
Maximum Supported Hopping Rate Measurements using the Universal
Software Radio Peripheral Software Defined Radio

Richard Bell RICHARD.BELL1@NAVY.MIL

Space and Naval Warfare Systems Center Pacific (SSC Pacific), 53560 Hull St, San Diego, CA 92152 USA

Abstract
The goal of this paper is to quantify the max-
imum usable frequency hopping rate for a va-
riety of Ettus Research Universal Software Ra-
dio Peripheral (USRP) software defined radios
(SDRs). A table of measured average and
maximum hop rates will be presented for the
following combinations of motherboards and
daughterboards (MB+DB), USRP N210+WBX,
N210+SBX, B100+WBX, B100+SBX, B200,
X310+UBX.

1. Introduction
Frequency hopping (George & Kiesler, 1942) is a central
component of the Link 16 (Gruman, 2014) waveform and
as such will be the driving motivation of discussion in this
paper. Link 16 is a military tactical data exchange network
used by U.S. and NATO Nations. This waveform is used
for wireless communication between, air, ground and sea
units and relies on frequency hopping to ensure secure and
robust data links. The driving question to be answered is:
”Can a USRP and personal computer support the hopping
rate required by the Link 16 specification?” If the answer
is yes, then it is possible to provide low cost surrogates to
expensive military hardened radios for laboratory/prototyp-
ing use. If the answer is no, but a clear characterization of
the rates they support is available, then these systems may
be able to support design and testing in some other way.

When designing a new wireless communications system, it
is desirable to prototype the system before manufacturing
custom hardware to minimize design costs. With cost min-
imization in mind, it is also desirable to use only general
purpose processors (GPPs), avoiding field programmable
gate arrays (FPGAs) when possible, due to the high level of
expertise needed to design/implement/test/maintain FPGA
systems. Today this is possible using SDRs like the Ettus
Research USRP (Ettus, 2016), BladeRF (BladeRF, 2016),

Proceedings of the 6 th GNU Radio Conference, Copyright 2016
by the author(s).

HackRF (HackRF, 2016), etc. and signal processing soft-
ware packages like GNU Radio (GNURadio, 2016), MAT-
LAB/Simulink or LabVIEW.

In theory, any communications system can be implemented
in a GPP. It is simply an exercise in programming. What
prevents us from doing this to all systems by default is the
requirement that they operate in real time. For example,
suppose you are trying to fly a remote controlled airplane.
If the time between when you command the airplane to turn
right by moving a joystick to when the plane actually turns
right is 3 seconds, then you will have a hard time not crash-
ing the airplane. As a second example, think back to news
broadcasts where a correspondent is in a remote area us-
ing satellite communications to report back to a live news
broadcaster. There is typically a 3-5 second delay between
when the correspondent speaks to when they are heard on
the television. This often leads to the broadcaster and cor-
respondent speaking over each other and makes coherent
two way communications more difficult and time consum-
ing. Thus, for analogous reasons, one might be forced to
manufacture custom hardware to avoid these pitfalls. Typi-
cally, an all GPP system will be less expensive than a GPP
with FPGA system, and this will be less expensive than an
application specific integrated circuit (ASIC) system, un-
less very large production quantities are expected (think
iPhone) (Adams, 2002).

What is being detailed in the above two examples is the age
old trade off between performance and cost in designing
systems. Typically as engineers, the optimal design is the
design that just meets a specification. Over-designing the
system leads to increased cost, which one typically wants
to minimize. Though an FPGA or ASIC based system will
have better performance than a GPP based system, if the
GPP based system can meet specifications, it will also min-
imize costs, and therefore should be considered the optimal
solution (Farrell, 2009).

Link 16 is a complicated waveform. Among its various
specifications is a nominal hop rate greater than 77 kHz.
The term ”hop” is used to refer to the process of changing
the carrier frequency from frequency X = 1000 MHz to
frequency Y = 1003 MHz, for example. Standalone mil-
itary Link 16 radio units can cost between $100,000 and

Maximum Supported Hopping Rate Measurements USRP

$1,000,000 dollars, depending on the desired application
and features. If an SDR like the USRP, which costs be-
tween $2,000 and $5,000 can support the required hop rate,
then one can remove the high costs of production radios
from test scenarios and test the waveform against new us-
age scenarios, requiring only software updates that some-
one familiar with C++ or Python could implement. A typ-
ical question that arises in wireless communications sys-
tems that would be easier to answer with an SDR GPP only
setup is: ”How will a specific interference source affect
our current radio implementation, and can we do something
to fix it if needed?” Answering this question is simplified
when there is only a GPP in the loop because FPGA devel-
opment is a much less agile process (Doyle, 2009). There-
fore, with this as motivation, we wish to answer the maxi-
mum hop rate question for several commercially available
and low cost SDRs.

ms
0 10 20 30 40 50 60 70 80 90 100

L
o

c
a

l
O

s
c
ill

a
to

r
F

re
q

u
e

n
c
y
 (

M
H

z
)

0

1

2

3

4

5

Lock Time

Tune Time

Figure 1: An example of how ttune and tlock are defined.
The scale of the two values shown in the figure should not
be assumed typical in any sense, they depend on the sys-
tems transfer function specifics.

Retuning a radios carrier or center frequency can be
achieved in either the RF/Analog domain, the DSP domain,
or a combination of the two. For reasons related to the size
of the Link 16 band, focus will be directed at RF/Analog
retuning in the following discussions. Some comments and
results related to DSP tuning will be made.

When retuning a radio to a new frequency, there are sev-
eral phases that must occur before data can be transmit-
ted. These will be represented using two times. First,
the radio frequency (RF) front end analog circuitry must
change its current local oscillator (LO) frequency, which
is instantiated as a phase locked loop (PLL), to the new
frequency. The time required to change frequencies will
be called the tune time, ttune. Second, the PLL must de-
clare it has locked at the new frequency before the radio
can begin transmitting data, which is called the lock time,
tlock. Fig. 1 shows a typical PLL frequency verses time plot
when an input of 3 MHz is applied. What these variables
represent and how they can change depending on PLL set-
tings is made clear from this figure. The band of frequen-
cies between the dashed lines in the figure represent a lock

zone. As soon as the amplitude enters this zone and does
not leave again, lock is declared. This is a standard defi-
nition used in control theory (Dorf & Bishop, 2016). For
more information on how the lock zone is defined as it re-
lates to the RF daughterboards used by the USRP, please
see (Forbes & Collins, 2006).

The dwell time, tdwell, is a user defined quantity which
determines the frequency hopping rate. It represents the
amount of time the center frequency remains, or dwells, at
each frequency. Therefore

fhop =
1

tdwell
, (1)

where fhop is the frequency hopping rate. For a hop to be
successful, the CPU processing time, tcpu, plus tune time,
ttune, plus lock time, tlock, plus data packet time, tdata, is
required to be less than the dwell time, tdwell, or else the
next hop will be missed

tcpu + ttune + tlock + tdata ≤ tdwell . (2)

To support Link 16, this imposes the following restriction
on the tune time and lock time of the particular radio that is
used

ttune + tlock ≤ tdwell − tdata − tcpu . (3)

As mentioned earlier, Link 16 requires a hop rate of at
least 77 kHz, corresponding to a dwell time of 1/77000 =
0.000013 seconds, or 13 µs. Using a Link 16 single pulse
data packet, which has a length of 6.4 µs, this leads to
tdwell − tdata = 6.6 µs. Therefore

ttune + tlock ≤ 6.6− tcpu , (4)

where time units are expressed in µs.

The quantity tcpu represents the overhead time of the CPU
processing commands (i.e. the processing done by your
laptop or desktop). In the case of a true Link 16 transmitter
implemented as an SDR, this would almost entirely repre-
sent the baseband processing time required to turn raw bi-
nary data into the inphase/quadrature (I/Q) data the USRP
requires as input. Because we are interested in character-
izing the SDR hardware constraints, and not the processor
that is being used, a simple baseband tone that requires very
little baseband processing will be used as input. Thus, tcpu
will represent the overhead of issuing simple commands,
processing conditional if/else statements and calls to timer
functions. It is expected in this case for tcpu to be very
small, almost negligible. This will be quantified more in
the next section.

A visualization of when a hop is successful verses when
it is not successful is shown in Fig. 2. The critical task
is to transmit a full data packet, labeled transmit data in

Maximum Supported Hopping Rate Measurements USRP

(a) Successful Hop

(b) Successful Hop

(c) Missed Hop

Figure 2: Three timelines describing three different sce-
narios. In (a) the CPU time plus retune time plus lock time
plus data time is less than the dwell time. In (b), they are
equal. In (c) they are greater than the dwell time.

the figure, in the current time slot, which is defined by
the hop boundaries. The length of transmit data is pre-
defined (6.4µs) and static and where it occurs in the slot
does not matter, so long as it is fully contained in the slot.
In Fig. 2(a), the transmit data begins and ends in the slot
with time to spare, labeled dead time. While in the dead
time region, the SDR is idle waiting for the next hop time
to occur. In Fig. 2(b), there is no dead time, but the hop
is successful, just barely. In Fig. 2(c) the data packet spans
two time slots, which means the hop was not successful and
this information is lost.

The times in Fig. 2 have been presented in a serial fashion,
as though retune must complete before LO lock can begin,
which happens to always be true, but subsequently that the
CPU cannot begin processing before the LO has locked,
which is not true. It is understood that some of these times
may be occurring in parallel and the Python script will take
this into account naturally. For the sake of explaining the
process clearly, the times are presented as they have been.

2. Approach
GNU Radio, which is an open source signal processing tool
that is used to implement communications baseband pro-
cessing, is used to interface with and control the USRP
hardware via the Universal Hardware Driver (UHD) and
a Python script. The Python script is responsible for the
following:

1. Instantiate a GNU Radio flowgraph connecting a sig-
nal source object to a USRP object. All essential radio
settings are set at this point, including antenna port,
transmit gain and sample rate.

2. Start the flowgraph, sending samples to the USRP
transmitter. This flowgraph is given its own thread
with priority over non-essential system processes, so
processing time should not be effected by the next
steps.

3. Start a timer and command a retune of the USRP
transmit center frequency to the next hop frequency.

4. Wait for the local oscillator to lock at the new fre-
quency.

5. Find the difference between the current timer value
and the timer value in Step 3.

6. If the timer difference is less than the dwell time, wait
until dwell time has elapsed and command the next
center frequency, otherwise stop the simulation and
declare the hop rate unsupportable.

Before an evaluation of whether the USRP can meet the
hop rate required by Link 16 can be made, an estimate of
tcpu in Eq. (4) is needed. First an estimate of the smallest
unit of time that can be reliably measured by our processing
system (the OS and laptop/desktop hardware) will be made.
Ubuntu 14.04 LTS on HP EliteBook 8570w with Intel Core
i7-3820QM processor and 16 GB RAM was used to make
all measurements. To estimate tcpu, the following Python
code is used

import numpy as np
import t i m e i t
n u m R e a l i z a t i o n s = 1000
s t e p 1 = np . z e r o s (n u m R e a l i z a t i o n s)
f o r nn in xrange (n u m R e a l i z a t i o n s) :

s t a r t t i m e r = t i m e i t . d e f a u l t t i m e r ()
t ime . s l e e p (0 . 0 0 1) # t i m e i n s e c o n d s
s t e p 1 [nn] = \

t i m e i t . d e f a u l t t i m e r ()− s t a r t t i m e r

A sleep statement is used in the loop so that the timer
function will always return a nonzero value. Without this

Maximum Supported Hopping Rate Measurements USRP

sleep, the timer often returns 0.0 seconds, which is unreal-
istic. The sleep statement itself introduces its own source
of error in that the computer is estimating 0.001 seconds.
For our purposes, as will be shown, it is good enough.
We also tested this using the time.time() and time.clock()
function calls, both from the Python time module. The
time.clock() function measures processing time of the CPU
itself (on Linux, Windows may be different), meaning, a
sleep time of 1 second would only produce a very small
number using time.clock(), because it is not measuring wall
time elapsed, it is measuring the amount of time it actu-
ally took to execute a sleep statement, which is indepen-
dent of the argument passed to it. Thus, we will choose
not to use time.clock(). The timeit module produced es-
timates very close to the time.time() function call, but the
time.time() function has a consistently smaller standard de-
viation, though not by a lot (2µs).

Inspecting Table 1, we see that the two different modules
perform similarly over a large number of runs. The table
was populated by making 100,000 elapsed time estimates
using the aforementioned block of code. Though the values
given in the table may lead you to conclude that time.time()
should be used, there is not a large enough difference be-
tween the two to justify losing the portability of the timeit
module.

Table 1: Minimum time resolution statistics using
time.time() and timeit.default timer(). The sleep time was
set to 1000µs.

Python
Module

Mean
(µs)

Std Dev
(µs)

Max
(µs)

Min
(µs)

Max/Min
Diff
(µs)

time 1093 19 1585 1004 580
timeit 1091 21 2493 1014 1477

The difference between the min and max for each mod-
ule is surprising and serves to illustrate another important
point. The purpose of an Operating System (OS) is to allow
the physical CPU to be shared amongst several processes
in parallel, creating a schedule that determines which pro-
cess gets to use the CPU and for how much time. In the
course of running programs, the OS will weave processes
(and threads) in and out thousands of times per second, cre-
ating what appears to be seamless parallel operation from
a users perspective. In reality, the parallelization is only as
high as the number of cores on the machine. If we assume
a single core CPU without hyper-threading, there is no par-
allelization taking place and yet a user would still be able
to listen to music at the same time as downloading files and
browsing the internet. This is because the OS and more
specifically the scheduler, is switching back and forth be-
tween tasks so fast it makes it look like parallel processing
is occurring, when in fact it is all serial.

Normally, this is exactly how a user wants the OS to be-
have. Unfortunately, when attempting to make precise
measurements for a single process as is being done here,
it is preferred that the OS not switch out our process for
another until our process has completed. The OS should
put everything else on hold until the radio process is com-
pleted. This level of control is not possible using a stan-
dard OS such as Ubuntu. The best that can be hoped for
is to minimize the effect by assigning higher priority to the
radio processes and threads. It is believed that these large
outliers are accounted for by this fact. The script took 331
seconds to run through 100,000 iterations and in this time,
the OS may have given other processes control of the CPU,
forcing ours to idle and causing the large time difference to
occur.

Given the results of Table 1, we can conclude that to
within 97% confidence the timeit.default timer() resolu-
tion will be within six standard deviations of the mean,
or 21 × 6 = 126 µs, ignoring the thread priority outliers.
We use Chebyshev’s inequality (Stark & Woods, 2002) to
make this statement, which holds for any arbitrary underly-
ing distribution, not only normal (Gaussian) distributions.
If the underlying distribution was known to be Gaussian,
this result could be improved upon. This lets us conclude
that our processing system (the laptop/desktop portion) will
surely not support Link 16, because it requires on the order
of microsecond resolution. It is also noted that one can-
not hope to measure ttune or tlock to any time finer then
126 µs. When designing a processing system for Link 16,
it would be desirable to use a real time operating system
(RTOS) with sub microsecond timing capabilities. It is un-
known at this time whether the many free RTOS1 options
would perform well enough for Link 16.

Let us now move on to estimating the tune time and the lock
time of the USRP. Retuning the USRP is accomplished by
calling the following command

t b . u s r p . s e t c e n t e r f r e q (t a r g e t f r e q)

and determining when the USRP locks is accomplished by
calling

t b . u s r p . g e t s e n s o r (” l o l o c k e d ”)

Using these commands, a timer is started right before call-
ing set center freq(). A while loop is then entered and the
program remains here until get.sensor(”lo locked”) returns
true. Upon leaving this while loop we measure the elapsed
time between the start of the timer to when the LO locked,

1PREEMPT-RT is an example of an RTOS
Linux kernel patch that can be applied to standard
Linux, see https://www.linux.com/blog/
intro-real-time-linux-embedded-developers.
This is not the only solution

https://www.linux.com/blog/intro-real-time-linux-embedded-developers
https://www.linux.com/blog/intro-real-time-linux-embedded-developers

Maximum Supported Hopping Rate Measurements USRP

which gives us our estimate of ttune + tlock, to within the
126 µs accuracy imposed on us by our processing system.

3. Results
All results were collected using Ubuntu 14.04 LTS, GNU
Radio 3.7.10 with Universal Hardware Driver (UHD) 3.9.3.
UHD is the driver that interfaces the processing system
(laptop/desktop) to the USRP. The USRPs tested were also
imaged with the latest firmware and FPGA source dis-
tributed with UHD 3.9.3. To reduce the dependence of
our results on the OS scheduler, the GNU Radio real time
scheduling option was used when running flowgraphs. This
option increases the priority of threads related to GNU Ra-
dio flowgraphs ensuring trivial processes do not introduce
a context switch at a bad time resulting in large unneces-
sary timer values between hops. In addition, the Unix nice
-n 20 python program name command is used to ensure
that the top level Python script that controls and starts the
flowgraph thread and starts and stops timers is also given
priority above non-essential OS processes. With this said,
there are still uncertainties related to the Linux scheduler
which cannot be overcome without using an RTOS. Any
large outliers may be attributable to this.

The maximum average hop rate, instantaneous hop rate and
tune and lock times for various USRP combinations are
listed in Table 2. The HackRF is an open source RF front
end SDR unaffiliated with Ettus Research and the USRPs
and is included in the table for comparison. The maximum
average hop rate was determined by finding the largest fre-
quency that supports 1000 hops without missing a single
hop. The maximum instantaneous hop rate was determined
by finding the largest frequency that supports 1000 hops
with at least one hop being successful. The hop amounts
used to create this table were randomly selected with a min-
imum of 3 MHz, and a maximum of 27 MHz. These val-
ues give a sense of the bounds of the hardware platform.
Between these rates, the radio was able to complete some
portion of the hops successfully. To visualize the hop rates
supported across all platforms, see Fig. 3, which allows for
visual interpolation of hop rates between the maximum av-
erage rate and the maximum instantaneous rate. See Ta-
ble 3 for a list of missed hop percentages at a given rate for
the USRP N210 WBX combination.

The retune times (ttune + tlock) and lock times (tlock) var-
ied from hop to hop, as can be seen in Fig. 4 and Fig. 5.
The retune time average appears to be 500 µs, with 90%
of the times contained between 350− 650 µs and the lock
time average appears to be 300 µs, with 90% of the times
contained between 200 − 450 µs . Surprisingly, there are
large periodic outliers as large as 1100 µs, repeating ap-
proximately every 75 hops. They can be seen in both the

Table 2: Hop rate measurements for various USRP SDR
combinations and a HackRF. The times and maximum av-
erage hop rate are average values over 1000 hops. The final
column is the maximum hop rate encountered for a single
successful hop.

MB DB

ttune+
tlock
(µs)

tlock
(µs)

Max
Avg
(Hz)

Max
Inst
(Hz)

N210 WBX 510 290 500 2000
N210 SBX 483 289 500 2000
X310 UBX 610 418 500 2000
B100 WBX 782 573 500 1666
B100 SBX 772 546 333 1666
B2001 -4 3310 117 166 285
B2101 -4 3318 124 166 285
E3102 -4 31258 285 28 31

HackRF 3 -4 215 0 1428 5000
1 The B200/B210 uses an integrated RF front end which
was not designed for fast hopping
2 The E310 is an embedded device (self contained, no
host personal computer) running its own version of
Linux on a Xilinx System On Chip (SoC) Zynq proces-
sor.
3 The HackRF does not have the ability to measure LO
lock time therefore its hop rates are inflated and do not
represent usable hop rates. The HackRF usable rates are
likely similar to those of the USRPs.
4 These SDRs do not use daughterboard (DB) cards

Hop Rate (Hz)

0 2000 4000 6000 8000 10000

P
e

rc
e

n
ta

g
e

 o
f

H
o

p
s
 M

is
s
e

d

0

10

20

30

40

50

60

70

80

90

100
Hop Rate vs Percentage of Hops Missed

N210 WBX

N210 SBX

B100 WBX

B100 SBX

X310 UBX

E310

N210 WBX No Lock

B100 WBX No Lock

HackRF No Lock

Figure 3: Hop rate verses percentage of hops missed. Note
that the HackRF does not have a feature to measure time to
lock built in, so the usable hop rate is likely similar to that
of the USRPs. For comparison, plots of the N210 and B100
were added ignoring the time to lock.

Maximum Supported Hopping Rate Measurements USRP

tune times and lock times. It is mentioned in the UHD2

manual that the lock time is not deterministic, which could
be the source of these spikes. Because of the periodic
nature of the spikes, we believe the source to be either
completely caused by the processing system or completely
caused by the USRP, because it would be very unlikely that
both would line up so perfectly over time. The exact cause
of these outliers is unknown at this time.

Table 3: This table shows the hop rate verses percentage of
hops missed for the USRP N210 with WBX daughterboard
combination.

Hop Rate
(Hz)

Dwell Time
(µs)

Hops
Missed

Percentage
Missed

200 5000 0 0
250 4000 0 0
333 3000 1 0.1
500 2000 2 0.2
1000 1000 5 0.5
1111 900 18 1.8
1250 800 72 7.2
1428 700 159 15.9
1666 600 540 54
2000 500 918 91.8
2500 400 1000 100

0 200 400 600 800 1000
Hop Number

300

400

500

600

700

800

900

1000

Ti
m
e
(µ
s)

Retune Times over 1000 Hops

Figure 4: Retune times, ttune + tlock, for each of 1000
hops.

The Link 16 specification defines a total range of hopping
frequencies that span nearly 300 MHz. For this reason, full
RF retunes were characterized in the preceding discussion,
because it would not be possible with current technology

2See the ”RF front-end settling time section”, http://
files.ettus.com/manual/page_general.html

to rely on DSP retunes only to cover this range. Inevitably
an RF retune would be needed and this would become the
bottleneck. For completeness it is mentioned that hopping
using DSP only retunes is possible if the hopping range is
within the sampling rate of the ADC/DAC of your SDR.
For example, the USRP N210 has an ADC/DAC sampling
rate of 100 MHz. If your hopping frequencies stay within
this band, you can rely on DSP only retunes and remove the
LO locking time, because the RF frequency never changes.

0 200 400 600 800 1000
Hop Number

100

200

300

400

500

600

700

Ti
m
e
(µ
s)

Lock Times over 1000 Hops

Figure 5: Lock times for each of 1000 hops.

Using DSP only retunes does allow for faster hop rates,
showing approximately 60% improvement in the average
tune plus lock time. However, there were very large an-
nomalies in the tune plus lock time that occur using DSP
only retunes that did not occur when using RF retunes. The
cause of this is unknown. In addition, there were spurs
present in the output spectrum of the DSP only retune that
were not present when RF retuning was used.

4. Conclusion
It has been shown that a modern high end computer does
not provide the time resolution required by the Link 16
waveform. The computer characterized in this paper was
shown to have uncertainty in time resolution of up to
126 µs, far too large when deadlines on the order of 6 µs
are required. It is believed that the results found using
our computer are a good representative of the population
of modern computers as a whole. The next step would be
to evaluate an RTOS on a modern computer to see how
much better resolution becomes. It is possible the physical
oscillators and hardware used by commerical off-the-shelf
(COTS) computers do not offer the resolution needed, re-
gardless of the OS used, in which case a custom hardware

http://files.ettus.com/manual/page_general.html
http://files.ettus.com/manual/page_general.html

Maximum Supported Hopping Rate Measurements USRP

solution will be required.

The USRP motherboard/daughterboard combinations
tested in this paper show average tuning and locking times
in the hundreds of microseconds range. This is too long
to meet timing requirements of the Link 16 waveform.
As shown in Eq. (4), the tune and lock times need to be
sub 6 µs for the SDR to have any chance of meeting the
required hop rate. The exact amount of time the tune and
lock must fall under depends on the amount of time needed
for baseband processing, given by tcpu.

The method used in this paper to implement frequency hop-
ping should be considered the ”out of the box” method.
No extensive modifications or developer level UHD knowl-
edge is needed to implement the hopping. This is believed
to be the way most developers would intend on using the
devices and therefore it makes the most sense to character-
ize. While it may be possible to improve the results here
by using custom low level C/C++ scripts, this would re-
quire more detailed knowledge of the UHD drivers. At this
point, you begin losing your ”low cost” solution to engi-
neering development costs in writing the custom scripts. It
is also the authors opinion that heavily optimized scripts
would still be very far from hopping at the rates required
by Link 16 using the USRPs.

It is the opinion of the author that a custom GPP and RF
front end solution can be made to support the Link 16 wave-
form that does not depend on FPGAs. Though this custom
solution would be more expensive than a COTS based so-
lution, it would offer tremendous cost savings in mainte-
nance and code revision for future updates/upgrades to the
Link 16 waveform. It would also be very portable to COTS
based RF front ends as they become available in the future
when low cost technology catches up to the rates required
by Link 16.

References
Adams, Leon. Choosing the right architecture for

real-time signal processing designs. Technical
Report SPRA879, Texas Instruments, Nov 2002.
URL http://www.ti.com.cn/cn/lit/wp/
spra879/spra879.pdf.

BladeRF. Bladerf, 2016. URL http://www.nuand.
com/. accessed June 2016.

Dorf, R.C. and Bishop, R.H. Modern Control Sys-
tems. Pearson Prentice Hall, 2016. ISBN
9780132270281. URL https://books.google.
com/books?id=V-FpzJP5bEIC.

Doyle, Linda. The Essentials of Cognitive Radio. Cam-
bridge University Press, 2009. ISBN 9780521897709.

Ettus. Ettus research, 2016. URL
accessedApril2016,https://www.ettus.
com/. accessed April 2016.

Farrell, John Patrick. Digital Hardware Design Decisions
and Trade-offs for Software Radio Systems. Master’s
thesis, Virginia Polytechnic Institute, Blacksburg, VA,
2009.

Forbes, Peader and Collins, Ian. Lock detect
for the ADF4xxx family of PLL synthesiz-
ers. Technical Report AN-873, Analog Devices,
2006. URL http://www.analog.com/
media/en/technical-documentation/
application-notes/AN-873.pdf.

George, A. and Kiesler, M.H. Secret communication sys-
tem, August 11 1942. URL http://www.google.
com/patents/US2292387. US Patent 2,292,387.

GNURadio. Gnu radio, 2016. URL
accessedApril2016,http://www.
gnuradio.org. accessed April 2016.

Gruman, Northrop. Understanding voice and data
link networking, 2014. URL http://www.
northropgrumman.com/Capabilities/
DataLinkProcessingAndManagement/
Documents/Understanding_Voice+Data_
Link_Networking.pdf. accessed June 2016.

HackRF. Hackrf, 2016. URL https://
greatscottgadgets.com/hackrf/. accessed
April 2016.

Stark, H. and Woods, J.W. Probability and Random Pro-
cesses with Applications to Signal Processing. Prentice
Hall, 2002. ISBN 9780130200716.

http://www.ti.com.cn/cn/lit/wp/spra879/spra879.pdf
http://www.ti.com.cn/cn/lit/wp/spra879/spra879.pdf
http://www.nuand.com/
http://www.nuand.com/
https://books.google.com/books?id=V-FpzJP5bEIC
https://books.google.com/books?id=V-FpzJP5bEIC
accessed April 2016, https://www.ettus.com/
accessed April 2016, https://www.ettus.com/
http://www.analog.com/media/en/technical-documentation/application-notes/AN-873.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-873.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/AN-873.pdf
http://www.google.com/patents/US2292387
http://www.google.com/patents/US2292387
accessed April 2016, http://www.gnuradio.org
accessed April 2016, http://www.gnuradio.org
http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf
http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf
http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf
http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf
http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf
https://greatscottgadgets.com/hackrf/
https://greatscottgadgets.com/hackrf/

