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Abstract

In this paper we develop the connection between
the high-order moments, orthogonal polynomi-
als, and probability densities representing signal
constellations with AWGN in order to improve
moment-based Automatic Modulation Classifi-
cation (AMC). The result is that an approximate
weighted L2 distance between probability den-
sities can be computed using a Euclidean dis-
tance on vectors consisting of series expansion
coefficients. This analysis justifies the use of
high-order moments in AMC. A discriminative
Deep Neural Network (DNN) is trained to per-
form AMC, resulting in near-maximum likeli-
hood performance at marginal SNR.

1. Introduction
Automatic Modulation Classification (AMC) is a critical
component of spectrum awareness in cognitive radios. In
order to diagnose a transmitted signal’s protocol, symbol
rate detection combined with AMC can be used to narrow
the search down to several candidate protocols.

Moment-based classifiers, and the related cumulant classi-
fier (Reichert, 1992; Swami & Sadler, 2000; Spooner et al.,
2000; Spooner, 2001; Dobre et al., 2004; Aslam et al.,
2010; Su, 2013), use the Higher Order Statistics (HOS)
of the input signal to perform feature-based AMC. Histor-
ically, cumulant classifiers have been favored because of
their robustness to Gaussian noise (removing the need for
an SNR parameter in the classifier formulation).

The classification decisions in (Reichert, 1992; Swami &
Sadler, 2000) are performed using a hierarchical decision
tree, while (Spooner et al., 2000; Spooner, 2001; Dobre
et al., 2004) use a weighting on the cumulants and make
assumptions in order to build a Euclidean metric around
the weighted cumulant vectors. The former use a series
of thesholded decisions (based on the statistical cumulants
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of the modulations), while the latter are able to use metric
space-based methods such as k-Nearest Neighbors.

1.1. Preliminary Observations

The biggest difficulty in moment-based classifiers is that
the input signal’s empirical moments may greatly deviate
from its statistical moments, especially for short-length in-
puts (e.g., 100 to 250 symbols). While some of this devia-
tion is caused by AWGN, a significant amount is caused by
a mismatch between the prior distribution of the symbols
(used to calculate the statistical moments) and the propor-
tions of the actually transmitted symbols (used to calculate
the empirical moments). This difficulty mirrors that of den-
sity estimation of multi-modal probability distributions.

This suggests that instead of comparing empirical moments
to statistical moments, we should compare the inputs with
a large number of simulated or sampled training data. The
challenge is to derive a reasonable metric suitable for this
modulation classification task.

1.2. Novel Contribution

The main contribution of this work is application of or-
thogonal polynomials (Szego, 1939; Dunkl & Xu, 2014)
to moment-based AMC. The probability densities corre-
sponding to modulation constellations under AWGN (with
noise power N0 < 2) can be decomposed into a se-
ries expansion via Gram-Charlier Approximation (GCA)
(Kendall & Stuart, 1969) – the series’ coefficients are
related to the probability distribution’s moments through
the Hermite polynomials. Furthermore, these probabil-
ity densities are contained in a weighted Hilbert space,
L2(C, w(z) = πezz), so that their weighted L2 distance
can be computed using Euclidean distance on the series
expansion coefficients. While the application of GCA to
AMC is novel, the topics of GCA and Hermite polynomi-
als are well-studied in statistics, finance, and physics.

To the authors’ knowledge, this is the first work to di-
rectly link the moment-based classifier to a distribution-
based classifier which compares the input data to reference
modulation constellations represented by probability densi-
ties (Wang & Wang, 2010; Wang & Chan, 2012; Zhu et al.,
2013).
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Because an underlying assumption of this work is that
the moment-estimate variances are driven by the finite-
data constraint, this work makes no assumptions about the
moment-estimator error distributions. Instead, to mitigate
this “uneven prior” problem, we create a large set of train-
ing data and train a Deep Neural Network (DNN) to per-
form classification without a specific moment-estimator er-
ror model. The DNN can be thought of as dividing the in-
put space into non-linear decision regions, and also return-
ing approximate probabilities of the input data belonging
to each modulation class Sm ∈ S . While this DNN would
not be unlike any other DNN operating on moment vectors,
this work rigorously justifies the use of moments for clas-
sification through the relation to the L2 distance described
above.

From the machine learning perspective, this work can be
viewed as the design and justification of expert features
for use in a DNN classifier. This work is complementary
to other efforts (O’Shea et al., 2016) to perform modula-
tion recognition and signal processing using automatic fea-
ture learning through deep Convolutional Neural Networks
(CNN). One particular difference to highlight is that the
AMC proposed in this paper disregards all notions of time-
ordering in the input signal data, while that sense of time
is preserved and exploited in a CNN. These authors expect
that CNNs are necessary for neural-network-based demod-
ulation and follow-on processing, which this work does not
address.

1.3. Signal Model, Definitions, Assumptions

Throughout this paper, we will limit the modulations to lin-
ear ones (i.e,. ASK, PSK, and QAM), and work with the
probability densities of the noisy, post-receiver symbols.
Given an SNR Es

N0
, signal constellation Sm ∈ S, and com-

plex noise ω = ωI + jωQ with ωI , ωQ ∼ N (0, N0

2 ), each
received symbol Z ∈ C has a probability density given by
the complex Gaussian mixture,

fZ(z|Sm, N0) =
∑

sk∈Sm

1

πN0|Sm|
e
−|z−sk|

2

N0 , (1)

where complex baseband symbols sk iterate over the con-
stellation points of Sm.

The basic approach is to estimate an empirical density
f̂Z(z) from the moments of L received symbols, and then
to find the constellation whose probability density most
closely matches the estimated density (with respect to
L2(C, w(z) = πezz) distance), i.e.,

argmin
Sm

||f̂Z(z)− fZ(z|Sm, N0)||2. (2)

We generate training data by sampling from fZ(z|Sm, N0)

and estimating the densities f̂
(i)
Z (z|Sm, N0) from these

samples. While a nearest-neighbor classifier could then
compute

argmin
Sm

||f̂Z(z)− f̂ (i)
Z (z|Sm, N0)||2, (3)

we choose to use a discriminative DNN in order to decrease
computational cost and output soft-decisions.

1.4. Outline

The rest of this paper is structured as follows: Section 2
outlines the procedure for estimating the probability den-
sity of the input I/Q data using its input moments (GCA),
and describe the metric on the corresponding Hilbert space.
Section 2.5 details the method of classification using a
DNN. Experiments and results are detailed in Section 3,
with conclusions in Section 4. Additionally, the proof of a
claim made in Section 2.3 is presented in Section 5.

2. Analysis – The Moment Problem
The general task of mapping a sequence of moments to
its measure F is called the moment problem. On R, a
potential solution to the problem is Gram-Charlier Ap-
proximation (GCA). GCA approximates a probability den-
sity f(x) by computing a Radon-Nikodym derivative (dFdΦ )
from Gaussian measure to the desired measure; letting

φ(x) = 1√
2π
e
−x2

2 ,

fX(x) =
fX(x)

φ(x)
φ(x). (4)

2.1. Gram-Charlier Approximation on R

GCA can be formulated using the cumulants of a distribu-
tion (Kendall & Stuart, 1969) or from its moments (Sauer
& Heydt, 1979), and can also be done in the complex do-
main.

In GCA, the Radon-Nikodym derivative fX(x)
φ(x) is a series

expansion with respect to the Hermite polynomials Hn(x),

fX(x)

φ(x)
:≈

∞∑
n=0

E[Hn(x)]√
n!

Hn(x)√
n!

, (5)

where
Hn(x) = (−1)ne x2

2
dn

dxn
e

x2

2 , (6)

and where the
√
n! terms are normalizing factors. The for-

mula for GCA in R is then

fX(x) ≈
∞∑
n=0

E[Hn(x)]Hn(x)

n!

1√
2π
e
−x2

2 . (7)

The approximation is equal under certain convergence con-
ditions (Section 2.3).
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As alluded to earlier, the Hermite polynomials form an or-

thogonal basis in the weighted Hilbert space L2(R, e
−x2

2 ).
Consequently,∫

R
Hm(x)Hn(x)

1√
2π
e
−x2

2 dx =

{
0,m 6= n,

n!,m = n.
(8)

2.2. Gram-Charlier Approximation on C

GCA can be extended into C as well. Letting z := x +
jy and the overline denoting complex conjugation (z :=
z− jy), we series expand with respect to complex Hermite
polynomials related to the complex Gaussian measure,

Hp,q(z) : = (−1)p+qezz ∂
p+q

∂pz∂
q
z
e−zz, (9)

φ(z) =
1

π
e−zz (10)

fZ(z) =
fZ(z)

φ(z)
φ(z), with (11)

fZ(z)

φ(z)
: ≈

∞∑
p=0

∞∑
q=0

E[Hp,q(z)]√
p!q!

Hp,q(z)√
p!q!

, (12)

fZ(z) ≈
∞∑
p=0

∞∑
q=0

E[Hp,q(z)]√
p!q!

Hp,q(z)√
p!q!

1

π
e−zz. (13)

In the sequel, we will deal exclusively with probability den-
sities in C, and the complex Hermite polynomials Hp,q(z).
The complex Hermite polynomials obey simple recurrence
relations (Dunkl & Xu, 2014),

Hp+1,q(z) = zHp,q(z)−
∂Hp,q(z)

∂z
, and (14)

Hp,q+1(z) = zHp,q(z)−
∂Hp,q(z)

∂z
, (15)

and are orthogonal,∫
C
Hp,q(z)Hr,s(z)

1

π
e−zzdz =

{
0, p 6= r or q 6= s,

p!q!, p = r and q = s.

(16)

The first few complex Hermite polynomials are

H0,0(z) = 1, H1,0(z) = z,

H1,1(z) = |z|2 − 1, H2,0(z) = z2,

H2,1(z) = z2z − 2z, H3,0(z) = z3,

H2,2(z) = |z|4 − 4|z|2 + 2, H4,0(z) = z4.

Noting that the series expansion depends only on coeffi-
cients of the orthonormal basis functions Hp,q(z)√

p!q!
, we will

operate with vectors of series expansion coefficients

hp,q(fZ) :=
E[Hp,q(z)]√

p!q!
. (17)

For example,

h2,1(fZ) =
E[H2,1(z)]√

2
=
E[z2z − 2z]√

2
=
E[z2z]− 2E[z]√

2
.

(18)
These coefficients are easy to compute from the input data’s
empirical moments.

Rewriting (13), we have

fZ(z) ≈
∞∑
p=0

∞∑
q=0

hp,q(fZ)
Hp,q(z)√
p!q!

1

π
e−zz. (19)

We will see that the Euclidean distance on these coeffi-
cients equals the weighted L2 distance between two ap-
proximate probability densities due to the Hilbert space
these densities belong to.

2.3. GCA Convergence

In general, GCA may not converge nicely (or at all!). This
issue comes from the Radon-Nikodym derivative and the
span of the weighted Hermite polynomial basis functions;
the Hilbert space associated with GCA on C contains all
functions which are square-integrable with respect to a
weight function w(z) = πezz , i.e., L2(C, w(z) = πezz)
(Itô, 1952; Dunkl & Xu, 2014).

It can be proven (Section 5) that Gaussian mixtures of (1)
with noise power N0 < 2 are contained in this Hilbert
space. Despite this restriction, this limit does not inherently
prohibit classification attempts at very low SNRs. Since
integrability is determined by tail behavior controlled by
the noise variance, simply rescaling the input signal by

1√
G

results in a new tail which decays faster by a factor of

e−G|z|
2

. The real difficulty lies in properly estimating the
moments, and from the decreased distance between densi-
ties associated with each modulation.

2.4. Distance Calculations in L2(C, w(z))

The distance between two functions f1, f2 ∈ L2(C, w(z))
is the weighted L2 norm of the difference of the two func-
tions:

d(f1, f2) =

√∫
C
|f1(z)− f2(z)|2πezzdz. (20)

Substituting (19) into (20), and making use of the orthogo-
nality of the Hermite polynomials (with respect to Gaussian
measure), it can be proven that

d(f1, f2) =

√√√√ ∞∑
p=0

∞∑
q=0

|hp,q(f1)− hp,q(f2)|2. (21)
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(a) High SNR, lots of data (20 dB Es
N0
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(b) Low SNR, less data (3 dB Es
N0

, L = 128 symbols).

Figure 1. t-SNE visualization of the GCA coefficient space.

Table 1. Cluster variance of modulation classes in GCA coefficient space
L \Class 2ASK 4ASK BPSK QPSK 8PSK 16QAM 32QAM 64QAM
32 56.8359 59.7063 43.4253 43.332 48.4357 52.0161 67.6009 52.5992
64 30.8399 33.614 19.1733 25.0875 24.1494 27.0839 34.7037 28.3482
128 14.9264 15.0719 11.4357 11.1725 11.6224 12.8272 18.7215 13.6556
256 6.96395 7.38893 5.5833 6.15215 6.00063 6.7035 9.08378 7.34727
512 3.50094 3.74949 2.61287 2.86368 3.09839 3.40288 4.69743 3.58065
1024 1.74854 1.89098 1.43434 1.54149 1.49448 1.80567 2.20783 1.83182
2048 0.82347 0.907244 0.631166 0.766772 0.747173 0.848353 1.10696 0.883359
4096 0.494611 0.499778 0.348313 0.377318 0.367536 0.437135 0.560456 0.47068
8192 0.237483 0.243161 0.167552 0.194374 0.187227 0.234803 0.306519 0.221274
16384 0.10472 0.117317 0.078921 0.0898927 0.0912061 0.111279 0.152445 0.113516
32768 0.0574201 0.0604335 0.0416373 0.0482941 0.046277 0.0519672 0.0711747 0.0560899
65536 0.0284362 0.0297853 0.0203381 0.0224413 0.0241345 0.0263447 0.0366153 0.0278138
131072 0.0135647 0.0152332 0.0102348 0.0117713 0.0126825 0.0137095 0.018084 0.0141807

Since estimating an infinite number of moments is imprac-
tical, we truncate the series coefficients to obtain a lower
bound on the distance (by Bessel’s inequality):

d(f1, f2) ≥
√∑

p,q

|hp,q(f1)− hp,q(f2)|2. (22)

This Euclidean metric on the (sub-)set of GCA coefficients
enables use of metric space-based classifiers (e.g., k-NN,
SVM, etc.).

2.5. Automatic Modulation Classification

The developments in this section suggest that received
symbols can be analyzed in terms of its moments to dis-
criminate between various modulation constellations. We
model the probability density function of received sym-

bols as a convolution of the modulation constellation with
AWGN, as in (1). We treat the received symbols as un-
ordered data, compute the GCA series coefficients hp,q ,
and compare them to entries in a reference library.

We populate the reference library with the GCA series co-
efficients of many generated example signals from each
modulation (with AWGN). Rather than implement a k-
Nearest Neighbors classifier, whose complexity grows with
the size of the reference library, we choose to use the library
to train a discriminative Deep Neural Network (DNN),
which implements a non-linear classifier.

As a normalizing step, we divide the data by its standard
deviation in order to ensure GCA converence of linear
modulation constellations under AWGN (see Section 5).
After this step, we calculate the empirical moments and
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Figure 2. 7-Class AMC Performance

GCA series coefficients hp,q as defined in (17). The real
and imaginary components of the coefficients are split to
form real-valued inputs to a DNN classifier. In a variant of
this classifier, the magnitudes of the complex coefficients
are used instead (to make the classifier invariant to phase-
offsets).

Figure 1 shows t-SNE visualizations (Maaten & Hinton,
2008) of the GCA coefficient space for 8 different modu-
lation types. At high SNR (20 dB Es

N0
) and with many re-

ceived symbols (2048) to estimate the constellations’ prob-
ability density function, the classes are well-separated even
in the low-dimension manifold plotted in Figure 1(a). On
the other hand, at lower SNR (3 dB Es

N0
) and with only a few

received symbols (128), the two-dimensional visualization
fails to keep each class separated.

While t-SNE can be used as a rough indicator of class sep-
arability, it does not adequately show the scale of the clus-
ters of space around each modulation. Table 1 shows the
cluster variance of each modulation class as a function of
L, the number of received symbols, at 3 dB Es

N0
. This table

shows that cluster variance roughly decreases by a factor of
2 for every factor of 2 increase in the length of received data
used in estimating the moments. This is consistent with the
moment-estimator variances decreasing as the amount of
data collected increases.

3. Experimental Results
3.1. Experiment Design

The DNN architecture consists of 4 layers of ReLU6 ac-
tivations (of widths 200, 100, 100, and 100, respectively)
and one final soft-max layer, trained with backpropagation

against the cross-entropy cost function in the TensorFlow
framework (Abadi et al., 2015). The DNN input consist of
the coefficients hp,q , and the output layer width is the num-
ber modulation classes to decide from. Because we are un-
able to leverage the SNR-invariant nature of cumulants, we
create a new DNN for each SNR / input length pair.

Each DNN is parameterized by L, the number of received
symbols, and SNR Es

N0
. The amount training data N gen-

erated for each modulation type is set such that NL =
1280000; the training data is used in several thousand it-
erations of supervised training.

In addition to regularization by dropout, we introduce
Gaussian noise to the DNN inputs. For the experiments
performed in this work, we add noise with σ = 0.01 to the
first 500 iterations of training. More analysis of the bias-
variance tradeoff is necessary to improve training methods
at low SNR where the signal space may not be adequately
sampled in training.

For each experiment, the DNN classification results are
compared to an Average Likelihood Ratio Test (ALRT)
classifier (Sills, 1999), as well as the magnitude-only DNN.

3.2. AMC Experiments

Several experiments were designed to explore the effective-
ness of the moment-based DNN classifier. 8th degree series
expansion coefficients (hp,q, p + q ≤ 8) were calculated
from the empirical moments, and simulations are run for a
various number of received symbols L. In all of the exper-
iments, all of the QAMs are rectangular.
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Figure 3. 4-Class AMC Performance

3.2.1. 7-CLASS AMC PROBLEM

In the 7-class AMC experiment, DNNs were trained for
discrimination between 7 modulations: 2ASK, 4ASK,
BPSK, QSPK, 8PSK, 16QAM, and 32QAM. The overall
classification performance is plotted in Figure 2(a), along
with a confusion matrix for the experiment with L = 128
and Es

N0
= 3dB in Figure 2(b).

For this experiment, the coherent moment-based DNN
classifier performance closely tracks that of ALRT, trail-
ing by only a few percent. Additionally, the magnitude-
only DNN trails in performance by several dB. The confu-
sion matrix shows that the most confusing modulation to
the classifier is 8PSK, its noisy constellation having sim-
ilar features to both QPSK and 16QAM. This shows that
while the probability of correct classification, PCC , is a
good indication of classifier performance, performance for
each modulation class depends on its complexity and simi-
larity to others.

3.2.2. 4-CLASS AMC PROBLEM

In the 4-class AMC experiment, the modulations to be dis-
criminated were BPSK, QSPK, 8PSK, and 16QAM. The
overall classification performance Pcc is plotted in Figure
3. While the number of classes has decreased, the over-
all performance PCC has also decreased because of the in-
creased relative confusion between the modulations of in-
terest; refer to the confusion matrix in Figure 2(b). The 4-
class problem represents a more realistic modulation recog-
nition problem, as the efficiencies and benefits of PSK and
QAM often outweigh that of ASK.

The moment-based DNN AMC outperforms the cumulant
classifiers in (Swami & Sadler, 2000). This is because of
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Figure 4. 16QAM vs. 64 QAM performance

the increased number of moments used in the classifier
(leading to better probability density approximation), as
well as the non-linear decision-making power of the DNN
(as opposed to the static thresholds). This performance
comes at the cost of increased computational complexity.

3.2.3. 16QAM VS. 64QAM AND OVERFITTING ISSUES

8-class experiments including 64QAM were performed
but were not much more interesting than the 7-class ex-
periments, except for high degrees of confusion between
16QAM and 64QAM at low amounts of data.

DNNs were trained and for discrimination between only
16QAM and 64QAM; performance is plotted in Figure 4.
Even with 512 received symbols, the classifiers only per-
form at about 90% at 10 dB SNR. One potential explana-
tion for the difficulty is that the probability density corre-
sponding to the 64QAM constellation requires more data
to properly approximate; this notion is supported by the t-
SNE plots in Figure 1 and the cluster variances in Table
1.

One additional concern in the 16QAM vs. 64QAM exper-
iment is that the magnitude-only DNN often outperforms
the coherent DNN. The reason for this is overfitting in the
training process caused by the modulation sub-space not
being sampled densely enough. At low amounts of data
(L = 128, 512), the cluster variances ares very large and
the classes overlap in the GCA coefficient space. During
the training phase, the training accuracy often exceeded the
test accuracy by more than several percent. This suggests
that performance may be increased by better regularization
of the network, by adding and using a holdout training set
for cross-validation, or perhaps by significantly increasing
the amount of training data.
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4. Conclusions
In this paper we have introduced the techniques of orthog-
onal polynomials and Gram-Charlier Approximation to the
Automatic Modulation Classification problem, and have
shown how moment-based classifiers can nearly match
maximum-likelihood techniques at marginal SNR.

This work represents an improvement and exposition on
previous moment-based classifiers, and links them to
distribution-based classifiers. As the amount of data used
in classification increases to infinity, the moment-estimator
variance approaches 0 so that performance will very closely
approach that of maximum-likelihood methods (depending
on how long the GCA series is carried out) even at finite
SNR. This rigor comes at the cost of computational com-
plexity.

One way to decrease the computational complexity in-
volved is to compute a smaller subset of the moments in-
volved. It is possible to avoid computation of specific
cross-moments, E[zpzq], by subtracting the appropriate
Hermite polynomials Hp,q(z) from all of the bases of
the series expansion, and re-normalizing. An analysis of
the space to determine the most influential cross-moments
needs to be conducted in order to make this simplification.

Alternatively, the Hermite polynomials can be used to in-
form an orthogonalization of a very small set of cross-
moments (as in previous moment-based literature), en-
abling metric-space based algorithms to be employed in a
more informed manner.

Finally, these authors fully expect that these techniques can
be applied, with slight modification and an appropriate de-
crease in performance, directly to pre-receiver symbols;
more substantial modification will be necessary to cope
with non-AWGN channels and noise models.

5. Proof of GCA Convergence for Gaussian
Mixtures

Here, we will prove that the Gaussian mixture of (1) resides
in the Hilbert space L2(C, πezz). Expanding the square of
the mixture, we have∫

C
|fZ(z|Sm)|2πezzdz

=

∫
C

∣∣∣∣∣ ∑
sk∈Sm

1

πN0|Sm|
e
−|z−sk|

2

N0

∣∣∣∣∣
2

πezzdz

=

∫
C

∑
sj ,sk∈Sm

1

π2N2
0 |Sm|2

e
−|z−sj |

2−|z−sk|
2

N0 πezzdz

∝
∑

sj ,sk∈Sm

∫
C
e
−|z−sj |

2−|z−sk|
2

N0 ezzdz.

It is sufficient to prove that
∫
C e
−|z−sj |

2−|z−sk|
2

N0 ezzdz <
∞ for all sj , sk ∈ Sm. Expanding the numerator of the
exponent,∫

C
e
−|z−sj |

2−|z−sk|
2

N0 ezzdz

=

∫
C
e
−(2|z|2+|sj |

2+|sk|
2−2<[sjz+skz])

N0 e|z|
2

dz

=

∫
C
e
−(2|z|2+|sj |

2+|sk|
2−2<[sjz+skz])+N0|z|

2

N0 dz

And this integral converges for all N0 < 2. In an intuitive
sense, this means the GCA can represent a skinnier Gaus-
sian fZ(z) (or mixture thereof) from a wider one φ(z). On
the other hand, if the density to estimate is too wide the se-
ries will fail to converge; the polynomials cannot approx-
imately “upweight” the tails of the base Gaussian φ(z) by
an exponential amount across the entire support C.
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