@BASTILLE.NET

Bastille Networks, 101 2nd Street Suite 510, San Francisco, CA

Abstract
LoRa is an emerging Low Power Wide Area
Network (LPWAN), a type of wireless commu-
nication technology suitable for connecting low
power embedded devices over long ranges. This
paper details the modulation and encoding ele-
ments that comprise the LoRa PHY, the structure
of which is the result of the author’s recent blind
analysis of the protocol. It also introduces gr-
lora, an open source software defined implemen-
tation of the PHY that will empower wireless de-
velopers and security researchers to investigate
this nascent protocol.

1. Introduction
LoRa is an emerging Low Power Wide Area Network (LP-
WAN) designed to provide wireless connectivity to high
endurance embedded devices over very long ranges. It en-
ables functionality that is analogous to cellular data ser-
vice, but optimized for ”Internet of Things”-focused appli-
cations. LoRa excels in embedded roles by sacrificing data
rates (kilobits/second) in exchange for very long ranges
(several miles) and high endurance (years on AA batteries).

1.1. LoRa Technology Overview

LoRa is noteworthy for having been designed for use and
compliance within the unlicensed 900 MHz ISM frequency
band. This represents a dramatic departure from the cellu-
lar network paradigm, which requires network operators to
license expensive exclusive spectrum in order to operate at
higher power and longer or continuous duty cycles on pro-
tected channels. By complying with permissive regulatory
statues, deploying LoRa infrastructure capable of provid-
ing several miles of coverage on a public or private network
may soon be as accessible as deploying an 802.11 network

Proceedings of the 6 th GNU Radio Conference, Copyright 2016
by the author(s).

in one’s home or office.

While OFDM, FSK, and ARFz PHYs are common in mod-
ern wireless systems, LoRa leverages a unique chirp spread
spectrum modulation (CSS) to achieve exceptional link
budget and low power performance within these noisy and
contested ISM channels.

Figure 1. Spectrogram excerpt of a LoRa chirp
y-axis: Time, x-axis: Frequency

LoRa’s CSS represents symbols as instantaneous changes
in the frequency of a chirp – in essence, symbols are repre-
sented as frequency modulated chirps.

1.2. Initial Research

The LoRa PHY is closed source and proprietary, thus there
were no official references or protocol specifications to
base an open source implementation on. The description
of the LoRa PHY layer that follows is the result of the au-
thor’s blind analysis of the protocol.

Open source intelligence was instrumental in understand-
ing the basis of the protocol. While there was no docu-
mentation available for the PHY, a reference for the Lo-



Decoding LoRa: Realizing a Modern LPWAN with SDR

RaWAN network stack was available and described some
elements of the PHY on a conceptual level (LoR, 2015).
Additionally, several application notes for Semtech LoRa
transceiver ICs described concepts implemented by the
PHY (Sem, 2013b) (Sem, 2015). Finally, there were two
community projects that served as useful inspiration: a
partial open source implementation in the rtl-sdrangelove
open source software project (Greb, 2016), and the Decod-
ing LoRa wiki page that contained some high level obser-
vations about the PHY (Sikken, 2016).

While information gleaned from limited available docu-
mentation provided a large head start to understanding
the protocol, many of the details proved to be a red her-
ring. While Semtech Application Note AN1200.18 (Sem,
2013b) defines several whitening sequences, none of them
turned out to be the one implemented in the PHY. Ad-
ditionally, Semtech’s European Patent (Seller & Sornin,
2015) defines a diagonal interleaver, however the inter-
leaver implemented in silicon was a substantially different
algorithm. Thus, the bulk of the research was conducted
as a black box analysis. A Microchip RN2903 LoRa Mote
provided reliable messages to decode, while an Ettus Re-
search USRP B210, GNU Radio, and Python with Numpy
and Scipy formed the basis of the decoding platform.

The Microchip Mote exposes a Semtech LoRa module to a
USB interface, providing simple host-based radio configu-
ration and control. While technically a LoRaWAN device,
the MAC layer stack can be disabled to allow the device
to send raw PHY frames without automatically populated
addresses, checksums, or sequence numbers cluttering the
payload (Mic, 2015). Thus, with knowledge and control
of the data being modulated, messages can be crafted to
reveal the structure of each encoding element. The blind
signal analysis process has been thoroughly documented in
recent conference presentations (Knight, 2016); this docu-
ment describes the protocol features necessary for imple-
menting the PHY in software.

The PHY mechanics revealed by the aforementioned blind
analysis have been implemented as the open source GNU
Radio out of tree module gr-lora. This module is presented
to the community to empower both application developers
and security researchers to interoperate with and explore
the fundamentals of LoRa networks.

2. Demodulation
LoRa uses a proprietary chirp spread spectrum (CSS) mod-
ulation to encode data onto sweeped frequency chirps via
instantaneous changes in frequency. A chirp is defined as a
signal whose frequency changes at a fixed rate, which may
be constant or exponential. An instantaneous change in fre-
quency of the chirp, or lack thereof, constitutes a symbol.

LoRa encodes multiple bits of encoded information into
each symbol; the number of encoded bits per symbol is
referred to as the spreading factor, and may range from
[7:12] in the US. The chirp rate is the first derivate of the
chirp frequency, and is a function of the spreading factor
and the signal bandwidth (125, 250, or 500 kHz in the US).
The chirp rate is a function of the signal bandwidth and
spreading factor, and is defined as (Sem, 2015):

chirp rate =
dfrequency

dt
=

bandwidth

2spreadingfactor

The first step to demodulating LoRa is to de-chirp the
signal. This is done by channelizing the complex base-
band signal to its bandwidth and then multiplying the re-
sult against a locally generated chirp and its complex con-
jugate. This produces two IQ streams, where the chirped
signals are ”rotated” within the spectrum to have a chirp
rate of 0, meaning each symbol resides on a unique con-
stant frequency.

Figure 2. Spectrogram excerpt of a locally generated upchirp
(Spreading Factor=8, Bandwidth=125kHz)

With the signal de-chirped, it may be treated as MFSK,
where the number of possible frequencies is:

M = 2spreadingfactor

By taking an M-bin wide FFT of each IQ stream at the sym-
bol rate of the signal, the symbols may be resolved by find-
ing the argmax, or bin index with the strongest component,
of each FFT. Normalizing these symbols relative to the bin
of the preamble produces the encoded data bitstream.

Accurate synchronization is crucial to properly resolving
symbols. If synchronization is off, then when the FFT is
taken each symbols’ energy will be split between adjacent
FFTs. Synchronization may be achieved in a computation-
ally efficient manner by implementing the following three
steps (Knight, 2016).



Decoding LoRa: Realizing a Modern LPWAN with SDR

Figure 3. De-chirped LoRa signal
Left: Upchirps (preamble and body)
Right: Downchirps (start of frame delimiter)

2.1. Preamble Detection

LoRa’s preamble is represented by a number of continu-
ous upchirps. Once de-chirped and passed through an FFT,
a preamble may be identified if enough consecutive FFTs
have the same argmax.

2.2. Start of Frame Delimiter Synchronization

With the preamble identified, increasing the time-based
FFT resolution enables more accurate framing of the start
of frame delimiter (SFD), which consists of two chirps with
a negative chirp rate (downchirps). This is done by shift-
ing the stream of de-chirped IQ samples through the FFT
input buffer, processing each sample multiple times. Since
computing overlapping FFTs is more computationally in-
tensive, it is only done to frame the SFD; non-overlapped
FFTs with each sample being processed exactly once are
taken otherwise.

2.3. PHY Header and Service Data Unit Sampling

Once the SFD is synchronized, the PHY header and ser-
vice data unit symbols may be acquired by using non-
overlapping FFTs, with each sample processed once.

Figure 4. FFT synchronization overview
Top: Symbol collision due to poor synchronization (#39 and #50)
Middle: Overlapped FFTs
Bottom: Properly synchronized symbols

3. Decoding
In order to increase over the air resiliency, data is encoded
before it is sent. Thus, the received symbols must be de-
coded in order to extract the data they represent. The de-
coding stages are as follows:

3.1. Gray Indexing

According to Semtech’s European Patent application, en-
coded LoRa symbols are ”gray indexed” before they are
sent over the air (Seller & Sornin, 2015). This prevents off-
by-one errors when resolving symbols. Gray indexing in
this case actually refers to the inverse gray coding opera-
tion; thus in order to undo gray indexing the receiver must
be gray code the received symbols.

3.2. Whitening

Data whitening is applied to induce randomness into the
symbols to provide more features for clock recovery,
should clock recovery be implemented by a receiver. The
received symbols may be de-whitened by XORing them



Decoding LoRa: Realizing a Modern LPWAN with SDR

against the same whitening sequence used by the transmit-
ter. The whitening sequence implemented by gr-lora was
experimentally derived during the prior blind analysis pro-
cess after it was determined that the algorithms provided by
Semtech’s reference designs (Sem, 2013b) were not what is
implemented by the protocol.

3.3. Interleaving

Interleaving is a process that scrambles data bits
throughtout the packet. It is often combined with forward
error correction to make the data more resilient to bursts
of interference. One of Semtech’s patent filings suggests
that LoRa implements a diagonal interleaver and even de-
fines a format, however experimenting revealed that the in-
terleaver defined is not the interleaver implemented by the
LoRa standard.

Thus, the interleaver was deciphered during the aforemen-
tioned blind analysis. Determining a solution involved con-
structing transmissions to exploit properties of the Ham-
ming FEC codewords to map each codeword’s position
within the interleaver. In summary, the interleaver is a diag-
onal interleaver, with the most significant two bits reversed.
Each diagonal word is offset, or rotated, by an arbitrary
number of bits. Finally, the bits within each codeword are
reversed.

3.4. Forward Error Correction

Forward error correction enables bits damaged during
transmission to be recovered and corrected. It is similar
to using a single parity bit or checksum, but it goes fur-
ther by providing error correction under certain scenarios
as well. LoRa uses Hamming FEC with a variable code-
word size ranging from [5:8] bits and fixed data size of 4
bits per codeword (Seller & Sornin, 2015). The Hamming
order is traditionally notated parenthetically:

Hamming(#databits+#paritybits,#databits)

although LoRa nomenclature uses an equivalent fractional
notation to describe the code rate (Sem, 2013a):

#databits

#databits+#paritybits

A larger codeword size improves the robustness of the
FEC: Hamming(5,4) and (6,4) provide error detection as a
parity bit would, whereas (7,4) and (8,4) provide single bit
correction with (8,4) additionally providing dual error de-
tection. The Hamming bits are in a nonstandard order how-
ever and must be re-ordered before FEC can be applied.

4. Introducing gr-lora

gr-lora is an open source implementation of the LoRa PHY,
presented to the community to accelerate embedded and
IoT application development and security research. It de-
fines blocks for implementing LoRa compliant receivers
and transmitters using the methods described in this paper.
Modulation and encoding, and consequently demodulation
and decoding, are handled by separate blocks for modular-
ity. The initial gr-lora release supports transmitting and re-
ceiving spreading factor 8, code rate 4/8 at all bandwidths,
with additional permutations to be supported imminently.
The author will maintain this module, and welcomes all
contributions from the community.

gr-lora models modulation and encoding as separate blocks
to allow for modularity and experimentation with different
algorithms. This will enable users to use either the LoRa-
compliant module described above or modulators and en-
coders of their own design.

Figure 5. gr-lora flowgraph prepared for DEFCON 24, preconfig-
ured SF=8 and CR=4/8

Since the initial publication of LoRa’s PHY internals, two
open source software defined radio implementations of the
LoRa PHY have surfaced online. The first is LoRa-SDR
for Pothos, written by Josh Blum (Blum, 2016). LoRa-
SDR contains an accurate demodulator, however the decod-
ing stages implement the incorrect red herring algorithms
from Semtech’s documentation, as mentioned in Section
1.2. The second implementation is a second gr-lora out of
tree module written by github user rpp0 (rpp0, 2016). It
implements a receiver in Python that uses a modified FM
demodulation, however the author has not been able to suc-
cessfully decode messages with it.



Decoding LoRa: Realizing a Modern LPWAN with SDR

4.1. Future Work

Several improvements and extensions will need to be made
before gr-lora can be considered fully featured.

1. Additional spreading factors and code rates: The
decoder must be extended and validated for all valid
spreading factors ([7:12]) and code rates ((8,4), (7,4),
(6,4) (5,4)).

2. Improve whitening sequence: As discovered during
the prior blind analysis process, the whitening algo-
rithms described in Semtech’s documentation (Sem,
2013b) do not match what is implemented by the pro-
tocol. Thus, the whitening algorithm implemented
in gr-lora was experimentally derived. The current
sequence was recovered by transmitting over the air
long strings of 0x00s and determining the most com-
monly occurring bit patterns for each result, since the
result of applying the whitening sequence to such a
string would be the whitening sequence itself (Knight,
2016), but this method has shown to be lossy and
error-prone. This process should be repeated using a
larger sample set and a cable instead of live transmis-
sion.

3. Header parsing: The existing implementation does
not decode and process LoRa’s optional PHY header
(Sem, 2013a). This is due to the author lacking
hardware capable of disabling the header – since the
header is always present, it was not able to be re-
placed with 0s to extract the portion of the whitening
sequence that is applied to it. Once the full whitening
sequence is established then the header structure may
be evaluated and implemented.

4. PHY CRC Handling: The existing implementation
does not handle LoRa’s PHY header or PHY PDU
CRCs (Sem, 2013a), due to the same whitening con-
straints as above. This should be implemented along
with the header.

5. Clock Recovery: gr-lora implements no clock recov-
ery by default, beyond the initial SFD synchroniza-
tion. Clock recovery may be desirable should clock
drift become an issue particularly with larger spread-
ing factors, which have longer over-the-air transmis-
sion times (Sem, 2015).

6. Implement Upper Layers: While beyond the scope
of this module, the author hopes that gr-lora may en-
able the development of open source LoRaWAN im-
plementations and applications to network embedded
devices at scale.

5. Conclusions
In summary, the composition of the LoRa PHY is now
known and available for open source software defined radio
integration and experimentation. gr-lora has been added to
the software defined radio community’s toolset, and may
empower both the software development and security re-
search communities to expand the Internet of Things and
explore this emerging wireless technology.

References
Blum, Josh. Lora-sdr. Source Code on Github, 2016.

https://github.com/myriadrf/LoRa-SDR.

Greb, John. rtl-sdrangelove. Source Code on
Github, 2016. https://github.com/hexameron/rtl-
sdrangelove/tree/master/plugins/channel/lora.

Knight, Matthew. Reversing lora: Exploring next-gen wire-
less. Jailbreak Security Summit Invited Presentation,
2016. http://jailbreaksecuritysummit.com/s/Reversing-
Lora-Knight.pdf.

LoRaWAN Specification. LoRa Alliance, 2400 Camino Ra-
mon, Suite 375, San Ramon, CA 94583, 2015. V1.0.

RN2903 LoRaTM Technology Module Command Reference
User?s Guide. Microchip Technology, 2355 West Chan-
dler Blvd., Chandler, AZ 85224, 2015. DS40001811A.

rpp0. gr-lora. Source Code on Github, 2016.
https://github.com/rpp0/gr-lora.

Seller, Olivier Bernard Andre and Sornin, Nicolas. Low
Power Long Range Transmitter. Semtech Corpora-
tion, Camarillo, CA 93012, 2015. Application Num-
ber 13154071.8/EP20130154071, Publication Number
EP2763321 A1.

SX1272/3/6/7/8: LoRa Modem Designer’s Guide. Semtech
Corporation Advanced Communications and Sensing
Products Division, 200 Flynn Road, Camarillo, CA
93012, 2013a. AN1200.13.

Implementing Data Whitening and CRC Calculation in
Software on SX12xx Devices. Semtech Corporation
Wireless and Sensing Products Division, 200 Flynn
Road, Camarillo, CA 93012, 2013b. Application Note
AN1200.18.

LoRa Modulation Basics. Semtech Corporation Wire-
less Sensing and Timing Products Division, 200 Flynn
Road, Camarillo, CA 93012, 2015. Application Note
AN1200.22.

Sikken, Bertrik. Decodinglora. Wiki Page, 2016.
https://revspace.nl/DecodingLora.


